Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

pH-Sensitive Polymer-Based Carriers as a Useful Approach for Oral Delivery of Therapeutic Protein: A Review

Author(s): Maryam Shamseddini Lori, Mandana Ohadi, Mohammad Amin Raeisi Estabragh, Sepehr Afsharipour, Ibrahim Mohamed Banat and Gholamreza Dehghannoudeh*

Volume 28, Issue 11, 2021

Published on: 20 July, 2021

Page: [1230 - 1237] Pages: 8

DOI: 10.2174/0929866528666210720142841

Price: $65

Abstract

There are many proteins and enzymes in the human body, and their dysfunction can lead to the emergence of a disease. The use of proteins as a drug is common in various diseases such as diabetes. Proteins are hydrophilic molecules whose spatial structure is critical to their correct function. There are different ways for the administration of proteins. Protein structures are degraded by gastric acid and enzymes in the gastrointestinal tract and have a slight ability to permeate from the gastrointestinal epithelium due to their large hydrophilic nature. Therefore, their oral use has limitations. Since the oral route for the administration of drugs is one of the best and easiest routes for patients, many studies have been done to increase the stability, penetration, and ultimately, the bioavailability of proteins through oral administration. One of the studied strategies for oral delivery of protein is the use of pH-sensitive polymer-based carriers. These carriers use different pH-sensitive polymers, such as eudragit®, chitosan, dextran, and alginate. The use of pH-sensitive polymer- based carriers by protecting the protein from stomach acid (low pH) and degrading enzymes, increasing permeability and maintaining the spatial structure of the protein, leads to increased bioavailability. In this review, we focus on the various polymers used to prepare pH-sensitive polymer- based carriers for the oral delivery of proteins.

Keywords: Bioavailability, gastrointestinal degradation, oral administration, pH-sensitive, protein delivery, stability.

Graphical Abstract

[1]
Liu, L.; Yao, W.; Rao, Y.; Lu, X.; Gao, J. pH-Responsive carriers for oral drug delivery: challenges and opportunities of current platforms. Drug Deliv., 2017, 24(1), 569-581.
[http://dx.doi.org/10.1080/10717544.2017.1279238] [PMID: 28195032]
[2]
Homayun, B.; Lin, X.; Choi, H-J. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics, 2019, 11(3), 129.
[http://dx.doi.org/10.3390/pharmaceutics11030129] [PMID: 30893852]
[3]
Lagassé, H.A.D.; Alexaki, A.; Simhadri, V.L.; Katagiri, N.H.; Jankowski, W.; Sauna, Z.E.; Kimchi-Sarfaty, C. Recent advances in (therapeutic protein) drug development. F1000 Res., 2017, 6, 113.
[http://dx.doi.org/10.12688/f1000research.9970.1] [PMID: 28232867]
[4]
Indermun, S.; Luttge, R.; Choonara, Y.E.; Kumar, P.; du Toit, L.C.; Modi, G.; Pillay, V. Current advances in the fabrication of microneedles for transdermal delivery. J. Control. Release, 2014, 185, 130-138.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.052] [PMID: 24806483]
[5]
Chen, Y.; Li, P.; Modica, J.A.; Drout, R.J.; Farha, O.K. Acid-resistant mesoporous metal–organic framework toward oral insulin delivery: protein encapsulation, protection, and release. J. Am. Chem. Soc., 2018, 140(17), 5678-5681.
[http://dx.doi.org/10.1021/jacs.8b02089] [PMID: 29641892]
[6]
Raeisi Estabragh, M.A.; Bami, M.S.; Ohadi, M.; Banat, I.M.; Dehghannoudeh, G. Carrier based systems as strategies for oral delivery of therapeutic peptides and proteins: a mini‐review. Int. J. Pept. Res. Ther., 2021, 27(2), 1589-1596.
[http://dx.doi.org/10.1007/s10989-021-10193-0]
[7]
Ghaffar, A.; Yameen, B.; Latif, M.; Malik, M.I. pH-sensitive drug delivery systems. In: Metal Nanoparticles for Drug Delivery and Diagnostic Applications; Elsevier, 2020; pp. 259-278.
[8]
Wang, J.J.; Zeng, Z.W.; Xiao, R.Z.; Xie, T.; Zhou, G.L.; Zhan, X.R.; Wang, S.L. Recent advances of chitosan nanoparticles as drug carriers. Int. J. Nanomed, 2011, 6, 765-774.
[PMID: 21589644]
[9]
Makhlof, A.; Tozuka, Y.; Takeuchi, H. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Eur. J. Pharm. Sci., 2011, 42(5), 445-451.
[http://dx.doi.org/10.1016/j.ejps.2010.12.007] [PMID: 21182939]
[10]
Han, L.; Zhao, Y.; Yin, L.; Li, R.; Liang, Y.; Huang, H.; Pan, S.; Wu, C.; Feng, M. Insulin-loaded pH-sensitive hyaluronic acid nanoparticles enhance transcellular delivery. AAPS PharmSciTech, 2012, 13(3), 836-845.
[http://dx.doi.org/10.1208/s12249-012-9807-2] [PMID: 22644708]
[11]
Karimi, M.; Eslami, M.; Sahandi-Zangabad, P.; Mirab, F.; Farajisafiloo, N.; Shafaei, Z.; Ghosh, D.; Bozorgomid, M.; Dashkhaneh, F.; Hamblin, M.R. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2016, 8(5), 696-716.
[http://dx.doi.org/10.1002/wnan.1389] [PMID: 26762467]
[12]
Lima, D.S.; Tenório-Neto, E.T.; Lima-Tenório, M.K.; Guilherme, M.R.; Scariot, D.B.; Nakamura, C.V. pH-responsive alginate-based hydrogels for protein delivery. J. Mol. Liq., 2018, 262, 29-36.
[http://dx.doi.org/10.1016/j.molliq.2018.04.002]
[13]
Yi, G.; Hong, S.H.; Son, J.; Yoo, J.; Park, C.; Choi, Y.; Koo, H. Recent advances in nanoparticle carriers for photodynamic therapy. Quant. Imaging Med. Surg., 2018, 8(4), 433-443.
[http://dx.doi.org/10.21037/qims.2018.05.04] [PMID: 29928608]
[14]
Xiong, K.; Zhou, L.; Wang, J.; Ma, A.; Fang, D.; Xiong, L. Construction of food-grade pH-sensitive nanoparticles for delivering functional food ingredients. Trends Food Sci. Technol., 2020, 96, 102-113.
[http://dx.doi.org/10.1016/j.tifs.2019.12.019]
[15]
Cazorla-Luna, R.; Martín-Illana, A.; Notario-Pérez, F.; Bedoya, L.M.; Tamayo, A.; Ruiz-Caro, R.; Rubio, J.; Veiga, M.D. Vaginal polyelectrolyte layer-by-layer films based on chitosan derivatives and Eudragit® S100 for pH responsive release of tenofovir. Mar. Drugs, 2020, 18(1), 44.
[http://dx.doi.org/10.3390/md18010044] [PMID: 31936439]
[16]
Dai, J.; Nagai, T.; Wang, X.; Zhang, T.; Meng, M.; Zhang, Q. pH-sensitive nanoparticles for improving the oral bioavailability of cyclosporine A. Int. J. Pharm., 2004, 280(1-2), 229-240.
[http://dx.doi.org/10.1016/j.ijpharm.2004.05.006] [PMID: 15265562]
[17]
Javanbakht, S.; Shaabani, A. Encapsulation of graphene quantum dot-crosslinked chitosan by carboxymethylcellulose hydrogel beads as a pH-responsive bio-nanocomposite for the oral delivery agent. Int. J. Biol. Macromol., 2019, 123, 389-397.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.118] [PMID: 30445077]
[18]
Naghshineh, N.; Tahvildari, K.; Nozari, M. Preparation of chitosan, sodium alginate, gelatin and collagen biodegradable sponge composites and their application in wound healing and curcumin delivery. J. Polym. Environ., 2019, 27(12), 2819-2830.
[http://dx.doi.org/10.1007/s10924-019-01559-z]
[19]
Gull, N.; Khan, S.M.; Khalid, S.; Zia, S.; Islam, A.; Sabir, A.; Sultan, M.; Hussain, F.; Khan, R.U.; Butt, M.T.Z. Designing of biocompatible and biodegradable chitosan based crosslinked hydrogel for in vitro release of encapsulated povidone-iodine: a clinical translation. Int. J. Biol. Macromol., 2020, 164, 4370-4380.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.031] [PMID: 32926902]
[20]
Guaresti, O.; García-Astrain, C.; Palomares, T.; Alonso-Varona, A.; Eceiza, A.; Gabilondo, N. Synthesis and characterization of a biocompatible chitosan-based hydrogel cross-linked via ‘click’ chemistry for controlled drug release. Int. J. Biol. Macromol., 2017, 102, 1-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.003] [PMID: 28380333]
[21]
Nogueira-Librelotto, D.R.; Scheeren, L.E.; Macedo, L.B.; Vinardell, M.P.; Rolim, C.M.B. pH-Sensitive chitosan-tripolyphosphate nanoparticles increase doxorubicin-induced growth inhibition of cervical HeLa tumor cells by apoptosis and cell cycle modulation. Colloids Surf. B Biointerfaces, 2020, 190, 110897.
[http://dx.doi.org/10.1016/j.colsurfb.2020.110897] [PMID: 32126359]
[22]
Chen, M-C.; Mi, F-L.; Liao, Z-X.; Hsiao, C-W.; Sonaje, K.; Chung, M-F.; Hsu, L.W.; Sung, H.W. Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Adv. Drug Deliv. Rev., 2013, 65(6), 865-879.
[http://dx.doi.org/10.1016/j.addr.2012.10.010] [PMID: 23159541]
[23]
Wang, J.; Wang, L.; Yu, H.; Zain-Ul-Abdin, ; Chen, Y.; Chen, Q.; Zhou, W.; Zhang, H.; Chen, X. Recent progress on synthesis, property and application of modified chitosan: an overview. Int. J. Biol. Macromol., 2016, 88, 333-344.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.04.002] [PMID: 27044349]
[24]
Liu, C.; Kou, Y.; Zhang, X.; Dong, W.; Cheng, H.; Mao, S. Enhanced oral insulin delivery via surface hydrophilic modification of chitosan copolymer based self-assembly polyelectrolyte nanocomplex. Int. J. Pharm., 2019, 554, 36-47.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.068] [PMID: 30385377]
[25]
Xu, Y.; Du, Y.; Huang, R.; Gao, L. Preparation and modification of N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride nanoparticle as a protein carrier. Biomater, 2003, 24(27), 5015-5022.
[http://dx.doi.org/10.1016/S0142-9612(03)00408-3] [PMID: 14559015]
[26]
Chen, L.; Tian, Z.; Du, Y. Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomater, 2004, 25(17), 3725-3732.
[http://dx.doi.org/10.1016/j.biomaterials.2003.09.100] [PMID: 15020148]
[27]
He, M.; Zhong, C.; Hu, H.; Jin, Y.; Chen, Y.; Lou, K.; Gao, F. Cyclodextrin/chitosan nanoparticles for oral ovalbumin delivery: Preparation, characterization and intestinal mucosal immunity in mice. Asian J Pharm Sci, 2019, 14(2), 193-203.
[http://dx.doi.org/10.1016/j.ajps.2018.04.001] [PMID: 32104451]
[28]
Mumuni, M.A.; Kenechukwu, F.C.; Ofokansi, K.C.; Attama, A.A.; Díaz, D.D. Insulin-loaded mucoadhesive nanoparticles based on mucin-chitosan complexes for oral delivery and diabetes treatment. Carbohydr. Polym., 2020, 229, 115506.
[http://dx.doi.org/10.1016/j.carbpol.2019.115506] [PMID: 31826394]
[29]
Pan, Y.; Li, Y.J.; Zhao, H.Y.; Zheng, J.M.; Xu, H.; Wei, G.; Hao, J.S.; Cui, F.D. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo . Int. J. Pharm., 2002, 249(1-2), 139-147.
[http://dx.doi.org/10.1016/S0378-5173(02)00486-6] [PMID: 12433442]
[30]
Jelvehgari, M.; Zakeri-Milani, P.; Siahi-Shadbad, M.R.; Loveymi, B.D.; Nokhodchi, A.; Azari, Z.; Valizadeh, H. Development of pH-sensitive insulin nanoparticles using Eudragit L100-55 and chitosan with different molecular weights. AAPS PharmSciTech, 2010, 11(3), 1237-1242.
[http://dx.doi.org/10.1208/s12249-010-9488-7] [PMID: 20686881]
[31]
Sonaje, K.; Chen, Y-J.; Chen, H-L.; Wey, S-P.; Juang, J-H.; Nguyen, H-N.; Hsu, C.W.; Lin, K.J.; Sung, H.W. Enteric-coated capsules filled with freeze-dried chitosan/poly(γ-glutamic acid) nanoparticles for oral insulin delivery. Biomater, 2010, 31(12), 3384-3394.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.042] [PMID: 20149435]
[32]
Li, M-G.; Lu, W-L.; Wang, J-C.; Zhang, X.; Wang, X-Q.; Zheng, A-P.; Zhang, Q. Distribution, transition, adhesion and release of insulin loaded nanoparticles in the gut of rats. Int. J. Pharm., 2007, 329(1-2), 182-191.
[http://dx.doi.org/10.1016/j.ijpharm.2006.08.040] [PMID: 17081710]
[33]
Chang, C-H.; Lin, Y-H.; Yeh, C-L.; Chen, Y-C.; Chiou, S-F.; Hsu, Y-M.; Chen, Y.S.; Wang, C.C. Nanoparticles incorporated in pH-sensitive hydrogels as amoxicillin delivery for eradication of Helicobacter pylori. Biomacromolecules, 2010, 11(1), 133-142.
[http://dx.doi.org/10.1021/bm900985h] [PMID: 19924885]
[34]
Verma, A.; Sharma, S.; Gupta, P.K.; Singh, A.; Teja, B.V.; Dwivedi, P.; Gupta, G.K.; Trivedi, R.; Mishra, P.R. Vitamin B12 functionalized layer by layer calcium phosphate nanoparticles: a mucoadhesive and pH responsive carrier for improved oral delivery of insulin. Acta Biomater., 2016, 31, 288-300.
[http://dx.doi.org/10.1016/j.actbio.2015.12.017] [PMID: 26685755]
[35]
Zhou, J.; Romero, G.; Rojas, E.; Ma, L.; Moya, S.; Gao, C. Layer by layer chitosan/alginate coatings on poly(lactide-co-glycolide) nanoparticles for antifouling protection and Folic acid binding to achieve selective cell targeting. J. Colloid Interface Sci., 2010, 345(2), 241-247.
[http://dx.doi.org/10.1016/j.jcis.2010.02.004] [PMID: 20227712]
[36]
Sarmento, B.; Ribeiro, A.; Veiga, F.; Sampaio, P.; Neufeld, R.; Ferreira, D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm. Res., 2007, 24(12), 2198-2206.
[http://dx.doi.org/10.1007/s11095-007-9367-4] [PMID: 17577641]
[37]
Caldorera-Moore, M.; Vela Ramirez, J.E.; Peppas, N.A. Transport and delivery of interferon-α through epithelial tight junctions via pH-responsive poly(methacrylic acid-grafted-ethylene glycol) nanoparticles. J. Drug Target., 2019, 27(5-6), 582-589.
[http://dx.doi.org/10.1080/1061186X.2018.1547732] [PMID: 30457357]
[38]
Lamprecht, A.; Yamamoto, H.; Takeuchi, H.; Kawashima, Y. pH-sensitive microsphere delivery increases oral bioavailability of calcitonin. J. Control. Release, 2004, 98(1), 1-9.
[http://dx.doi.org/10.1016/j.jconrel.2004.02.001] [PMID: 15245884]
[39]
Chen, T.; Li, S.; Zhu, W.; Liang, Z.; Zeng, Q. Self-assembly pH-sensitive chitosan/alginate coated polyelectrolyte complexes for oral delivery of insulin. J. Microencapsul., 2019, 36(1), 96-107.
[http://dx.doi.org/10.1080/02652048.2019.1604846] [PMID: 30958080]
[40]
Lee, S.H.; Song, J.G.; Han, H-K. Development of pH-responsive organic-inorganic hybrid nanocomposites as an effective oral delivery system of protein drugs. J. Control. Release, 2019, 311-312, 74-84.
[http://dx.doi.org/10.1016/j.jconrel.2019.08.036] [PMID: 31487499]
[41]
Meissner, Y.; Ubrich, N.; Ghazouani, F.E.; Maincent, P.; Lamprecht, A. Low molecular weight heparin loaded pH-sensitive microparticles. Int. J. Pharm., 2007, 335(1-2), 147-153.
[http://dx.doi.org/10.1016/j.ijpharm.2006.11.014] [PMID: 17150317]
[42]
Cikrikci, S.; Mert, B.; Oztop, M.H. Development of ph sensitive alginate/gum tragacanth based hydrogels for oral insulin delivery. J. Agric. Food Chem., 2018, 66(44), 11784-11796.
[http://dx.doi.org/10.1021/acs.jafc.8b02525] [PMID: 30346766]
[43]
Chen, X.; Ren, Y.; Feng, Y.; Xu, X.; Tan, H.; Li, J. Cp1-11 peptide/insulin complex loaded pH-responsive nanoparticles with enhanced oral bioactivity. Int. J. Pharm., 2019, 562, 23-30.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.020] [PMID: 30877031]
[44]
Liu, L.; Zhang, Y.; Yu, S.; Yang, Z.; He, C.; Chen, X. Dual stimuli-responsive nanoparticle-incorporated hydrogels as an oral insulin carrier for intestine-targeted delivery and enhanced paracellular permeation. ACS Biomater. Sci. Eng., 2018, 4(8), 2889-2902.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00646] [PMID: 33435012]
[45]
Dai, W.; Guo, Y.; Zhang, H.; Wang, X.; Zhang, Q. Sylysia 350/Eudragit S100 solid nanomatrix as a promising system for oral delivery of cyclosporine A. Int. J. Pharm., 2015, 478(2), 718-725.
[http://dx.doi.org/10.1016/j.ijpharm.2014.11.030] [PMID: 25448562]
[46]
Tsai, L-C.; Chen, C-H.; Lin, C-W.; Ho, Y-C.; Mi, F-L. Development of mutlifunctional nanoparticles self-assembled from trimethyl chitosan and fucoidan for enhanced oral delivery of insulin. Int. J. Biol. Macromol., 2019, 126, 141-150.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.182] [PMID: 30586591]
[47]
Lee, H-B.; Yoon, S-Y.; Singh, B.; Oh, S-H.; Cui, L.; Yan, C.; Kang, S.K.; Choi, Y.J.; Cho, C.S. Oral immunization of fmdv vaccine using ph-sensitive and mucoadhesive thiolated cellulose acetate phthalate microparticles. Tissue Eng. Regen. Med., 2017, 15(1), 1-11.
[http://dx.doi.org/10.1007/s13770-017-0082-x] [PMID: 30603530]
[48]
Zhang, L.; Qin, H.; Li, J.; Qiu, J-N.; Huang, J-M.; Li, M-C.; Guan, Y.Q. Preparation and characterization of layer-by-layer hypoglycemic nanoparticles with pH-sensitivity for oral insulin delivery. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(45), 7451-7461.
[http://dx.doi.org/10.1039/C8TB02113A] [PMID: 32254747]
[49]
Song, M.; Li, L.; Zhang, Y.; Chen, K.; Wang, H.; Gong, R. Carboxymethyl-β-cyclodextrin grafted chitosan nanoparticles as oral delivery carrier of protein drugs. React. Funct. Polym., 2017, 117, 10-15.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2017.05.008]
[50]
Yu, X.; Wen, T.; Cao, P.; Shan, L.; Li, L. Alginate-chitosan coated layered double hydroxide nanocomposites for enhanced oral vaccine delivery. J. Colloid Interface Sci., 2019, 556, 258-265.
[http://dx.doi.org/10.1016/j.jcis.2019.08.027] [PMID: 31450020]
[51]
Liu, L.; Zhang, Y.; Yu, S.; Zhang, Z.; He, C.; Chen, X. pH- and amylase-responsive carboxymethyl starch/poly(2-isobutyl-acrylic acid) hybrid microgels as effective enteric carriers for oral insulin delivery. Biomacromolecules, 2018, 19(6), 2123-2136.
[http://dx.doi.org/10.1021/acs.biomac.8b00215] [PMID: 29664632]
[52]
Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev., 2012, 64, 18-23.
[http://dx.doi.org/10.1016/j.addr.2012.09.010] [PMID: 11755703]
[53]
Doostmohammadi, M.; Ameri, A.; Mohammadinejad, R.; Dehghannoudeh, N.; Banat, I.M.; Ohadi, M.; Dehghannoudeh, G. Hydrogels for peptide hormones delivery: Therapeutic and tissue engineering applications. Drug Des. Devel. Ther., 2019, 13, 3405-3418.
[http://dx.doi.org/10.2147/DDDT.S217211] [PMID: 31579238]
[54]
Ata, S.; Rasool, A.; Islam, A.; Bibi, I.; Rizwan, M.; Azeem, M.K.; Qureshi, A.U.R.; Iqbal, M. Loading of Cefixime to pH sensitive chitosan based hydrogel and investigation of controlled release kinetics. Int. J. Biol. Macromol., 2020, 155, 1236-1244.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.091] [PMID: 31730964]
[55]
Gao, X.; He, C.; Xiao, C.; Zhuang, X.; Chen, X. Biodegradable pH-responsive polyacrylic acid derivative hydrogels with tunable swelling behavior for oral delivery of insulin. Polymer (Guildf.), 2013, 54(7), 1786-1793.
[http://dx.doi.org/10.1016/j.polymer.2013.01.050]
[56]
Gao, X.; Cao, Y.; Song, X.; Zhang, Z.; Zhuang, X.; He, C.; Chen, X. Biodegradable, pH-responsive carboxymethyl cellulose/poly(acrylic acid) hydrogels for oral insulin delivery. Macromol. Biosci., 2014, 14(4), 565-575.
[http://dx.doi.org/10.1002/mabi.201300384] [PMID: 24357554]
[57]
Mundargi, R.C.; Patil, S.A.; Kulkarni, P.V.; Mallikarjuna, N.N.; Aminabhavi, T.M. Sequential interpenetrating polymer network hydrogel microspheres of poly(methacrylic acid) and poly(vinyl alcohol) for oral controlled drug delivery to intestine. J. Microencapsul., 2008, 25(4), 228-240.
[http://dx.doi.org/10.1080/02652040801896435] [PMID: 18465310]
[58]
George, M.; Abraham, T.E. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan- a review. J. Control. Release, 2006, 114(1), 1-14.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.017] [PMID: 16828914]
[59]
Sharpe, L.A.; Daily, A.M.; Horava, S.D.; Peppas, N.A. Therapeutic applications of hydrogels in oral drug delivery. Expert Opin. Drug Deliv., 2014, 11(6), 901-915.
[http://dx.doi.org/10.1517/17425247.2014.902047] [PMID: 24848309]
[60]
Gong, R.; Li, C.; Zhu, S.; Zhang, Y.; Du, Y.; Jiang, J. A novel pH-sensitive hydrogel based on dual crosslinked alginate/N-α-glutaric acid chitosan for oral delivery of protein. Carbohydr. Polym., 2011, 85(4), 869-874.
[http://dx.doi.org/10.1016/j.carbpol.2011.04.011]
[61]
Mansoor, S.; Kondiah, P.P.D.; Choonara, Y.E.; Pillay, V. Polymer-based nanoparticle strategies for insulin delivery. Polymers (Basel), 2019, 11(9), 1380.
[http://dx.doi.org/10.3390/polym11091380] [PMID: 31443473]
[62]
Sun, X.; Liu, C.; Omer, A.M.; Yang, L-Y.; Ouyang, X.K. Dual-layered pH-sensitive alginate/chitosan/kappa-carrageenan microbeads for colon-targeted release of 5-fluorouracil. Int. J. Biol. Macromol., 2019, 132, 487-494.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.225] [PMID: 30940590]
[63]
Lee, K.Y.; Mooney, D.J. Alginate: properties and biomedical applications. Prog. Polym. Sci., 2012, 37(1), 106-126.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003] [PMID: 22125349]
[64]
Lin, Y-H.; Liang, H-F.; Chung, C-K.; Chen, M-C.; Sung, H-W. Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs. Biomaterials, 2005, 26(14), 2105-2113.
[http://dx.doi.org/10.1016/j.biomaterials.2004.06.011] [PMID: 15576185]
[65]
Wang, B.; Song, Q.; Zhao, F.; Zhang, L.; Han, Y.; Zhou, Z. Isolation and characterization of dextran produced by Lactobacillus sakei L3 from Hubei sausage. Carbohydr. Polym., 2019, 223, 115111.
[http://dx.doi.org/10.1016/j.carbpol.2019.115111] [PMID: 31426984]
[66]
Solomevich, S.O.; Bychkovsky, P.M.; Yurkshtovich, T.L.; Golub, N.V.; Mirchuk, P.Y.; Revtovich, M.Y.; Shmak, A.I. Biodegradable pH-sensitive prospidine-loaded dextran phosphate based hydrogels for local tumor therapy. Carbohydr. Polym., 2019, 226, 115308.
[http://dx.doi.org/10.1016/j.carbpol.2019.115308] [PMID: 31582057]
[67]
Bajpai, S.K.; Chand, N.; Tiwari, S.; Soni, S. Swelling behavior of cross-linked dextran hydrogels and preliminary Gliclazide release behavior. Int. J. Biol. Macromol., 2016, 93(Pt A), 978-987.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.09.075] [PMID: 27664925]
[68]
Hu, Q.; Luo, Y. Recent advances of polysaccharide-based nanoparticles for oral insulin delivery. Int. J. Biol. Macromol., 2018, 120(Pt A), 775-782.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.152] [PMID: 30170057]
[69]
Alibolandi, M.; Alabdollah, F.; Sadeghi, F.; Mohammadi, M.; Abnous, K.; Ramezani, M.; Hadizadeh, F. Dextran-b-poly(lactide-co-glycolide) polymersome for oral delivery of insulin: in vitro and in vivo evaluation. J. Control. Release, 2016, 227, 58-70.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.031] [PMID: 26907831]
[70]
George, A.; Shah, P.A.; Shrivastav, P.S. Natural biodegradable polymers based nano-formulations for drug delivery: a review. Int. J. Pharm., 2019, 561, 244-264.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.011] [PMID: 30851391]
[71]
Chen, R.; Cai, X.; Ma, K.; Zhou, Y.; Wang, Y.; Jiang, T. The fabrication of double-layered chitosan/gelatin/genipin nanosphere coating for sequential and controlled release of therapeutic proteins. Biofabrication, 2017, 9(2), 025028.
[http://dx.doi.org/10.1088/1758-5090/aa70c3] [PMID: 28467316]
[72]
Madhusudana Rao, K.; Krishna Rao, K.S.V.; Ramanjaneyulu, G.; Ha, C-S. Curcumin encapsulated pH sensitive gelatin based interpenetrating polymeric network nanogels for anti cancer drug delivery. Int. J. Pharm., 2015, 478(2), 788-795.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.001] [PMID: 25528297]
[73]
Raafat, A.I. Gelatin based pH-sensitive hydrogels for colon-specific oral drug delivery: synthesis, characterization, and in vitro release study. J. Appl. Polym. Sci., 2010, 118(5), 2642-2649.
[http://dx.doi.org/10.1002/app.32601]
[74]
Ikada, Y.; Tabata, Y. Protein release from gelatin matrices. Adv. Drug Deliv. Rev., 1998, 31(3), 287-301.
[http://dx.doi.org/10.1016/S0169-409X(97)00125-7] [PMID: 10837630]
[75]
Hu, R.; Zheng, H.; Cao, J.; Davoudi, Z.; Wang, Q. Self-assembled hyaluronic acid nanoparticles for ph-sensitive release of doxorubicin: synthesis and in vitro characterization. J. Biomed. Nanotechnol., 2017, 13(9), 1058-1068.
[http://dx.doi.org/10.1166/jbn.2017.2406] [PMID: 31251139]
[76]
Wang, H.; Agarwal, P.; Zhao, S.; Xu, R.X.; Yu, J.; Lu, X.; He, X. Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells. Biomaterials, 2015, 72, 74-89.
[http://dx.doi.org/10.1016/j.biomaterials.2015.08.048] [PMID: 26344365]
[77]
Huang, D.; Chen, Y-S.; Green, C.R.; Rupenthal, I.D. Hyaluronic acid coated albumin nanoparticles for targeted peptide delivery in the treatment of retinal ischaemia. Biomaterials, 2018, 168, 10-23.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.034] [PMID: 29597134]
[78]
Tian, H.; He, Z.; Sun, C.; Yang, C.; Zhao, P.; Liu, L.; Leong, K.W.; Mao, H.Q.; Liu, Z.; Chen, Y. Uniform core–shell nanoparticles with thiolated hyaluronic acid coating to enhance oral delivery of insulin. Adv. Healthc. Mater., 2018, 7(17), e1800285.
[http://dx.doi.org/10.1002/adhm.201800285] [PMID: 29984479]
[79]
Fiorica, C.; Pitarresi, G.; Palumbo, F.S.; Di Stefano, M.; Calascibetta, F.; Giammona, G. A new hyaluronic acid pH sensitive derivative obtained by ATRP for potential oral administration of proteins. Int. J. Pharm., 2013, 457(1), 150-157.
[http://dx.doi.org/10.1016/j.ijpharm.2013.09.005] [PMID: 24060369]
[80]
Yang, J.; Sun, H.; Song, C. Preparation, characterization and in vivo evaluation of pH-sensitive oral insulin-loaded poly(lactic-co-glycolicacid) nanoparticles. Diabetes Obes. Metab., 2012, 14(4), 358-364.
[http://dx.doi.org/10.1111/j.1463-1326.2011.01546.x] [PMID: 22151795]
[81]
Swider, E.; Koshkina, O.; Tel, J.; Cruz, L.J.; de Vries, I.J.M.; Srinivas, M. Customizing poly(lactic-co-glycolic acid) particles for biomedical applications. Acta Biomater., 2018, 73, 38-51.
[http://dx.doi.org/10.1016/j.actbio.2018.04.006] [PMID: 29653217]
[82]
Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces, 2010, 75(1), 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[83]
Kumar, P.S.; Ramakrishna, S.; Saini, T.R.; Diwan, P.V. Influence of microencapsulation method and peptide loading on formulation of poly(lactide-co-glycolide) insulin nanoparticles. Pharmazie, 2006, 61(7), 613-617.
[PMID: 16889069]
[84]
Nargesi khoramabadi, H.; Arefian, M.; Hojjati, M.; Tajzad, I.; Mokhtarzade, A.; Mazhar, M. A review of Polyvinyl alcohol / Carboxiy methyl cellulose (PVA/CMC) composites for various applications. Journal of Composites and Compounds, 2020, 2(3), 69-76.
[85]
Duru Kamacı, U.; Kamacı, M. Preparation of polyvinyl alcohol, chitosan and polyurethane-based pH-sensitive and biodegradable hydrogels for controlled drug release applications. Int. J. Polym. Mater., 2020, 69(18), 1167-1177.
[http://dx.doi.org/10.1080/00914037.2019.1670180]
[86]
Gómez-Aldapa, C.A.; Velazquez, G.; Gutierrez, M.C.; Rangel-Vargas, E.; Castro-Rosas, J.; Aguirre-Loredo, R.Y. Effect of polyvinyl alcohol on the physicochemical properties of biodegradable starch films. Mater. Chem. Phys., 2020, 239, 122027.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122027]
[87]
Gao, H.; Wang, Y.N.; Fan, Y.G.; Ma, J.B. Synthesis of a biodegradable tadpole-shaped polymer via the coupling reaction of polylactide onto mono(6-(2-aminoethyl)amino-6-deoxy)-β-cyclodextrin and its properties as the new carrier of protein delivery system. J. Control. Release, 2005, 107(1), 158-173.
[http://dx.doi.org/10.1016/j.jconrel.2005.06.010] [PMID: 16095747]
[88]
Buyana, B.; Aderibigbe, B.A.; Ray, S.S.; Ndinteh, D.T.; Fonkui, Y.T. Development, characterization, and in vitro evaluation of water soluble poloxamer/pluronic-mastic gum-gum acacia-based wound dressing. J. Appl. Polym. Sci., 2020, 137(21), 48728.
[http://dx.doi.org/10.1002/app.48728]
[89]
Wang, K.; Xu, X.; Liu, T.; Fu, S.; Guo, G.; Gu, Y. Synthesis and characterization of biodegradable pH-sensitive hydrogel based on poly(ε-caprolactone), methacrylic acid, and Pluronic (L35). Carbohydr. Polym., 2010, 79(3), 755-761.
[http://dx.doi.org/10.1016/j.carbpol.2009.10.004]
[90]
Cheng, X.; Zeng, X.; Zheng, Y.; Fang, Q.; Wang, X.; Wang, J.; Tang, R. pH-sensitive pluronic micelles combined with oxidative stress amplification for enhancing multidrug resistance breast cancer therapy. J. Colloid Interface Sci., 2020, 565, 254-269.
[http://dx.doi.org/10.1016/j.jcis.2020.01.029] [PMID: 31978788]
[91]
Chowdhury, P.; Nagesh, P.K.; Kumar, S.; Jaggi, M.; Chauhan, S.C.; Yallapu, M.M. Pluronic nanotechnology for overcoming drug resistance. In: Bioactivity of engineered nanoparticles; Yan, B.; Zhou, H.; Gardea-Torresdey, J., Eds.; Springer: Singapore, 2017; pp. 207-237.
[http://dx.doi.org/10.1007/978-981-10-5864-6_9]
[92]
Xiong, X.Y.; Li, Y.P.; Li, Z.L.; Zhou, C.L.; Tam, K.C.; Liu, Z.Y.; Xie, G.X. Vesicles from Pluronic/poly(lactic acid) block copolymers as new carriers for oral insulin delivery. J. Control. Release, 2007, 120(1-2), 11-17.
[http://dx.doi.org/10.1016/j.jconrel.2007.04.004] [PMID: 17509718]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy