Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Dengue Virus Entry/Fusion Inhibition By Small Bioactive Molecules: A Critical Review

Author(s): Podila Naresh, Shyam Sunder Pottabatula and Selvaraj Jubie*

Volume 22, Issue 3, 2022

Published on: 05 August, 2021

Page: [484 - 497] Pages: 14

DOI: 10.2174/1389557521666210805105146

Price: $65

Abstract

Many flaviviruses are remarkable human pathogens that can be transmitted by mosquitoes and ticks. Despite the availability of vaccines for viral infections such as yellow fever, Japanese encephalitis, and tick-borne encephalitis, flavivirus-like dengue is still a significant life-threatening illness worldwide. To date, there is no antiviral treatment for dengue therapy. Industry and the research community have been taking ongoing steps to improve anti-flavivirus treatment to meet this clinical need. The successful activity has been involved in the inhibition of the virus entry fusion process in the last two decades. In this study, the latest understanding of the use of small molecules used as fusion inhibitors has been comprehensively presented. We summarized the structure, the process of fusion of dengue virus E protein (DENV E), and the amino acids involved in the fusion process. Special attention has been given to small molecules that allow conformational changes to DENV E protein, viz. blocking the pocket of βOG, which is important for fusion.

Keywords: Dengue, flavivirus, envelop protein, hinge, βOG, fusion.

Graphical Abstract

[1]
Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; Myers, M.F.; George, D.B.; Jaenisch, T.; Wint, G.R.W.; Simmons, C.P.; Scott, T.W.; Farrar, J.J.; Hay, S.I. The global distribution and burden of dengue. Nature, 2013, 496(7446), 504-507.
[http://dx.doi.org/10.1038/nature12060] [PMID: 23563266]
[2]
Xu, L.; Stige, L.C.; Chan, K.S.; Zhou, J.; Yang, J.; Sang, S.; Wang, M.; Yang, Z.; Yan, Z.; Jiang, T.; Lu, L.; Yue, Y.; Liu, X.; Lin, H.; Xu, J.; Liu, Q.; Stenseth, N.C. Climate variation drives dengue dynamics. Proc. Natl. Acad. Sci. USA, 2017, 114(1), 113-118.
[http://dx.doi.org/10.1073/pnas.1618558114] [PMID: 27940911]
[3]
WHO Dengue and severe dengue. Available from:, http://www.who.int/media-centre/factsheets/fs117/en/
[4]
WHO Global, W.H.O. 2016. Strategy for dengue prevention and control, 2012– 2020. 2016. Available from: , http://www. who.int/dengue control/9789241504034/en
[5]
WHO Scientific working group report on dengue. 2017. Available from:, http://www.who.int/tdr/publications/tdr-research-publications/swg-report- dengue/en/
[6]
Halstead, S.B. Dengue: The syndromic basis to pathogenesis research. Inutility of the 2009 WHO case definition. Am. J. Trop. Med. Hyg., 2013, 88(2), 212-215.
[http://dx.doi.org/10.4269/ajtmh.12-0197] [PMID: 23390220]
[7]
Hung, N.T. Fluid management for dengue in children. Paediatr. Int. Child Health, 2012, 32(1)(Suppl. 1), 39-42.
[http://dx.doi.org/10.1179/2046904712Z.00000000051] [PMID: 22668449]
[8]
Alagarasu, K. Introducing dengue vaccine: Implications for diagnosis in dengue vaccinated subjects. Vaccine, 2016, 34(25), 2759-2761.
[http://dx.doi.org/10.1016/j.vaccine.2016.04.070] [PMID: 27142330]
[9]
Warfield, K.L.; Plummer, E.M.; Sayce, A.C.; Alonzi, D.S.; Tang, W.; Tyrrell, B.E.; Hill, M.L.; Caputo, A.T. Killing beck, S.S.; Beatty, P.R.; Harris, E.; Iwaki, R.; Kinami, K.; Ide, D.; Kiappes, J.L.; Kato, A.; Buck, M.D.; King, K.; Eddy, W.; Khaliq, M.; Sampath, A.; Treston, A.M.; Dwek, R.A.; Enterlein, S.J.; Miller, J.L.; Zitzmann, N.; Ramstedt, U.; Shresta, S. Inhibition of endoplasmic reticulum glucosidase is required for in vitro and in vivo dengue antiviral activity by the iminosugar UV-4. Antiviral Res., 2016, 129, 93-98.
[http://dx.doi.org/10.1016/j.antiviral.2016.03.001] [PMID: 26946111]
[10]
ClinicalTrials.gov, 2017. Available from:. https://clinicaltrials.gov/ct2/home
[11]
Low, J.G.; Sung, C.; Wijaya, L.; Wei, Y.; Rathore, A.P.S.; Watanabe, S.; Tan, B.H.; Toh, L.; Chua, L.T.; Hou, Y.; Chow, A.; Howe, S.; Chan, W.K.; Tan, K.H.; Chung, J.S.; Cherng, B.P.; Lye, D.C.; Tambayah, P.A.; Ng, L.C.; Connolly, J.; Hibberd, M.L.; Leo, Y.S.; Cheung, Y.B.; Ooi, E.E.; Vasudevan, S.G. Efficacy and safety of celgosivir in patients with dengue fever (CELADEN): A phase 1b, randomised, double-blind, placebo-controlled, proof-of-concept trial. Lancet Infect. Dis., 2014, 14(8), 706-715.
[http://dx.doi.org/10.1016/S1473-3099(14)70730-3] [PMID: 24877997]
[12]
Chen, Y.L.; Abdul Ghafar, N.; Karuna, R.; Fu, Y.; Lim, S.P.; Schul, W.; Gu, F.; Herve, M.; Yokohama, F.; Wang, G.; Cerny, D.; Fink, K.; Blasco, F.; Shi, P.Y. Activation of peripheral blood mononuclear cells by dengue virus infection depotentiates balapiravir. J. Virol., 2014, 88(3), 1740-1747.
[http://dx.doi.org/10.1128/JVI.02841-13] [PMID: 24257621]
[13]
Lindenbach, B.D.; Thiel, H.J.; Rice, C.M. Flaviviridae: The viruses and their replication; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007, pp. 1101-1151.
[14]
Bollati, M.; Alvarez, K.; Assenberg, R.; Baronti, C.; Canard, B.; Cook, S.; Coutard, B.; Decroly, E.; de Lamballerie, X.; Gould, E.A.; Grard, G.; Grimes, J.M.; Hilgenfeld, R.; Jansson, A.M.; Malet, H.; Mancini, E.J.; Mastrangelo, E.; Mattevi, A.; Milani, M.; Moureau, G.; Neyts, J.; Owens, R.J.; Ren, J.; Selisko, B.; Speroni, S.; Steuber, H.; Stuart, D.I.; Unge, T.; Bolognesi, M. Structure and functionality in flavivirus NS-proteins: Perspectives for drug design. Antiviral Res., 2010, 87(2), 125-148.
[http://dx.doi.org/10.1016/j.antiviral.2009.11.009] [PMID: 19945487]
[15]
Voßmann, S.; Wieseler, J.; Kerber, R.; Kümmerer, B.M. A basic cluster in the N terminus of yellow fever virus NS2A contributes to infectious particle production. J. Virol., 2015, 89(9), 4951-4965.
[http://dx.doi.org/10.1128/JVI.03351-14] [PMID: 25694595]
[16]
Castillo Ramirez, J.A.; Urcuqui-Inchima, S. Dengue virus control of type i ifn responses: A history of manipulation and control. J. Interferon Cytokine Res., 2015, 35(6), 421-430.
[http://dx.doi.org/10.1089/jir.2014.0129] [PMID: 25629430]
[17]
Marzinek, J.K.; Holdbrook, D.A.; Huber, R.G.; Verma, C.; Bond, P.J. Pushing the envelope: Dengue viral membrane coaxed into shape by molecular simulations. Structure, 2016, 24(8), 1410-1420.
[http://dx.doi.org/10.1016/j.str.2016.05.014] [PMID: 27396828]
[18]
Kostyuchenko, V.A.; Zhang, Q.; Tan, J.L.; Ng, T.S.; Lok, S.M. Immature and mature dengue serotype 1 virus structures provide insight into the maturation process. J. Virol., 2013, 87(13), 7700-7707.
[http://dx.doi.org/10.1128/JVI.00197-13]
[19]
Li, L.; Lok, S.M.; Yu, I.M.; Zhang, Y.; Kuhn, R.J.; Chen, J.; Rossmann, M.G. The flavivirus precursor membrane-envelope protein complex: Structure and maturation. Sci., 2008, 319(5871), 1830-1834.
[http://dx.doi.org/10.1126/science.1153263] [PMID: 18369147]
[20]
Kurz, M.; Stefan, N.; Zhu, J.; Skern, T. NS2B/3 proteolysis at the C-prM junction of the tick-borne encephalitis virus polyprotein is highly membrane dependent. Virus Res., 2012, 168(1-2), 48-55.
[http://dx.doi.org/10.1016/j.virusres.2012.06.012] [PMID: 22727684]
[21]
Lee, P.D.; Mukherjee, S.; Edeling, M.A.; Dowd, K.A.; Austin, S.K.; Manhart, C.J.; Diamond, M.S.; Fremont, D.H.; Pierson, T.C. The Fc region of an antibody impacts the neutralization of West Nile viruses in different maturation states. J. Virol., 2013, 87(24), 13729-13740.
[http://dx.doi.org/10.1128/JVI.02340-13] [PMID: 24109224]
[22]
Wu, K.P.; Wu, C.W.; Tsao, Y.P.; Kuo, T.W.; Lou, Y.C.; Lin, C.W.; Wu, S.C.; Cheng, J.W. Structural basis of a flavivirus recognized by its neutralizing antibody: Solution structure of the domain III of the Japanese encephalitis virus envelope protein. J. Biol. Chem., 2003, 278(46), 46007-46013.
[http://dx.doi.org/10.1074/jbc.M307776200] [PMID: 12952958]
[23]
Gubler, D.J.; Kuno, G.; Markoff, L. Flaviviruses.Fields virology; Knipe, D.M.; Howley, P.M.; Griffin, D.E.; Lamb, R.A.; Martin, M.A., Eds.; Lippincott Williams & Wilkins Publishers: Philadelphia, PA, 2007, 5, pp. 1153-1252;
[24]
Noble, C.G.; Chen, Y.L.; Dong, H. GU, F.; Lim, S.P.; Schul, W.; Wang, Q.Y.; Shi, P.Y. Strategies for the development of denv inhibitors. Antiviral Res., 2010, 85, 450-462.
[http://dx.doi.org/10.1016/j.antiviral.2009.12.011] [PMID: 20060421]
[25]
Modis, Y. Class II fusion proteins. Adv. Exp. Med. Biol., 2013, 790, 150-166.
[http://dx.doi.org/10.1007/978-1-4614-7651-1_8] [PMID: 23884590]
[26]
Takasaki, T. [Flavivirus encephalitis]. Brain Nerve, 2009, 61(2), 145-151.
[PMID: 19235464]
[27]
Huang, C.Y.H.; Butrapet, S.; Moss, K.J.; Childers, T.; Erb, S.M.; Calvert, A.E.; Silengo, S.J.; Kinney, R.M.; Blair, C.D.; Roehrig, J.T. The dengue virus type 2 envelope protein fusion peptide is essential for membrane fusion. Virology, 2010, 396(2), 305-315.
[http://dx.doi.org/10.1016/j.virol.2009.10.027] [PMID: 19913272]
[28]
William, L. Jorgensen, Jayaraman Chandrasekhar, Jeffry D. M. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79(2), 926-935.
[http://dx.doi.org/10.1063/1.445869]
[29]
Smit, J.M.; Moesker, B.; Rodenhuis-Zybert, I.; Wilschut, J. Flavivirus cell entry and membrane fusion. Viruses, 2011, 3(2), 160-171.
[http://dx.doi.org/10.3390/v3020160] [PMID: 22049308]
[30]
Modis, Y.; Ogata, S.; Clements, D.; Harrison, S.C. Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J. Virol., 2005, 79(2), 1223-1231.
[http://dx.doi.org/10.1128/JVI.79.2.1223-1231.2005] [PMID: 15613349]
[31]
Chabierski, S.; Barzon, L.; Papa, A.; Niedrig, M.; Bramson, J.L.; Richner, J.M.; Palù, G.; Diamond, M.S.; Ulbert, S. Distinguishing West Nile virus infection using a recombinant envelope protein with mutations in the conserved fusion-loop. BMC Infect. Dis., 2014, 14(14), 246.
[http://dx.doi.org/10.1186/1471-2334-14-246] [PMID: 24884467]
[32]
Füzik, T.; Formanová, P.; Růžek, D.; Yoshii, K.; Niedrig, M.; Plevka, P. Structure of tick-borne encephalitis virus and its neutralization by a monoclonal antibody. Nat. Commun., 2018, 9(1), 436.
[http://dx.doi.org/10.1038/s41467-018-02882-0] [PMID: 29382836]
[33]
McAuley, A.J.; Torres, M.; Plante, J.A.; Huang, C.Y.; Bente, D.A.; Beasley, D.W.C. Recovery of west nile virus envelope protein domain iii chimeras with altered antigenicity and mouse virulence. J. Virol., 2016, 90(9), 4757-4770.
[http://dx.doi.org/10.1128/JVI.02861-15] [PMID: 26912625]
[34]
Luca, V.C. AbiMansour, J.; Nelson, C.A.; Fremont, D.H. Crystal structure of the Japanese encephalitis virus envelope protein. J. Virol., 2012, 86(4), 2337-2346.
[http://dx.doi.org/10.1128/JVI.06072-11] [PMID: 22156523]
[35]
Martín-Acebes, M.A.; Saiz, J.C.; Saiz, J.C. A West Nile virus mutant with increased resistance to acid-induced inactivation. J. Gen. Virol., 2011, 92(Pt 4), 831-840.
[http://dx.doi.org/10.1099/vir.0.027185-0] [PMID: 21228127]
[36]
Huerta, V.; Chinea, G.; Fleitas, N.; Sarría, M.; Sánchez, J.; Toledo, P.; Padrón, G. Characterization of the interaction of domain III of the envelope protein of dengue virus with putative receptors from CHO cells. Virus Res., 2008, 137(2), 225-234.
[http://dx.doi.org/10.1016/j.virusres.2008.07.022] [PMID: 18723056]
[37]
VanBlargan, L.A.; Goo, L.; Pierson, T.C. Deconstructing the antiviral neutralizing-antibody response: Implications for vaccine development and immunity. Microbiol. Mol. Biol. Rev., 2016, 80(4), 989-1010.
[http://dx.doi.org/10.1128/MMBR.00024-15] [PMID: 27784796]
[38]
Hsieh, S.C.; Tsai, W.Y.; Nerurkar, V.R.; Wang, W.K. Characterization of the ectodomain of the envelope protein of dengue virus type 4: Expression, membrane association, secretion and particle formation in the absence of precursor membrane protein. PLoS One, 2014, 20(9(6))e100641
[39]
Zhou, Z.H. Structures of viral membrane proteins by high-resolution cryoEM. Curr. Opin. Virol., 2014, 5, 111-119.
[http://dx.doi.org/10.1016/j.coviro.2014.04.001] [PMID: 24799302]
[40]
Bressanelli, S.; Stiasny, K.; Allison, S.L.; Stura, E.A.; Duquerroy, S.; Lescar, J.; Heinz, F.X.; Rey, F.A. Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J., 2004, 23(4), 728-738.
[http://dx.doi.org/10.1038/sj.emboj.7600064] [PMID: 14963486]
[41]
Zaitseva, E.; Yang, S.T.; Melikov, K.; Pourmal, S.; Chernomordik, L.V. Dengue virus ensures its fusion in late endosomes using compartment-specific lipids. PLoS Pathog., 2010, 7(6(10))e1001131
[http://dx.doi.org/10.1371/journal.ppat.1001131]
[42]
Blazevic, J.; Rouha, H.; Bradt, V.; Heinz, F.X.; Stiasny, K. Membrane anchors of the structural flavivirus proteins and their role in virus assembly. J. Virol., 2016, 90(14), 6365-6378.
[http://dx.doi.org/10.1128/JVI.00447-16] [PMID: 27147734]
[43]
Stiasny, K.; Fritz, R.; Pangerl, K.; Heinz, F.X. Molecular mechanisms of flavivirus membrane fusion. Amino Acids, 2011, 41(5), 1159-1163.
[http://dx.doi.org/10.1007/s00726-009-0370-4] [PMID: 19882217]
[44]
van der Schaar, H.M.; Rust, M.J.; Chen, C.; van der Ende-Metselaar, H.; Wilschut, J.; Zhuang, X.; Smit, J.M. Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLoS Pathog., 2008, 4(12)e1000244
[http://dx.doi.org/10.1371/journal.ppat.1000244] [PMID: 19096510]
[45]
Murray, C.L.; Jones, C.T.; Rice, C.M. Architects of assembly: Roles of Flaviviridae non-structural proteins in virion morphogenesis. Nat. Rev. Microbiol., 2008, 6(9), 699-708.
[http://dx.doi.org/10.1038/nrmicro1928] [PMID: 18587411]
[46]
Xie, X.; Zou, J.; Puttikhunt, C.; Yuan, Z.; Shi, P.Y. Two distinct sets of NS2A molecules are responsible for dengue virus RNA synthesis and virion assembly. J. Virol., 2015, 89(2), 1298-1313.
[http://dx.doi.org/10.1128/JVI.02882-14] [PMID: 25392211]
[47]
Zhang, X.; Jia, R.; Shen, H.; Wang, M.; Yin, Z.; Cheng, A. Structures and functions of the envelope glycoprotein in flavivirus infection. Viruses, 2017, 9(11), 338.
[http://dx.doi.org/10.3390/v9110338] [PMID: 29137162]
[48]
Teoh, P.G.; Huang, Z.S.; Pong, W.L.; Chen, P.C.; Wu, H.N. Maintenance of dimer conformation by the dengue virus core protein α4-α4′ helix pair is critical for nucleocapsid formation and virus production. J. Virol., 2014, 88(14), 7998-8015.
[http://dx.doi.org/10.1128/JVI.00940-14] [PMID: 24807709]
[49]
Zhang, X.; Ge, P.; Yu, X.; Brannan, J.M.; Bi, G.; Zhang, Q.; Schein, S.; Zhou, Z.H. Cryo-EM structure of the mature dengue virus at 3.5-Å resolution. Nat. Struct. Mol. Biol., 2013, 20(1), 105-110.
[http://dx.doi.org/10.1038/nsmb.2463] [PMID: 23241927]
[50]
Fritz, R.; Stiasny, K.; Heinz, F.X. Identification of specific histidines as pH sensors in flavivirus membrane fusion. J. Cell Biol., 2008, 183(2), 353-361.
[http://dx.doi.org/10.1083/jcb.200806081] [PMID: 18936253]
[51]
Nayak, V.; Dessau, M.; Kucera, K.; Anthony, K.; Ledizet, M.; Modis, Y. Crystal structure of dengue virus type 1 envelope protein in the postfusion conformation and its implications for membrane fusion. J. Virol., 2009, 83(9), 4338-4344.
[http://dx.doi.org/10.1128/JVI.02574-08] [PMID: 19244332]
[52]
Dubayle, J.; Vialle, S.; Schneider, D.; Pontvianne, J.; Mantel, N.; Adam, O.; Guy, B.; Talaga, P. Site-specific characterization of envelope protein N-glycosylation on Sanofi Pasteur’s tetravalent CYD dengue vaccine. Vaccine, 2015, 33(11), 1360-1368.
[http://dx.doi.org/10.1016/j.vaccine.2015.01.047]
[53]
Mir, Asif; Ismatullah, Humaira; Rauf, Sobiah; Umar, Niazi H, K Identification of bioflavonoid as fusion inhibitor of dengue virus using molecular docking approach. Informatics in medicine unlocked.,. 2016, 3, 1-6.
[54]
Klein, D.E.; Choi, J.L.; Harrison, S.C. Structure of a dengue virus envelope protein late-stage fusion intermediate. J. Virol., 2013, 87(4), 2287-2293.
[http://dx.doi.org/10.1128/JVI.02957-12] [PMID: 23236058]
[55]
Harrison, S.C. Viral membrane fusion. Virology, 2015, 479-480, 498-507.
[http://dx.doi.org/10.1016/j.virol.2015.03.043] [PMID: 25866377]
[56]
Messer, W.B.; de Alwis, R.; Yount, B.L.; Royal, S.R.; Huynh, J.P.; Smith, S.A.; Crowe, J.E., Jr; Doranz, B.J.; Kahle, K.M.; Pfaff, J.M.; White, L.J.; Sariol, C.A.; de Silva, A.M.; Baric, R.S. Dengue virus envelope protein domain I/II hinge determines long-lived serotype-specific dengue immunity. Proc. Natl. Acad. Sci. USA, 2014, 111(5), 1939-1944.
[http://dx.doi.org/10.1073/pnas.1317350111] [PMID: 24385585]
[57]
Roche, M.; Borm, K.; Flynn, J.K.; Lewin, S.R.; Churchill, M.J.; Gorry, P.R. Molecular gymnastics: Mechanisms of hiv-1 resistance to ccr5 antagonists and impact on virus phenotypes. Curr. Top. Med. Chem., 2016, 16(10), 1091-1106.
[http://dx.doi.org/10.2174/1568026615666150901114724] [PMID: 26324043]
[58]
Lin, K.H.; Ali, A.; Rusere, L.; Soumana, D.I.; Kurt Yilmaz, N.; Schiffer, C.A. Dengue virus ns2b/ns3 protease inhibitors exploiting the prime side. J. Virol., 2017, 91(10), e00045-e17.
[http://dx.doi.org/10.1128/JVI.00045-17] [PMID: 28298600]
[59]
Volz, T.; Allweiss, L. Ben MBarek, M.; Warlich, M.; Lohse, A.W.; Pollok, J.M.; Alexandrov, A.; Urban, S.; Petersen, J.; Lütgehetmann, M.; Dandri, M. The entry inhibitor Myrcludex-B efficiently blocks intrahepatic virus spreading in humanized mice previously infected with hepatitis B virus. J. Hepatol., 2013, 58(5), 861-867.
[http://dx.doi.org/10.1016/j.jhep.2012.12.008] [PMID: 23246506]
[60]
Fibriansah, G.; Ng, T.S.; Kostyuchenko, V.A.; Lee, J.; Lee, S.; Wang, J.; Lok, S.M. Structural changes in dengue virus when exposed to a temperature of 37°C. J. Virol., 2013, 87(13), 7585-7592.
[http://dx.doi.org/10.1128/JVI.00757-13] [PMID: 23637405]
[61]
De La Guardia, C.; Lleonart, R. Progress in the identification of dengue virus entry/fusion inhibitors. BioMed Res. Int., 2014, 2014825039
[http://dx.doi.org/10.1155/2014/825039] [PMID: 25157370]
[62]
Nemésio, H.; Palomares-Jerez, M.F.; Villalaín, J. Hydrophobic segment of dengue virus C protein. Interaction with model membranes. Mol. Membr. Biol., 2013, 30(4), 273-287.
[http://dx.doi.org/10.3109/09687688.2013.805835] [PMID: 23745515]
[63]
Wang, Q-Y.; Shi, P.Y. Flavivirus entry inhibitors. ACS Infect. Dis., 2015, 1(9), 428-434.
[http://dx.doi.org/10.1021/acsinfecdis.5b00066] [PMID: 27617926]
[64]
Poh, M.K.; Yip, A.; Zhang, S.; Priestle, J.P.; Ma, N.L.; Smit, J.M.; Wilschut, J.; Shi, P.Y.; Wenk, M.R.; Schul, W. A small molecule fusion inhibitor of dengue virus. Antiviral Res., 2009, 84(3), 260-266.
[http://dx.doi.org/10.1016/j.antiviral.2009.09.011] [PMID: 19800368]
[65]
(a)Hidari, K.I.; Abe, T.; Suzuki, T. Carbohydrate-related inhibitors of dengue virus entry. Viruses, 2013, 5(2), 605-618.
[PMID: 20516277]
(b)Chen, Y.L.; Yin, Z.; Lakshminarayana, S.B.; Qing, M.; Schul, W.; Duraiswamy, J.; Kondreddi, R.R.; Goh, A.; Xu, H.Y.; Yip, A.; Liu, B.; Weaver, M.; Dartois, V.; Keller, T.H.; Shi, P.Y. Antimicrob. Agents Chemother., 2010, 54(8), 3255-3261.
[66]
de Wispelaere, M.; Lian, W.; Potisopon, S.; Li, P.C.; Jang, J.; Ficarro, S.B.; Clark, M.J.; Zhu, X.; Kaplan, J.B.; Pitts, J.D.; Wales, T.E.; Wang, J.; Engen, J.R.; Marto, J.A.; Gray, N.S.; Yang, P.L. Inhibition of flaviviruses by targeting a conserved pocket on the viral envelope protein. Cell Chem. Biol., 2018, 25(8), 1006-1016.e8.
[http://dx.doi.org/10.1016/j.chembiol.2018.05.011] [PMID: 29937406]
[67]
Yang, J.M.; Chen, Y.F.; Tu, Y.Y.; Yen, K.R.; Yang, Y.L. Combinatorial computational approaches to identify tetracycline derivatives as flavivirus inhibitors., 2007, e428, 1-10.
[http://dx.doi.org/10.1371/journal.pone.0000428]
[68]
Wispelaere, M.D.; LaCroix, A.J.; Yang, P.L. The small molecules azd0530 and dasatinib inhibit dengue virus rna replication via fyn kinase. J. Virol., 2013, 87(13), 7367-7381.
[http://dx.doi.org/10.1128/JVI.00632-13]
[69]
Corbeil, C.R.; Moitessier, N. Docking ligands into flexible and solvated macromolecules. 3. Impact of input ligand conformation, protein flexibility, and water molecules on the accuracy of docking programs. J. Chem. Inf. Model., 2009, 49(4), 997-1009.
[http://dx.doi.org/10.1021/ci8004176] [PMID: 19391631]
[70]
Watanabe, S.; Chan, K.W.; Dow, G.; Ooi, E.E.; Low, J.G.; Vasudevan, S.G. Optimizing celgosivir therapy in mouse models of dengue virus infection of serotypes 1 and 2: The search for a window for potential therapeutic efficacy. Antiviral Res., 2016, 127, 10-19.
[http://dx.doi.org/10.1016/j.antiviral.2015.12.008] [PMID: 26794905]
[71]
Zhou, Z.; Khaliq, M.; Suk, J.E.; Patkar, C.; Li, L.; Kuhn, R.J.; Post, C.B. Antiviral compounds discovered by virtual screening of small-molecule libraries against dengue virus E protein. ACS Chem. Biol., 2008, 3(12), 765-775.
[http://dx.doi.org/10.1021/cb800176t] [PMID: 19053243]
[72]
Zhou, Z.; Madrid, M.; Evanseck, J.D.; Madura, J.D. Effect of a bound non-nucleoside RT inhibitor on the dynamics of wild-type and mutant HIV-1 reverse transcriptase. J. Am. Chem. Soc., 2005, 127(49), 17253-17260.
[http://dx.doi.org/10.1021/ja053973d] [PMID: 16332074]
[73]
Venken, T.; Daelemans, D.; De Maeyer, M.; Voet, A. Computational investigation of the HIV-1 Rev multimerization using molecular dynamics simulations and binding free energy calculations. Proteins, 2012, 80(6), 1633-1646.
[http://dx.doi.org/10.1002/prot.24057] [PMID: 22447650]
[74]
Lacroix, C.; Querol-Audí, J.; Roche, M.; Franco, D.; Froeyen, M.; Guerra, P.; Terme, T.; Vanelle, P.; Verdaguer, N.; Neyts, J.; Leyssen, P. A novel benzonitrile analogue inhibits rhinovirus replication. J. Antimicrob. Chemother., 2014, 69(10), 2723-2732.
[http://dx.doi.org/10.1093/jac/dku200] [PMID: 24948704]
[75]
Roy, A.; Post, C.B. Long-distance correlations of rhinovirus capsid dynamics contribute to uncoating and antiviral activity. Proc. Natl. Acad. Sci. USA, 2012, 109(14), 5271-5276.
[http://dx.doi.org/10.1073/pnas.1119174109] [PMID: 22440750]
[76]
Grant, R.A.; Hiremath, C.N.; Filman, D.J.; Syed, R.; Andries, K.; Hogle, J.M. Structures of poliovirus complexes with anti-viral drugs: Implications for viral stability and drug design. Curr. Biol., 1994, 4(9), 784-797.
[http://dx.doi.org/10.1016/S0960-9822(00)00176-7] [PMID: 7820548]
[77]
Kampmann, T.; Yennamalli, R.; Campbell, P.; Stoermer, M.J.; Fairlie, D.P.; Kobe, B.; Young, P.R. In silico screening of small molecule libraries using the dengue virus envelope E protein has identified compounds with antiviral activity against multiple flaviviruses. Antiviral Res., 2009, 84(3), 234-241.
[http://dx.doi.org/10.1016/j.antiviral.2009.09.007] [PMID: 19781577]
[78]
Kaptein, S.J.; De Burghgraeve, T.; Froeyen, M.; Pastorino, B.; Alen, M.M.; Mondotte, J.A.; Herdewijn, P.; Jacobs, M.; de Lamballerie, X.; Schols, D.; Gamarnik, A.V.; Sztaricskai, F.; Neyts, J. A derivate of the antibiotic doxorubicin is a selective inhibitor of dengue and yellow fever virus replication in vitro. Antimicrob. Agents Chemother., 2010, 54(12), 5269-5280.
[http://dx.doi.org/10.1128/AAC.00686-10] [PMID: 20837762]
[79]
Coelmont, L.; Kaptein, S.; Paeshuyse, J.; Vliegen, I.; Dumont, J.M.; Vuagniaux, G.; Neyts, J. Debio 025, a cyclophilin binding molecule, is highly efficient in clearing hepatitis C virus (HCV) replicon-containing cells when used alone or in combination with specifically targeted antiviral therapy for HCV (STAT-C) inhibitors. Antimicrob. Agents Chemother., 2009, 53(3), 967-976.
[http://dx.doi.org/10.1128/AAC.00939-08] [PMID: 19104013]
[80]
Arai, M.; Tsukiyama-Kohara, K.; Takagi, A.; Tobita, Y.; Inoue, K.; Kohara, M. Resistance to cyclosporine A derives from mutations in hepatitis C virus nonstructural proteins. Biochem. Biophys. Res. Commun., 2014, 448(1), 56-62.
[81]
Surrender Singh, ; Jadav Design, synthesis, optimization and antiviral activity of a class of hybrid dengue virus E protein inhibitors. Bioorg. Med. Chem. Lett., 2014, 1-8.
[82]
Carradori, S.; Secci, D.; Bolasco, A.; De Monte, C.; Yáñez, M. Synthesis and selective inhibitory activity against human COX-1 of novel 1-(4-substituted-thiazol-2-yl)-3,5-di(hetero)aryl-pyrazoline derivatives. Arch. Pharm. (Weinheim), 2012, 345(12), 973-979.
[http://dx.doi.org/10.1002/ardp.201200249] [PMID: 22961586]
[83]
Turan-Zitouni, G.; Kaplancikli, Z.A.; Ozdemir, A. Synthesis and antituberculosis activity of some N-pyridyl-N'-thiazolylhydrazine derivatives. Eur. J. Med. Chem., 2010, 45(5), 2085-2088.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.017] [PMID: 20149489]
[84]
Zandi, K.; Teoh, B.; Sam, S.; Wong, P.; Mustafa, M.R.; Abu-Bakr, A. In vitro antiviral activity of Fisetin, Rutin and Naringenin against Dengue virus type-2. J. Med. Plants Res., 2011, 5, 5534-5539.
[85]
Leal, E.S.; Adler, N.S.; Fernández, G.A.; Gebhard, L.G.; Battini, L.; Aucar, M.G.; Videla, M.; Monge, M.E.; Hernández de Los Ríos, A.; Acosta Dávila, J.A.; Morell, M.L.; Cordo, S.M.; García, C.C.; Gamarnik, A.V.; Cavasotto, C.N.; Bollini, M. De novo design approaches targeting an envelope protein pocket to identify small molecules against dengue virus. Eur. J. Med. Chem., 2019, 182111628
[http://dx.doi.org/10.1016/j.ejmech.2019.111628] [PMID: 31472473]
[86]
Leal, E.S.; Aucar, M.G.; Gebhard, L.G.; Iglesias, N.G.; Pascual, M.J.; Casal, J.J.; Gamarnik, A.V.; Cavasotto, C.N.; Bollini, M. Discovery of novel dengue virus entry inhibitors via a structure-based approach. Bioorg. Med. Chem. Lett., 2017, 27(16), 3851-3855.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.049] [PMID: 28668194]
[87]
Jorgensen, W.L. QikProp 3.0; Schrödinger LLC, 2018.
[88]
Elder, D.; Holm, R. Aqueous solubility: Simple predictive methods (in silico, in vitro and bio-relevant approaches). Int. J. Pharm., 2013, 453(1), 3-11.
[89]
Behnam, M.A.; Nitsche, C.; Boldescu, V.; Klein, C.D. The Medicinal Chemistry of Dengue Virus. J. Med. Chem., 2016, 59(12), 5622-5649.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01653] [PMID: 26771861]
[90]
Botting, C.; Kuhn, R.J. Novel approaches to flavivirus drug discovery. Expert Opin. Drug Discov., 2012, 7(5), 417-428.
[http://dx.doi.org/10.1517/17460441.2012.673579] [PMID: 22439769]
[91]
Clark, M.J.; Miduturu, C.; Schmidt, A.G.; Zhu, X.; Pitts, J.D.; Wang, J.; Potisopon, S.; Zhang, J.; Wojciechowski, A.; Hann Chu, J.J.; Gray, N.S.; Yang, P.L. GNF-2 inhibits dengue virus by targeting able kinases and the viral E protein. Cell Chem. Biol., 2016, 23(4), 443-452.
[http://dx.doi.org/10.1016/j.chembiol.2016.03.010] [PMID: 27105280]
[92]
Nicholson, C.O.; Costin, J.M.; Rowe, D.K.; Lin, L.; Jenwitheesuk, E.; Samudrala, R.; Isern, S.; Michael, S.F. Viral entry inhibitors block dengue antibody-dependent enhancement in vitro. Antiviral Res., 2011, 89(1), 71-74.
[http://dx.doi.org/10.1016/j.antiviral.2010.11.008] [PMID: 21093488]
[93]
Forssmann, W.G. The Y.H.; Stoll, M.; Adermann, K.; Albrecht, U.; Tillmann, H.C.; Barlos, K.; Busmann, A.; Canales-Mayordomo, A.; Giménez-Gallego, G.; Hirsch, J.; Jiménez-Barbero, J.; Meyer-Olson, D.; Munch, J.; Pérez-Castells, J.; Ständker, L.; Kirchhoff, F.; Schmidt, R.E.? Short-term monotherapy in HIV-infected patients with a virus entry inhibitor against the gp41 fusion peptide. Sci. Transl. Med., 2010, 2(63), 63re3.
[94]
Emmelkamp, J.M.; Rockstroh, J.K. CCR5 antagonists: Comparison of efficacy, side effects, pharmacokinetics and interactions--review of the literature. Eur. J. Med. Res., 2007, 12(9), 409-417.
[PMID: 17933722]
[95]
Shrestha, B.; Brien, J.D.; Sukupolvi-Petty, S.; Austin, S.K.; Edeling, M.A.; Kim, T.; O’Brien, K.M.; Nelson, C.A.; Johnson, S.; Fremont, D.H.; Diamond, M.S. The development of therapeutic antibodies that neutralize homologous and heterologous genotypes of dengue virus type 1. PLoS Pathog., 2010, 6(4)e1000823
[http://dx.doi.org/10.1371/journal.ppat.1000823] [PMID: 20369024]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy