Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Systematic Review Article

The Impact of Deranged Glucose Metabolism and Diabetes in the Pathogenesis and Prognosis of the Novel SARS-CoV-2: A Systematic Review of Literature

Author(s): Victor O. Ukwenya*, Sunday A. Adelakun, Temiloluwa A. Fuwape and Ayotunde S. Adeagbo

Volume 18, Issue 3, 2022

Published on: 07 January, 2022

Article ID: e060821195355 Pages: 12

DOI: 10.2174/1573399817666210806104349

Price: $65

Abstract

Background: The novel coronavirus disease (COVID-19), declared a global pandemic by the World Health Organization (WHO) on March 11, 2020, and has constituted one of the most serious health challenges of the century, globally. The causative organism was initially named the 2019 novel coronavirus (2019 n CoV) but has subsequently been renamed Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The pandemic has so far infected several millions and killed about a million people worldwide. Diabetes mellitus (DM) is one of the leading causes of morbidity worldwide.

Objectives: To examine the critical role diabetes plays in the pathogenesis and prognosis of COVID-19 and to assess the emerging therapies available to fight the pandemic.

Methods: Authors conducted a systematic review of the literature to examine the role of diabetes as comorbidity in the pathogenesis and prognosis of COVID-19 by searching PubMed and Science Direct databases mainly for articles published since the outbreak of the pandemic.

Results: Both experimental and observational data from early 2020 suggested that most people with COVID-19 have comorbidities, the most dominant of which are diabetes, cardiovascular disease, and hypertension. Empirical evidence indicates that diabetic patients infected with the COVID-19 disease had the worst outcomes concerning morbidity and mortality.

Conclusion: A combination of underlying chronic conditions such as hypertension, obesity, and cardiovascular diseases together with altered ACE receptor expression, immune dysregulation via cytokine storm, alveolar and endothelial dysfunction, increased systemic coagulation may put individuals with diabetes at risk for COVID-19 severity. More studies are needed to elucidate how glucose- lowering drugs may modulate the host immune response in diabetic individuals, especially following the administration of potential COVID-19 vaccines.

Keywords: COVID-19 disease, coronavirus, diabetes, metabolism, hyperglycemia, pandemic.

[1]
WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. 2020. Available from:https://www.who.int/dg/speeches/detail/who-director-general-sopening-remarks-at-the-media briefing-on-covid-19-11-march-2020/ Accessed date: 04 August 2020.
[2]
Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 2020; 130(5): 2620-9.
[http://dx.doi.org/10.1172/JCI137244] [PMID: 32217835]
[3]
Xue T, Li Q, Zhang Q, et al. Blood glucose levels in elderly subjects with type 2 diabetes during COVID-19 outbreak: A retrospective study in a single center. medRxiv 2020.
[4]
Gudbjartsson DF, Helgason A, Jonsson H, et al. Spread of SARS- CoV-2 in the Icelandic population. N Engl J Med 2020; 382(24): 2302-15.
[http://dx.doi.org/10.1056/NEJMoa2006100] [PMID: 32289214]
[5]
John hopkins uiversity, University of medicine. Corona virus resource centre. 2020.
[6]
Knapp S. Diabetes and infection: is there a link? a mini-review. Gerontology 2013; 59(2): 99-104.
[http://dx.doi.org/10.1159/000345107] [PMID: 23182884]
[7]
Muller LM, Gorter KJ, Hak E, et al. Increased risk of common infections in patients with type 1 and type 2 diabetes mellitus. Clin Infect Dis 2005; 41(3): 281-8.
[http://dx.doi.org/10.1086/431587] [PMID: 16007521]
[8]
Hodgson K, Morris J, Bridson T, Govan B, Rush C, Ketheesan N. Immunological mechanisms contributing to the double burden of diabetes and intracellular bacterial infections. Immunology 2015; 144(2): 171-85.
[http://dx.doi.org/10.1111/imm.12394] [PMID: 25262977]
[9]
Yang JK, Feng Y, Yuan MY, et al. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet Med 2006; 23(6): 623-8.
[http://dx.doi.org/10.1111/j.1464-5491.2006.01861.x] [PMID: 16759303]
[10]
Chen C, Chen C, Yan JT, Zhou N, Zhao JP, Wang DW. Analysis of myocardial injury in patients with COVID-19 and association between concomitant cardiovascular diseases and severity of COVID-19. Zhonghua Xin Xue Guan Bing Za Zhi 2020; 48(7): 567-71.
[PMID: 32141280]
[11]
Guo W, Li M, Dong Y, et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev 2020; e3319.
[http://dx.doi.org/10.1002/dmrr.3319] [PMID: 32233013]
[12]
International diabetes federation. IDF diabetes atlas. 8th ed. Brussels: International diabetes federation 2017.
[13]
American diabetes association. Classification and diagnosis of diabetes. Diabetes Care 2017; 40(Suppl. 1): S11-24.
[http://dx.doi.org/10.2337/dc17-S005] [PMID: 27979889]
[14]
Luo L, Pang B, Chen J, Li Y, Xie X. Assessing the impact of lifestyle interventions on diabetes prevention in china: A modeling approach. Int J Environ Res Public Health 2019; 16(10): 1677.
[http://dx.doi.org/10.3390/ijerph16101677] [PMID: 31091690]
[15]
Beckman JA, Creager MA. Vascular complications of diabetes. Circ Res 2016; 118(11): 1771-85.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306884] [PMID: 27230641]
[16]
Iglay K, Hannachi H, Joseph Howie P, et al. Prevalence and co-prevalence of comorbidities among patients with type 2 diabetes mellitus. Curr Med Res Opin 2016; 32(7): 1243-52.
[http://dx.doi.org/10.1185/03007995.2016.1168291] [PMID: 26986190]
[17]
Fazeli Farsani S, Souverein PC, van der Vorst MM, Knibbe CA, de Boer A, Mantel-Teeuwisse AK. Chronic comorbidities in children with type 1 diabetes: A population-based cohort study. Arch Dis Child 2015; 100(8): 763-8.
[http://dx.doi.org/10.1136/archdischild-2014-307654] [PMID: 25877155]
[18]
Laing SP, Swerdlow AJ, Carpenter LM, et al. Mortality from cerebrovascular disease in a cohort of 23, 000 patients with insulin-treated diabetes. Stroke 2003; 34(2): 418-21.
[http://dx.doi.org/10.1161/01.STR.0000053843.03997.35] [PMID: 12574553]
[19]
Critchley JA, Carey IM, Harris T, DeWilde S, Hosking FJ, Cook DG. Glycemic control and risk of infections among people with type 1 or type 2 diabetes in a large primary care cohort study. Diabetes Care 2018; 41(10): 2127-35.
[http://dx.doi.org/10.2337/dc18-0287] [PMID: 30104296]
[20]
Hine JL, de Lusignan S, Burleigh D, et al. Association between glycaemic control and common infections in people with Type 2 diabetes: A cohort study. Diabet Med 2017; 34(4): 551-7.
[http://dx.doi.org/10.1111/dme.13205] [PMID: 27548909]
[21]
Mor A, Dekkers OM, Nielsen JS, Beck-Nielsen H, Sørensen HT, Thomsen RW. Impact of glycemic control on risk of infections in patients with type 2 diabetes: a population-based cohort study. Am J Epidemiol 2017; 186(2): 227-36.
[http://dx.doi.org/10.1093/aje/kwx049] [PMID: 28459981]
[22]
Carey IM, Critchley JA, DeWilde S, Harris T, Hosking FJ, Cook DG. Risk of infection in type 1 and type 2 diabetes compared with the general population: a matched cohort study. Diabetes Care 2018; 41(3): 513-21.
[http://dx.doi.org/10.2337/dc17-2131] [PMID: 29330152]
[23]
Erener S. Diabetes, infection risk and COVID-19. Mol Metab 2020; 39: 101044.
[http://dx.doi.org/10.1016/j.molmet.2020.101044] [PMID: 32585364]
[24]
Yang YM, Hsu CY, Lai CC, et al. Impact of comorbidity on fatality rate of patients with Middle East respiratory syndrome. Sci Rep 2017; 7(1): 11307.
[http://dx.doi.org/10.1038/s41598-017-10402-1] [PMID: 28900101]
[25]
Guan WJ, Liang WH, Zhao Y, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: A nationwide analysis. Eur Respir J 2020; 55(5): 2000547.
[http://dx.doi.org/10.1183/13993003.00547-2020] [PMID: 32217650]
[26]
Lin L, Lu L, Cao W, Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect 2020; 9(1): 727-32.
[http://dx.doi.org/10.1080/22221751.2020.1746199] [PMID: 32196410]
[27]
Dietz W, Santos-Burgoa C. Obesity and its Implications for COVID-19 Mortality. Obesity (Silver Spring) 2020; 28(6): 1005. [Silver Spring].
[http://dx.doi.org/10.1002/oby.22818] [PMID: 32237206]
[28]
Vardavas CI, Nikitara K. COVID-19 and smoking: A systematic review of the evidence. Tob Induc Dis 2020; 18: 20.
[http://dx.doi.org/10.18332/tid/119324] [PMID: 32206052]
[29]
Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020; 323(13): 1239-42.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[30]
Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 2020; 323(18): 1775-6.
[http://dx.doi.org/10.1001/jama.2020.4683] [PMID: 32203977]
[31]
Katulanda P, Dissanayake HA, Ranathunga I, et al. Prevention and management of COVID-19 among patients with diabetes: An appraisal of the literature. Diabetologia 2020; 68(8): 1-13.
[32]
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020; 395(10229): 1054-62.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[33]
Zhang JJ, Dong X, Cao YY, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 2020; 75(7): 1730-41.
[http://dx.doi.org/10.1111/all.14238] [PMID: 32077115]
[34]
Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost 2020; 18(5): 1094-9.
[http://dx.doi.org/10.1111/jth.14817] [PMID: 32220112]
[35]
Amiel SA, Aschner P, Childs B, et al. Hypoglycaemia, cardiovascular disease, and mortality in diabetes: Epidemiology, pathogenesis, and management. Lancet Diabetes Endocrinol 2019; 7(5): 385-96.
[http://dx.doi.org/10.1016/S2213-8587(18)30315-2] [PMID: 30926258]
[36]
Tsalamandris S, Antonopoulos AS, Oikonomou E, et al. The role of inflammation in diabetes: current concepts and future perspectives. Eur Cardiol 2019; 14(1): 50-9.
[http://dx.doi.org/10.15420/ecr.2018.33.1] [PMID: 31131037]
[37]
Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol 2020; 92(4): 424-32.
[http://dx.doi.org/10.1002/jmv.25685] [PMID: 31981224]
[38]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[39]
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181(2): 281-92.
[http://dx.doi.org/10.1016/j.cell.2020.02.058]
[40]
Li Y, Zhang Z, Yang L, et al. The MERS-CoV receptor DPP4 as a candidate binding target of the SARS-CoV-2 spike. Iscience 2020; 23(6): 101160.
[41]
Shang J, Ye G, Shi K, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020; 581(7807): 221-4.
[http://dx.doi.org/10.1038/s41586-020-2179-y] [PMID: 32225175]
[42]
Muniyappa R, Gubbi S. COVID-19 pandemic, corona viruses, and diabetes mellitus. Am J Physiol Endocrinol Metab 2020; 318(5): E736-41.
[43]
Zhao J, Yuan Q, Wang H, et al. Antibody responses to SARS- CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis 2020; 71(16): 2027-34.
[http://dx.doi.org/10.1093/cid/ciaa344] [PMID: 32221519]
[44]
Wu F, Wang A, Liu M, et al. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. medRxiv 2020; 20047365.
[45]
Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol 2007; 170(4): 1136-47.
[http://dx.doi.org/10.2353/ajpath.2007.061088] [PMID: 17392154]
[46]
Joshi N, Caputo GM, Weitekamp MR, Karchmer AW. Infections in patients with diabetes mellitus. N Engl J Med 1999; 341(25): 1906-12.
[http://dx.doi.org/10.1056/NEJM199912163412507] [PMID: 10601511]
[47]
Zykova SN, Jenssen TG, Berdal M, Olsen R, Myklebust R, Seljelid R. Altered cytokine and nitric oxide secretion in vitro by macrophages from diabetic type II-like db/db mice. Diabetes 2000; 49(9): 1451-8.
[http://dx.doi.org/10.2337/diabetes.49.9.1451] [PMID: 10969828]
[48]
Delamaire M, Maugendre D, Moreno M, Le Goff MC, Allannic H, Genetet B. Impaired leucocyte functions in diabetic patients. Diabet Med 1997; 14(1): 29-34.
[http://dx.doi.org/10.1002/(SICI)1096-9136(199701)14:1<29::AID-DIA300>3.0.CO;2-V] [PMID: 9017350]
[49]
Kulcsar KA, Coleman CM, Beck SE, Frieman MB. Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS-CoV infection. JCI Insight 2019; 4(20): e131774.
[http://dx.doi.org/10.1172/jci.insight.131774] [PMID: 31550243]
[50]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[51]
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229): 1033-4.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[52]
Tikellis C, Thomas MC. Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. Int J Pept 2012; 2012: 256294.
[http://dx.doi.org/10.1155/2012/256294] [PMID: 22536270]
[53]
AlGhatrif M, Cingolani O, Lakatta EG. The dilemma of coronavirus disease 2019, aging, and cardiovascular disease: Insights from cardiovascular aging science. JAMA Cardiol 2020; 5(7): 747-8.
[http://dx.doi.org/10.1001/jamacardio.2020.1329] [PMID: 32242886]
[54]
Solini A, Zoppini G, Orsi E, et al. Resistant hypertension in patients with type 2 diabetes: Clinical correlates and association with complications. J Hypertens 2014; 32(12): 2401-10.
[http://dx.doi.org/10.1097/HJH.0000000000000350] [PMID: 25198422]
[55]
Li XC, Zhang J, Zhuo JL. The vasoprotective axes of the renin-angiotensin system: Physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res 2017; 125(Pt A): 21-38.
[http://dx.doi.org/10.1016/j.phrs.2017.06.005] [PMID: 28619367]
[56]
Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med 2020; 8(4): e21.
[http://dx.doi.org/10.1016/S2213-2600(20)30116-8] [PMID: 32171062]
[57]
Zhang L, Hou J, Ma FZ, Li J, Xue S, Xu ZG. The common risk factors for progression and mortality in COVID-19 patients: A meta-analysis. Arch Virol 2021; 1-17.
[PMID: 33797621]
[58]
Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005; 436(7047): 112-6.
[http://dx.doi.org/10.1038/nature03712] [PMID: 16001071]
[59]
Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 2005; 11(8): 875-9.
[http://dx.doi.org/10.1038/nm1267] [PMID: 16007097]
[60]
Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020; 5(4): 562-9.
[http://dx.doi.org/10.1038/s41564-020-0688-y] [PMID: 32094589]
[61]
Bourgonje AR, Abdulle AE, Timens W, et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol 2020; 251(3): 228-48.
[http://dx.doi.org/10.1002/path.5471] [PMID: 32418199]
[62]
Zhao D, Yao F, Wang L, et al. A comparative study on the clinical features of COVID-19 pneumonia to other pneumonias. Clin Infect Dis 2020; 71(15): 756-61.
[http://dx.doi.org/10.1093/cid/ciaa247] [PMID: 32161968]
[63]
Suh S, Park MK. Glucocorticoid-induced diabetes mellitus: An important but overlooked problem. Endocrinol Metab (Seoul) 2017; 32(2): 180-9.
[http://dx.doi.org/10.3803/EnM.2017.32.2.180] [PMID: 28555464]
[64]
Chandwani A, Shuter J. Lopinavir/ritonavir in the treatment of HIV-1 infection: A review. Ther Clin Risk Manag 2008; 4(5): 1023-33.
[PMID: 19209283]
[65]
Zhang XL, Li ZM, Ye JT, et al. Pharmacological and cardiovascular perspectives on the treatment of COVID-19 with chloroquine derivatives. Acta Pharmacol Sin 2020; 41(11): 1377-86.
[http://dx.doi.org/10.1038/s41401-020-00519-x] [PMID: 32968208]
[66]
Soy M, Keser G, Atagündüz P, Tabak F, Atagündüz I, Kayhan S. Cytokine storm in COVID-19: Pathogenesis and overview of anti-inflammatory agents used in treatment. Clin Rheumatol 2020; 39(7): 2085-94.
[http://dx.doi.org/10.1007/s10067-020-05190-5] [PMID: 32474885]
[67]
Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect 2020; 80(6): 607-13.
[http://dx.doi.org/10.1016/j.jinf.2020.03.037] [PMID: 32283152]
[68]
Touret F, de Lamballerie X. Of chloroquine and COVID-19. Antiviral Res 2020; 177(177): 104762.
[http://dx.doi.org/10.1016/j.antiviral.2020.104762] [PMID: 32147496]
[69]
Yao X, Ye F, Zhang M, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020; 71(15): 732-9.
[http://dx.doi.org/10.1093/cid/ciaa237] [PMID: 32150618]
[70]
Zhou D, Dai SM, Tong Q. COVID-19: A recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. J Antimicrob Chemother 2020; 75(7): 1667-70.
[http://dx.doi.org/10.1093/jac/dkaa114] [PMID: 32196083]
[71]
Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020; 56(1): 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[72]
Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care 2020; 9441(9441): 30390-7.
[http://dx.doi.org/10.1016/j.jcrc.2020.03.005]
[73]
Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 2020; 14(1): 72-3.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[74]
Blazar BR, Whitley CB, Kitabchi AE, et al. In vivo chloroquine-induced inhibition of insulin degradation in a diabetic patient with severe insulin resistance. Diabetes 1984; 33(12): 1133-7.
[http://dx.doi.org/10.2337/diab.33.12.1133] [PMID: 6094290]
[75]
Smith GD, Amos TA, Mahler R, Peters TJ. Effect of chloroquine on insulin and glucose homoeostasis in normal subjects and patients with non-insulin-dependent diabetes mellitus. Br Med J (Clin Res Ed) 1987; 294(6570): 465-7. [Clin Res Ed].
[http://dx.doi.org/10.1136/bmj.294.6570.465] [PMID: 3103729]
[76]
Kang L, Mikuls T, O’Dell J. Hydroxychloroquine: A diabetic drug in disguise? BMJ Case Rep 2019; 2019: bcr0820080654.
[http://dx.doi.org/10.1136/bcr.08.2008.0654]
[77]
Rekedal LR, Massarotti E, Garg R, et al. Changes in glycosylated hemoglobin after initiation of hydroxychloroquine or methotrexate treatment in diabetes patients with rheumatic diseases. Arthritis Rheum 2010; 62(12): 3569-73.
[http://dx.doi.org/10.1002/art.27703] [PMID: 20722019]
[78]
Cansu DÜ, Korkmaz C. Hypoglycaemia induced by hydroxychloroquine in a non-diabetic patient treated for RA. Rheumatology (Oxford) 2008; 47(3): 378-9.
[http://dx.doi.org/10.1093/rheumatology/kem378] [PMID: 18222983]
[79]
Wasko MC, McClure CK, Kelsey SF, Huber K, Orchard T, Toledo FG. Antidiabetogenic effects of hydroxychloroquine on insulin sensitivity and beta cell function: A randomised trial. Diabetologia 2015; 58(10): 2336-43.
[http://dx.doi.org/10.1007/s00125-015-3689-2] [PMID: 26197707]
[80]
Hooks M, Bart B, Vardeny O, Westanmo A, Adabag S. Effects of hydroxychloroquine treatment on QT interval. Heart rhythm 2020; 17(11): 1930-5.
[http://dx.doi.org/10.1016/j.hrthm.2020.06.029]
[81]
Lentini G, Cavalluzzi MM, Habtemariam S. COVID-19, chloroquine repurposing, and cardiac safety concern: Chirality might help. Molecules 2020; 25(8): 1834.
[http://dx.doi.org/10.3390/molecules25081834] [PMID: 32316270]
[82]
Nishiga M, Wang DW, Han Y, Lewis DB, Wu JC. COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives. Nat Rev Cardiol 2020; 17(9): 543-58.
[http://dx.doi.org/10.1038/s41569-020-0413-9] [PMID: 32690910]
[83]
Chorin E, Dai M, Shulman E, et al. The QT interval in patients with COVID-19 treated with hydroxychloroquine and azithromycin. Nat Med 2020; 26(6): 808-9.
[http://dx.doi.org/10.1038/s41591-020-0888-2] [PMID: 32488217]
[84]
Meduri GU, Siemieniuk RAC. Prolonged glucocorticoid treatment in acute respiratory distress syndrome. Lancet 2017; 389(10078): 1516.
[http://dx.doi.org/10.1016/S0140-6736(17)30952-2] [PMID: 28422024]
[85]
Villar J, Ferrando C, Martínez D, et al. Dexamethasone treatment for the acute respiratory distress syndrome: A multicentre, randomised controlled trial. Lancet Respir Med 2020; 8(3): 267-76.
[http://dx.doi.org/10.1016/S2213-2600(19)30417-5] [PMID: 32043986]
[86]
Reddy K, O’Kane C, McAuley D. Corticosteroids in acute respiratory distress syndrome: A step forward, but more evidence is needed. Lancet Respir Med 2020; 8(3): 220-2.
[http://dx.doi.org/10.1016/S2213-2600(20)30048-5] [PMID: 32043984]
[87]
Arabi YM, Mandourah Y, Al-Hameed F, et al. Corticosteroid therapy for critically ill patients with Middle East respiratory syndrome. Am J Respir Crit Care Med 2018; 197(6): 757-67.
[http://dx.doi.org/10.1164/rccm.201706-1172OC] [PMID: 29161116]
[88]
Stockman LJ, Bellamy R, Garner P. SARS: Systematic review of treatment effects. PLoS Med 2006; 3(9): e343.
[http://dx.doi.org/10.1371/journal.pmed.0030343] [PMID: 16968120]
[89]
Anesi GL. Coronavirus disease 2019 (COVID-19): Critical care issues. 2019. Available from: https://www.uptodate.com/contents/coronavirus-disease-2019-covid-19-critical-care-issues accessed 09 Sept 2020.
[90]
Xiao JZ, Ma L, Gao J, et al. Glucocorticoid-induced diabetes in severe acute respiratory syndrome: The impact of high dosage and duration of methylprednisolone therapy. Zhonghua Nei Ke Za Zhi 2004; 43(3): 179-82.
[PMID: 15059370]
[91]
Remdesivir FDA. EUA letter of authorisation. Published 1 May 2020. Available from: https://www.fda.gov/media/137564/download Accessed 8 Sept 2020.
[92]
Yu LL, Zhu M, Huang Y, et al. Metformin relieves acute respiratory distress syndrome by reducing miR-138 expression. Eur Rev Med Pharmacol Sci 2018; 22(16): 5355-63.
[PMID: 30178862]
[93]
Nassar MS, Bakhrebah MA, Meo SA, Alsuabeyl MS, Zaher WA. Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection: Epidemiology, pathogenesis and clinical characteristics. Eur Rev Med Pharmacol Sci 2018; 22(15): 4956-61.
[PMID: 30070331]
[94]
Song P, Li W, Xie J, Hou Y, You C. Cytokine storm induced by SARS-CoV-2. Clin Chim Acta 2020; 509: 280-7.
[http://dx.doi.org/10.1016/j.cca.2020.06.017] [PMID: 32531256]
[95]
Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev 2020; 53(53): 25-32.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.003] [PMID: 32446778]
[96]
Cameron AR, Morrison VL, Levin D, et al. Anti-inflammatory effects of metformin irrespective of diabetes status. Circ Res 2016; 119(5): 652-65.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308445] [PMID: 27418629]
[97]
Singh AK, Singh R. Is metformin ahead in the race as a repurposed host-directed therapy for patients with diabetes and COVID-19? Diabetes Res Clin Pract 2020; 165: 108268.
[http://dx.doi.org/10.1016/j.diabres.2020.108268] [PMID: 32533990]
[98]
Sharma S, Ray A, Sadasivam B. Metformin in COVID-19: A possible role beyond diabetes. Diabetes Res Clin Pract 2020; 164: 108183.
[http://dx.doi.org/10.1016/j.diabres.2020.108183] [PMID: 32360697]
[99]
Zumla A, Hui DS, Azhar EI, Memish ZA, Maeurer M. Reducing mortality from 2019-nCoV: Host-directed therapies should be an option. Lancet 2020; 395(10224): e35-6.
[http://dx.doi.org/10.1016/S0140-6736(20)30305-6] [PMID: 32035018]
[100]
Kow CS, Hasan SS. Mortality risk with preadmission metformin use in patients with COVID-19 and diabetes: A meta-analysis. J Med Virol 2021; 93(2): 695-7.
[http://dx.doi.org/10.1002/jmv.26498] [PMID: 32902868]
[101]
Ursini F, Ciaffi J, Landini MP, Meliconi R. COVID-19 and diabetes: Is metformin a friend or foe? Diabetes Res Clin Pract 2020; 164: 108167.
[http://dx.doi.org/10.1016/j.diabres.2020.108167] [PMID: 32339534]
[102]
Cure E, Cumhur Cure M. Comment on “Should anti-diabetic medications be reconsidered amid COVID-19 pandemic?”. Diabetes Res Clin Pract 2020; 164: 108184.
[http://dx.doi.org/10.1016/j.diabres.2020.108184] [PMID: 32360695]
[103]
Raj VS, Mou H, Smits SL, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013; 495(7440): 251-4.
[http://dx.doi.org/10.1038/nature12005] [PMID: 23486063]
[104]
Ohnuma K, Dang NH, Morimoto C. Revisiting an old acquaintance: CD26 and its molecular mechanisms in T cell function. Trends Immunol 2008; 29(6): 295-301.
[http://dx.doi.org/10.1016/j.it.2008.02.010] [PMID: 18456553]
[105]
Reinhold D, Bank U, Bühling F, et al. Inhibitors of dipeptidyl peptidase IV (DP IV, CD26) induces secretion of transforming growth factor-beta 1 (TGF-beta 1) in stimulated mouse splenocytes and thymocytes. Immunol Lett 1997; 58(1): 29-35.
[http://dx.doi.org/10.1016/S0165-2478(97)02716-8] [PMID: 9436466]
[106]
Mentlein R. Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides. Regul Pept 1999; 85(1): 9-24.
[http://dx.doi.org/10.1016/S0167-0115(99)00089-0] [PMID: 10588446]
[107]
Mortier A, Gouwy M, Van Damme J, Proost P, Struyf S. CD26/dipeptidylpeptidase IV-chemokine interactions: Double-edged regulation of inflammation and tumor biology. J Leukoc Biol 2016; 99(6): 955-69.
[http://dx.doi.org/10.1189/jlb.3MR0915-401R] [PMID: 26744452]
[108]
Barnett A. DPP-4 inhibitors and their potential role in the management of type 2 diabetes. Int J Clin Pract 2006; 60(11): 1454-70.
[http://dx.doi.org/10.1111/j.1742-1241.2006.01178.x] [PMID: 17073841]
[109]
Meyerholz DK, Lambertz AM, McCray PB Jr. Jr Dipeptidyl peptidase 4 distribution in the human respiratory tract: Implications for the middle east respiratory syndrome. Am J Pathol 2016; 186(1): 78-86.
[http://dx.doi.org/10.1016/j.ajpath.2015.09.014] [PMID: 26597880]
[110]
Vankadari N, Wilce JA. Emerging WuHan (COVID-19) coronavirus: Glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect 2020; 9(1): 601-4.
[http://dx.doi.org/10.1080/22221751.2020.1739565] [PMID: 32178593]
[111]
Kleine-Weber H, Elzayat MT, Wang L, et al. Mutations in the spike protein of middle east respiratory syndrome coronavirus transmitted in korea increase resistance to antibody-mediated neutralization. J Virol 2019; 93(2): e01381-418.
[http://dx.doi.org/10.1128/JVI.01381-18] [PMID: 30404801]
[112]
Solerte SB, Di Sabatino A, Galli M, Fiorina P. Dipeptidyl peptidase-4 (DPP4) inhibition in COVID-19. Acta Diabetol 2020; 57(7): 779-83.
[http://dx.doi.org/10.1007/s00592-020-01539-z] [PMID: 32506195]
[113]
Krejner-Bienias A, Grzela K, Grzela T. dpp4 inhibitors and covid-19-holy grail or another dead end? Arch Immunol Ther Exp (Warsz) 2021; 69(1): 1.
[http://dx.doi.org/10.1007/s00005-020-00602-5] [PMID: 33527308]
[114]
Aschner P, Kipnes MS, Lunceford JK, Sanchez M, Mickel C, Williams-Herman DE. Effect of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care 2006; 29(12): 2632-7.
[http://dx.doi.org/10.2337/dc06-0703] [PMID: 17130196]
[115]
Drucker DJ, Nauck MA. The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006; 368(9548): 1696-705.
[http://dx.doi.org/10.1016/S0140-6736(06)69705-5] [PMID: 17098089]
[116]
Iacobellis G. COVID-19 and diabetes: Can DPP4 inhibition play a role? Diabetes Res Clin Pract 2020; 162: 108125.
[http://dx.doi.org/10.1016/j.diabres.2020.108125] [PMID: 32224164]
[117]
Feng Y, Wang L, Ma X, et al. Effect of hCMSCs and liraglutide combination in ALI through cAMP/PKAc/β-catenin signaling pathway. Stem Cell Res Ther 2020; 11(1): 2.
[http://dx.doi.org/10.1186/s13287-019-1492-6] [PMID: 31900217]
[118]
Soltani S, Zandi M, Shiri Aghbash P, et al. A review of COVID-19 vaccines and major considerations for diabetic patients. Biotechnol Appl Biochem 2022; 69(1): 30-40.
[http://dx.doi.org/10.1002/bab.2076] [PMID: 33179788]
[119]
Mathieu C, Gillard P, Benhalima K. Insulin analogues in type 1 diabetes mellitus: Getting better all the time. Nat Rev Endocrinol 2017; 13(7): 385-99.
[http://dx.doi.org/10.1038/nrendo.2017.39] [PMID: 28429780]
[120]
Yu B, Li C, Sun Y, Wang DW. Insulin treatment is associated with increased mortality in patients with COVID-19 and type 2 diabetes. Cell Metabolism 2021; 33(1): 65-77.
[121]
Sardu C, D’Onofrio N, Balestrieri ML, et al. Outcomes in patients with hyperglycemia affected by COVID-19: Can we do more on glycemic control? Diabetes Care 2020; 43(7): 1408-15.
[http://dx.doi.org/10.2337/dc20-0723] [PMID: 32430456]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy