Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Impact of ErbB Receptors and Anticancer Drugs against Breast Cancer: A Review

Author(s): Ankita Sahu, Saurabh Verma, Meena Varma and Manoj Kumar Yadav*

Volume 23, Issue 6, 2022

Published on: 19 July, 2021

Page: [787 - 802] Pages: 16

DOI: 10.2174/1389201022666210719161453

Price: $65

conference banner
Abstract

Human EGFR (epidermal growth factor receptor) family of tyrosine kinase receptors consists of four members, ErbB1-4. Abnormalities in the ErbB family characterize a variety of human cancers, including breast cancer. Tyrosine kinase is recruited by the activated EGFR cell surface receptor, which transmitted signals from the receptor to interact with intracellular signaling pathways and regulate cellular functions and biological processes. Targeting the intracellular signaling pathways has been aided in the drug development that was already in use and more continually being developed. The review article highlights the function of ErbB receptors/ligands, their role in signaling pathways, effective targeted drugs, and a combination of targeted drug strategies in the treatment of breast cancer that could be leading to the novel combination of anticancer drug delivery systems.

Keywords: Breast cancer, ErbB receptors, ligands, signaling pathways, combinatorial drug, clinical trial.

Graphical Abstract

[1]
Martín-Pardillos, A.; Valls Chiva, Á.; Bande Vargas, G.; Hurtado Blanco, P.; Piñeiro Cid, R.; Guijarro, P.J. The role of clonal communication and heterogeneity in breast cancer. BMC Cancer, 2019, 19(1), 1-26.
[http://dx.doi.org/10.1186/s12885-019-5883-y]
[2]
Polyak, K. Heterogeneity in breast cancer. J. Clin. Invest., 2011, 121(10), 3786-3788.
[http://dx.doi.org/10.1172/JCI60534] [PMID: 21965334]
[3]
Poudel, P.; Nyamundanda, G.; Patil, Y.; Cheang, M.C.U.; Sadanandam, A. Heterocellular gene signatures reveal luminal-A breast cancer heterogeneity and differential therapeutic responses. NPJ Breast Cancer, 2019, 5, 21.
[http://dx.doi.org/10.1038/s41523-019-0116-8] [PMID: 31396557]
[4]
Althuis, M.D.; Dozier, J.M.; Anderson, W.F.; Devesa, S.S.; Brinton, L.A. Global trends in breast cancer incidence and mortality 1973-1997. Int. J. Epidemiol., 2005, 34(2), 405-412.
[http://dx.doi.org/10.1093/ije/dyh414] [PMID: 15737977]
[5]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[6]
Ghoncheh, M.; Pournamdar, Z.; Salehiniya, H. Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac. J. Cancer Prev., 2016, 17(S3), 43-46.
[http://dx.doi.org/10.7314/APJCP.2016.17.S3.43] [PMID: 27165206]
[7]
Salamat, F.; Niakan, B.; Keshtkar, A.; Rafiei, E.; Zendehdel, M. Subtypes of benign breast disease as a risk factor of breast cancer: a systematic review and meta analyses. Iran. J. Med. Sci., 2018, 43(4), 355-364.
[PMID: 30046203]
[8]
Holbro, T.; Civenni, G.; Hynes, N.E. The ErbB receptors and their role in cancer progression. Exp. Cell Res., 2003, 284(1), 99-110.
[http://dx.doi.org/10.1016/B978-012160281-9/50009-8]
[9]
Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol., 2001, 2(2), 127-137.
[http://dx.doi.org/10.1038/35052073] [PMID: 11252954]
[10]
Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2000, 103(2), 211-225.
[http://dx.doi.org/10.1016/S0092-8674(00)00114-8] [PMID: 11057895]
[11]
Carpenter, G.; Cohen, S. Epidermal growth factor. Annu. Rev. Biochem., 1979, 48(1), 193-216.
[http://dx.doi.org/10.1146/annurev.bi.48.070179.001205] [PMID: 382984]
[12]
Siena, S.; Sartore-Bianchi, A.; Marsoni, S.; Hurwitz, H.I.; McCall, S.J.; Penault-Llorca, F. Targeting the human epidermal growth factor receptor 2 (HER2) oncogene in colorectal cancer. Ann. Oncol., 2018, 29(5), 1108-1119.
[13]
Thompson, D.M.; Gill, G.N. The EGF receptor: structure, regulation and potential role in malignancy. Cancer Surv., 1985, 4(4), 767-788.
[PMID: 2824044]
[14]
von Achenbach, C.; Weller, M.; Szabo, E. Epidermal growth factor receptor and ligand family expression and activity in glioblastoma. J. Neurochem., 2018, 147(1), 99-109.
[http://dx.doi.org/10.1111/jnc.14538] [PMID: 29953622]
[15]
Cohen, S. The epidermal growth factor (EGF). Cancer, 1983, 51(10), 1787-1791.
[http://dx.doi.org/10.1002/1097-0142(19830515)51:10<1787:AID-CNCR2820511004>3.0.CO;2-A] [PMID: 6299497]
[16]
Roskoski, R. Jr Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers. Pharmacol. Res., 2019, 139, 395-411.
[http://dx.doi.org/10.1016/j.phrs.2018.11.014] [PMID: 30500458]
[17]
Roskoski, R. Jr ErbB/HER protein-tyrosine kinases: Structures and small molecule inhibitors. Pharmacol. Res., 2014, 87, 42-59.
[http://dx.doi.org/10.1016/j.phrs.2014.06.001] [PMID: 24928736]
[18]
Ho, J.; Moyes, D.L.; Tavassoli, M.; Naglik, J.R. The role of ErbB receptors in infection. Trends Microbiol., 2017, 25(11), 942-952.
[http://dx.doi.org/10.1016/j.tim.2017.04.009] [PMID: 28522156]
[19]
Pellat, A.; Vaquero, J.; Fouassier, L. Role of ErbB/HER family of receptor tyrosine kinases in cholangiocyte biology. Hepatology, 2018, 67(2), 762-773.
[http://dx.doi.org/10.1002/hep.29350] [PMID: 28671339]
[20]
Appert-Collin, A.; Hubert, P.; Crémel, G.; Bennasroune, A. Role of ErbB receptors in cancer cell migration and invasion. Front. Pharmacol., 2015, 6, 283.
[http://dx.doi.org/10.3389/fphar.2015.00283] [PMID: 26635612]
[21]
Carrasco-García, E.; Saceda, M.; Martínez-Lacaci, I. Role of receptor tyrosine kinases and their ligands in glioblastoma. Cells, 2014, 3(2), 199-235.
[http://dx.doi.org/10.3390/cells3020199] [PMID: 24709958]
[22]
Wells, A. EGF receptor. Int. J. Biochem. Cell Biol., 1999, 31(6), 637-643.
[http://dx.doi.org/10.1016/S1357-2725(99)00015-1] [PMID: 10404636]
[23]
Ferguson, K.M.; Berger, M.B.; Mendrola, J.M.; Cho, H.S.; Leahy, D.J.; Lemmon, M.A. EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol. Cell, 2003, 11(2), 507-517.
[http://dx.doi.org/10.1016/S1097-2765(03)00047-9] [PMID: 12620237]
[24]
Ogiso, H.; Ishitani, R.; Nureki, O.; Fukai, S.; Yamanaka, M.; Kim, J-H.; Saito, K.; Sakamoto, A.; Inoue, M.; Shirouzu, M.; Yokoyama, S. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell, 2002, 110(6), 775-787.
[http://dx.doi.org/10.1016/S0092-8674(02)00963-7] [PMID: 12297050]
[25]
Riese, D.J., II Ligand-based receptor tyrosine kinase partial agonists: New paradigm for cancer drug discovery? Expert Opin. Drug Discov., 2011, 6(2), 185-193.
[http://dx.doi.org/10.1517/17460441.2011.547468] [PMID: 21532939]
[26]
Olayioye, M.A.; Neve, R.M.; Lane, H.A.; Hynes, N.E. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J., 2000, 19(13), 3159-3167.
[http://dx.doi.org/10.1093/emboj/19.13.3159] [PMID: 10880430]
[27]
Citri, A.; Yarden, Y. EGF-ERBB signalling: Towards the systems level. Nat. Rev. Mol. Cell Biol., 2006, 7(7), 505-516.
[http://dx.doi.org/10.1038/nrm1962] [PMID: 16829981]
[28]
Hynes, N.E.; MacDonald, G. ErbB receptors and signaling pathways in cancer. Curr. Opin. Cell Biol., 2009, 21(2), 177-184.
[http://dx.doi.org/10.1016/j.ceb.2008.12.010] [PMID: 19208461]
[29]
Garrett, T.P.J.; McKern, N.M.; Lou, M.; Elleman, T.C.; Adams, T.E.; Lovrecz, G.O.; Kofler, M.; Jorissen, R.N.; Nice, E.C.; Burgess, A.W.; Ward, C.W. The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Mol. Cell, 2003, 11(2), 495-505.
[http://dx.doi.org/10.1016/S1097-2765(03)00048-0] [PMID: 12620236]
[30]
Sahu, A.; Patra, P.K.; Yadav, M.K.; Varma, M. Identification and characterization of ErbB4 kinase inhibitors for effective breast cancer therapy. J. Recept. Signal Transduct. Res., 2017, 37(5), 470-480.
[http://dx.doi.org/10.1080/10799893.2017.1342129] [PMID: 28670936]
[31]
Holbro, T.; Beerli, R.R.; Maurer, F.; Koziczak, M.; Barbas, C.F., III; Hynes, N.E. The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc. Natl. Acad. Sci. USA, 2003, 100(15), 8933-8938.
[http://dx.doi.org/10.1073/pnas.1537685100] [PMID: 12853564]
[32]
Shoelson, S.E. SH2 and PTB domain interactions in tyrosine kinase signal transduction. Curr. Opin. Chem. Biol., 1997, 1(2), 227-234.
[http://dx.doi.org/10.1016/S1367-5931(97)80014-2] [PMID: 9667855]
[33]
Hynes, N.E.; Lane, H.A. ERBB receptors and cancer: The complexity of targeted inhibitors. Nat. Rev. Cancer, 2005, 5(5), 341-354.
[http://dx.doi.org/10.1038/nrc1609] [PMID: 15864276]
[34]
Schlessinger, J. Common and distinct elements in cellular signaling via EGF and FGF receptors. Science, 2004, 306(5701), 1506-1507.
[http://dx.doi.org/10.1126/science.1105396] [PMID: 15567848]
[35]
Zahorowska, B.; Crowe, P.J.; Yang, J-L. Combined therapies for cancer: a review of EGFR-targeted monotherapy and combination treatment with other drugs. J. Cancer Res. Clin. Oncol., 2009, 135(9), 1137-1148.
[http://dx.doi.org/10.1007/s00432-009-0622-4] [PMID: 19533170]
[36]
Rosenkranz, A.A.; Slastnikova, T.A. epidermal growth factor receptor: key to selective intracellular delivery. Biochemistry (Mosc.), 2020, 85(9), 967-1092.
[http://dx.doi.org/10.1134/S0006297920090011] [PMID: 33050847]
[37]
Christy, J.; Priyadharshini, L. Differential expression analysis of JAK/STAT pathway related genes in breast cancer. Meta Gene, 2018, 16, 122-129.
[http://dx.doi.org/10.1016/j.mgene.2018.02.008]
[38]
Sharma, V.R.; Gupta, G.K.; Sharma, A.K.; Batra, N.; Sharma, D.K.; Joshi, A.; Sharma, A.K. PI3K/Akt/mTOR intracellular pathway and breast cancer: factors, mechanism and regulation. Curr. Pharm. Des., 2017, 23(11), 1633-1638.
[http://dx.doi.org/10.2174/1381612823666161116125218] [PMID: 27848885]
[39]
McCubrey, J.A.; Steelman, L.S.; Chappell, W.H.; Abrams, S.L.; Wong, E.W.; Chang, F.; Lehmann, B.; Terrian, D.M.; Milella, M.; Tafuri, A.; Stivala, F.; Libra, M.; Basecke, J.; Evangelisti, C.; Martelli, A.M.; Franklin, R.A. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta, 2007, 1773(8), 1263-1284.
[http://dx.doi.org/10.1016/j.bbamcr.2006.10.001] [PMID: 17126425]
[40]
McCubrey, J.A.; Steelman, L.S.; Abrams, S.L.; Lee, J.T.; Chang, F.; Bertrand, F.E.; Navolanic, P.M.; Terrian, D.M.; Franklin, R.A.; D’Assoro, A.B.; Salisbury, J.L.; Mazzarino, M.C.; Stivala, F.; Libra, M. Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv. Enzyme Regul., 2006, 46, 249-279.
[http://dx.doi.org/10.1016/j.advenzreg.2006.01.004] [PMID: 16854453]
[41]
Vivanco, I.; Sawyers, C.L. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer, 2002, 2(7), 489-501.
[http://dx.doi.org/10.1038/nrc839] [PMID: 12094235]
[42]
Yuan, T.L.; Cantley, L.C. PI3K pathway alterations in cancer: variations on a theme. Oncogene, 2008, 27(41), 5497-5510.
[http://dx.doi.org/10.1038/onc.2008.245] [PMID: 18794884]
[43]
Bjornsti, M-A.; Houghton, P.J. The TOR pathway: A target for cancer therapy. Nat. Rev. Cancer, 2004, 4(5), 335-348.
[http://dx.doi.org/10.1038/nrc1362] [PMID: 15122205]
[44]
Zhou, X.; Tan, M.; Stone Hawthorne, V.; Klos, K.S.; Lan, K.H.; Yang, Y.; Yang, W.; Smith, T.L.; Shi, D.; Yu, D. Activation of the Akt/mammalian target of rapamycin/4E-BP1 pathway by ErbB2 overexpression predicts tumor progression in breast cancers. Clin. Cancer Res., 2004, 10(20), 6779-6788.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0112] [PMID: 15501954]
[45]
Rawlings, J.S.; Rosler, K.M.; Harrison, D.A. The JAK/STAT signaling pathway. J. Cell Sci., 2004, 117(Pt 8), 1281-1283.
[http://dx.doi.org/10.1242/jcs.00963] [PMID: 15020666]
[46]
Thomas, S.J.; Snowden, J.A.; Zeidler, M.P.; Danson, S.J. The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours. Br. J. Cancer, 2015, 113(3), 365-371.
[http://dx.doi.org/10.1038/bjc.2015.233] [PMID: 26151455]
[47]
Gschwind, A.; Fischer, O.M.; Ullrich, A. The discovery of receptor tyrosine kinases: Targets for cancer therapy. Nat. Rev. Cancer, 2004, 4(5), 361-370.
[http://dx.doi.org/10.1038/nrc1360] [PMID: 15122207]
[48]
Wee, P.; Wang, Z. Epidermal Growth factor receptor cell proliferation signaling pathways. Cancers (Basel), 2017, 9(5), 1-45.
[PMID: 28513565]
[49]
Ross, J.S.; Slodkowska, E.A.; Symmans, W.F.; Pusztai, L.; Ravdin, P.M.; Hortobagyi, G.N. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist, 2009, 14(4), 320-368.
[http://dx.doi.org/10.1634/theoncologist.2008-0230] [PMID: 19346299]
[50]
Wang, J.; Xu, B. Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduct. Target. Ther., 2019, 4(1), 34.
[http://dx.doi.org/10.1038/s41392-019-0069-2] [PMID: 31637013]
[51]
Atalay, G.; Cardoso, F.; Awada, A.; Piccart, M.J. Novel therapeutic strategies targeting the epidermal growth factor receptor (EGFR) family and its downstream effectors in breast cancer. Ann. Oncol., 2003, 14(9), 1346-1363.
[http://dx.doi.org/10.1093/annonc/mdg365] [PMID: 12954573]
[52]
Muthuswamy, S.K.; Gilman, M.; Brugge, J.S. Controlled dimerization of ErbB receptors provides evidence for differential signaling by homo- and heterodimers. Mol. Cell. Biol., 1999, 19(10), 6845-6857.
[http://dx.doi.org/10.1128/MCB.19.10.6845] [PMID: 10490623]
[53]
Tzahar, E.; Waterman, H.; Chen, X.; Levkowitz, G.; Karunagaran, D.; Lavi, S.; Ratzkin, B.J.; Yarden, Y. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol. Cell. Biol., 1996, 16(10), 5276-5287.
[http://dx.doi.org/10.1128/MCB.16.10.5276] [PMID: 8816440]
[54]
Harari, D.; Yarden, Y. Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene, 2000, 19(53), 6102-6114.
[http://dx.doi.org/10.1038/sj.onc.1203973] [PMID: 11156523]
[55]
Roskoski, R., Jr The ErbB/HER receptor protein-tyrosine kinases and cancer. Biochem. Biophys. Res. Commun., 2004, 319(1), 1-11.
[http://dx.doi.org/10.1016/j.bbrc.2004.04.150] [PMID: 15158434]
[56]
Kumar, R.; George, B.; Campbell, M.R.; Verma, N.; Paul, A.M.; Melo-Alvim, C. Chapter Three - HER family in cancer progression: From discovery to 2020 and beyond. In: Advances in Cancer Research; Kumar, R.; Fisher, P.B., Eds.; Academic Press, 2020; 147, pp. 109-160.
[57]
Neve, R.M.; Lane, H.A.; Hynes, N.E. The role of overexpressed HER2 in transformation. Ann. Oncol., 2001, 12(1)(Suppl. 1), S9-S13.
[http://dx.doi.org/10.1093/annonc/12.suppl_1.S9] [PMID: 11521729]
[58]
Mujoo, K.; Choi, B.K.; Huang, Z.; Zhang, N.; An, Z. Regulation of ERBB3/HER3 signaling in cancer. Oncotarget, 2014, 5(21), 10222-10236.
[http://dx.doi.org/10.18632/oncotarget.2655] [PMID: 25400118]
[59]
Harari, D.; Tzahar, E.; Romano, J.; Shelly, M.; Pierce, J.H.; Andrews, G.C.; Yarden, Y. Neuregulin-4: a novel growth factor that acts through the ErbB-4 receptor tyrosine kinase. Oncogene, 1999, 18(17), 2681-2689.
[http://dx.doi.org/10.1038/sj.onc.1202631] [PMID: 10348342]
[60]
Zhang, D.; Sliwkowski, M.X.; Mark, M.; Frantz, G.; Akita, R.; Sun, Y.; Hillan, K.; Crowley, C.; Brush, J.; Godowski, P.J. Neuregulin-3 (NRG3): a novel neural tissue-enriched protein that binds and activates ErbB4. Proc. Natl. Acad. Sci. USA, 1997, 94(18), 9562-9567.
[http://dx.doi.org/10.1073/pnas.94.18.9562] [PMID: 9275162]
[61]
Black, L.E.; Longo, J.F.; Carroll, S.L. Mechanisms of receptor tyrosine-protein kinase ErbB-3 (ERBB3) action in human neoplasia. Am. J. Pathol., 2019, 189(10), 1898-1912.
[http://dx.doi.org/10.1016/j.ajpath.2019.06.008] [PMID: 31351986]
[62]
Campiglio, M.; Ali, S.; Knyazev, P.G.; Ullrich, A. Characteristics of EGFR family-mediated HRG signals in human ovarian cancer. J. Cell. Biochem., 1999, 73(4), 522-532.
[http://dx.doi.org/10.1002/(SICI)1097-4644(19990615)73:4<522:AID-JCB10>3.0.CO;2-4] [PMID: 10733345]
[63]
Wood, E.R.; Truesdale, A.T.; McDonald, O.B.; Yuan, D.; Hassell, A.; Dickerson, S.H.; Ellis, B.; Pennisi, C.; Horne, E.; Lackey, K.; Alligood, K.J.; Rusnak, D.W.; Gilmer, T.M.; Shewchuk, L. A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res., 2004, 64(18), 6652-6659.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1168] [PMID: 15374980]
[64]
Bilancia, D.; Rosati, G.; Dinota, A.; Germano, D.; Romano, R.; Manzione, L. Lapatinib in breast cancer. Ann. Oncol., 2007, 18(6)(Suppl. 6), vi26-vi30.
[http://dx.doi.org/10.1093/annonc/mdm220] [PMID: 17591827]
[65]
Xia, W.; Mullin, R.J.; Keith, B.R.; Liu, L.H.; Ma, H.; Rusnak, D.W.; Owens, G.; Alligood, K.J.; Spector, N.L. Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene, 2002, 21(41), 6255-6263.
[http://dx.doi.org/10.1038/sj.onc.1205794] [PMID: 12214266]
[66]
Dranitsaris, G.; Lacouture, M.E. Development of prediction tools for diarrhea and rash in breast cancer patients receiving lapatinib in combination with capecitabine. Breast Cancer Res. Treat., 2014, 147(3), 631-638.
[http://dx.doi.org/10.1007/s10549-014-3126-0] [PMID: 25216762]
[67]
Parham, L.R.; Briley, L.P.; King, K.S.; Byrne, J.; Rappold, E.; Goss, P.E.; Spraggs, C.F. Rash in lapatinib-treated patients is not associated with human leukocyte antigen polymorphisms. Pharmacogenomics, 2015, 16(11), 1227-1229.
[http://dx.doi.org/10.2217/pgs.15.69] [PMID: 26265235]
[68]
Rabindran, S.K.; Discafani, C.M.; Rosfjord, E.C.; Baxter, M.; Floyd, M.B.; Golas, J.; Hallett, W.A.; Johnson, B.D.; Nilakantan, R.; Overbeek, E.; Reich, M.F.; Shen, R.; Shi, X.; Tsou, H.R.; Wang, Y.F.; Wissner, A. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res., 2004, 64(11), 3958-3965.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2868] [PMID: 15173008]
[69]
Bose, P.; Ozer, H. Neratinib: an oral, irreversible dual EGFR/HER2 inhibitor for breast and non-small cell lung cancer. Expert Opin. Investig. Drugs, 2009, 18(11), 1735-1751.
[http://dx.doi.org/10.1517/13543780903305428] [PMID: 19780706]
[70]
Chan, A. Neratinib in HER-2-positive breast cancer: Results to date and clinical usefulness. Ther. Adv. Med. Oncol., 2016, 8(5), 339-350.
[http://dx.doi.org/10.1177/1758834016656494] [PMID: 27583026]
[71]
Feldinger, K.; Kong, A. Profile of neratinib and its potential in the treatment of breast cancer. Breast Cancer (Dove Med. Press), 2015, 7, 147-162.
[PMID: 26089701]
[72]
Tsou, H.R.; Overbeek-Klumpers, E.G.; Hallett, W.A.; Reich, M.F.; Floyd, M.B.; Johnson, B.D.; Michalak, R.S.; Nilakantan, R.; Discafani, C.; Golas, J.; Rabindran, S.K.; Shen, R.; Shi, X.; Wang, Y.F.; Upeslacis, J.; Wissner, A. Optimization of 6,7-disubstituted-4-(arylamino)quinoline-3-carbonitriles as orally active, irreversible inhibitors of human epidermal growth factor receptor-2 kinase activity. J. Med. Chem., 2005, 48(4), 1107-1131.
[http://dx.doi.org/10.1021/jm040159c] [PMID: 15715478]
[73]
Burstein, H.J.; Sun, Y.; Dirix, L.Y.; Jiang, Z.; Paridaens, R.; Tan, A.R.; Awada, A.; Ranade, A.; Jiao, S.; Schwartz, G.; Abbas, R.; Powell, C.; Turnbull, K.; Vermette, J.; Zacharchuk, C.; Badwe, R. Neratinib, an irreversible ErbB receptor tyrosine kinase inhibitor, in patients with advanced ErbB2-positive breast cancer. J. Clin. Oncol., 2010, 28(8), 1301-1307.
[http://dx.doi.org/10.1200/JCO.2009.25.8707] [PMID: 20142587]
[74]
Herbst, R.S.; Fukuoka, M.; Baselga, J. Gefitinib--a novel targeted approach to treating cancer. Nat. Rev. Cancer, 2004, 4(12), 956-965.
[http://dx.doi.org/10.1038/nrc1506] [PMID: 15573117]
[75]
Lin, N.U.; Winer, E.P. New targets for therapy in breast cancer: small molecule tyrosine kinase inhibitors. Breast Cancer Res., 2004, 6(5), 204-210.
[http://dx.doi.org/10.1186/bcr919] [PMID: 15318926]
[76]
Moulder, S.L.; Yakes, F.M.; Muthuswamy, S.K.; Bianco, R.; Simpson, J.F.; Arteaga, C.L. Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor ZD1839 (Iressa) inhibits HER2/neu (erbB2)-overexpressing breast cancer cells in vitro and in vivo. Cancer Res., 2001, 61(24), 8887-8895.
[PMID: 11751413]
[77]
Thomas, S.M.; Grandis, J.R. Pharmacokinetic and pharmacodynamic properties of EGFR inhibitors under clinical investigation. Cancer Treat. Rev., 2004, 30(3), 255-268.
[http://dx.doi.org/10.1016/j.ctrv.2003.10.003] [PMID: 15059649]
[78]
Yun, C.H.; Boggon, T.J.; Li, Y.; Woo, M.S.; Greulich, H.; Meyerson, M.; Eck, M.J. Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell, 2007, 11(3), 217-227.
[http://dx.doi.org/10.1016/j.ccr.2006.12.017] [PMID: 17349580]
[79]
Aggarwal, B.B.; Danda, D.; Gupta, S.; Gehlot, P. Models for prevention and treatment of cancer: problems vs promises. Biochem. Pharmacol., 2009, 78(9), 1083-1094.
[http://dx.doi.org/10.1016/j.bcp.2009.05.027] [PMID: 19481061]
[80]
Arora, A.; Scholar, E.M. Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther., 2005, 315(3), 971-979.
[http://dx.doi.org/10.1124/jpet.105.084145] [PMID: 16002463]
[81]
Segovia-Mendoza, M.; González-González, M.E.; Barrera, D.; Díaz, L.; García-Becerra, R. Efficacy and mechanism of action of the tyrosine kinase inhibitors gefitinib, lapatinib and neratinib in the treatment of HER2-positive breast cancer: preclinical and clinical evidence. Am. J. Cancer Res., 2015, 5(9), 2531-2561.
[PMID: 26609467]
[82]
Ma, F.; Ouyang, Q.; Li, W.; Jiang, Z.; Tong, Z.; Liu, Y.; Li, H.; Yu, S.; Feng, J.; Wang, S.; Hu, X.; Zou, J.; Zhu, X.; Xu, B. Pyrotinib or lapatinib combined with capecitabine in HER2-positive metastatic breast cancer with prior taxanes, anthracyclines, and/or trastuzumab: A Randomized, Phase II Study. J. Clin. Oncol., 2019, 37(29), 2610-2619.
[http://dx.doi.org/10.1200/JCO.19.00108] [PMID: 31430226]
[83]
Ma, F.; Li, Q.; Chen, S.; Zhu, W.; Fan, Y.; Wang, J.; Luo, Y.; Xing, P.; Lan, B.; Li, M.; Yi, Z.; Cai, R.; Yuan, P.; Zhang, P.; Li, Q.; Xu, B. Phase I study and biomarker analysis of pyrotinib, a novel irreversible pan-ErbB receptor tyrosine kinase inhibitor, in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J. Clin. Oncol., 2017, 35(27), 3105-3112.
[http://dx.doi.org/10.1200/JCO.2016.69.6179] [PMID: 28498781]
[84]
Blair, H.A. Pyrotinib: First global approval. Drugs, 2018, 78(16), 1751-1755.
[http://dx.doi.org/10.1007/s40265-018-0997-0] [PMID: 30341682]
[85]
Cho, H.S.; Mason, K.; Ramyar, K.X.; Stanley, A.M.; Gabelli, S.B.; Denney, D.W., Jr; Leahy, D.J. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature, 2003, 421(6924), 756-760.
[http://dx.doi.org/10.1038/nature01392] [PMID: 12610629]
[86]
Paik, S.; Liu, E.T. HER2 as a predictor of therapeutic response in breast cancer. Breast Dis., 2000, 11, 91-102.
[http://dx.doi.org/10.3233/BD-1999-11108] [PMID: 15687595]
[87]
Molina, M.A.; Codony-Servat, J.; Albanell, J.; Rojo, F.; Arribas, J.; Baselga, J. Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res., 2001, 61(12), 4744-4749.
[PMID: 11406546]
[88]
Hudis, C.A. Trastuzumab--mechanism of action and use in clinical practice. N. Engl. J. Med., 2007, 357(1), 39-51.
[http://dx.doi.org/10.1056/NEJMra043186] [PMID: 17611206]
[89]
Piccart-Gebhart, M.J.; Procter, M.; Leyland-Jones, B.; Goldhirsch, A.; Untch, M.; Smith, I.; Gianni, L.; Baselga, J.; Bell, R.; Jackisch, C.; Cameron, D.; Dowsett, M.; Barrios, C.H.; Steger, G.; Huang, C.S.; Andersson, M.; Inbar, M.; Lichinitser, M.; Láng, I.; Nitz, U.; Iwata, H.; Thomssen, C.; Lohrisch, C.; Suter, T.M.; Rüschoff, J.; Suto, T.; Greatorex, V.; Ward, C.; Straehle, C.; McFadden, E.; Dolci, M.S.; Gelber, R.D. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med., 2005, 353(16), 1659-1672.
[http://dx.doi.org/10.1056/NEJMoa052306] [PMID: 16236737]
[90]
Chung, C.; Lam, M.S.H. Pertuzumab for the treatment of human epidermal growth factor receptor type 2-positive metastatic breast cancer. Am. J. Health Syst. Pharm., 2013, 70(18), 1579-1587.
[http://dx.doi.org/10.2146/ajhp120735] [PMID: 23988598]
[91]
Franklin, M.C.; Carey, K.D.; Vajdos, F.F.; Leahy, D.J.; de Vos, A.M.; Sliwkowski, M.X. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell, 2004, 5(4), 317-328.
[http://dx.doi.org/10.1016/S1535-6108(04)00083-2] [PMID: 15093539]
[92]
Baselga, J.; Cortés, J.; Kim, S.B.; Im, S.A.; Hegg, R.; Im, Y.H.; Roman, L.; Pedrini, J.L.; Pienkowski, T.; Knott, A.; Clark, E.; Benyunes, M.C.; Ross, G.; Swain, S.M. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N. Engl. J. Med., 2012, 366(2), 109-119.
[http://dx.doi.org/10.1056/NEJMoa1113216] [PMID: 22149875]
[93]
von Minckwitz, G.; Procter, M.; de Azambuja, E.; Zardavas, D.; Benyunes, M.; Viale, G.; Suter, T.; Arahmani, A.; Rouchet, N.; Clark, E.; Knott, A.; Lang, I.; Levy, C.; Yardley, D.A.; Bines, J.; Gelber, R.D.; Piccart, M.; Baselga, J. Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer. N. Engl. J. Med., 2017, 377(2), 122-131.
[http://dx.doi.org/10.1056/NEJMoa1703643] [PMID: 28581356]
[94]
Schroeder, R.L.; Stevens, C.L.; Sridhar, J. Small molecule tyrosine kinase inhibitors of ErbB2/HER2/Neu in the treatment of aggressive breast cancer. Molecules, 2014, 19(9), 15196-15212.
[http://dx.doi.org/10.3390/molecules190915196] [PMID: 25251190]
[95]
Agrawal, A.; Gutteridge, E.; Gee, J.M.W.; Nicholson, R.I.; Robertson, J.F.R. Overview of tyrosine kinase inhibitors in clinical breast cancer. Endocr. Relat. Cancer, 2005, 12(1)(Suppl. 1), S135-S144.
[http://dx.doi.org/10.1677/erc.1.01059] [PMID: 16113090]
[96]
Agus, D.B.; Akita, R.W.; Fox, W.D.; Lewis, G.D.; Higgins, B.; Pisacane, P.I.; Lofgren, J.A.; Tindell, C.; Evans, D.P.; Maiese, K.; Scher, H.I.; Sliwkowski, M.X. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell, 2002, 2(2), 127-137.
[http://dx.doi.org/10.1016/S1535-6108(02)00097-1] [PMID: 12204533]
[97]
Ranson, M. Epidermal growth factor receptor tyrosine kinase inhibitors. Br. J. Cancer, 2004, 90(12), 2250-2255.
[http://dx.doi.org/10.1038/sj.bjc.6601873] [PMID: 15150574]
[98]
Slichenmyer, W.J.; Elliott, W.L.; Fry, D.W. CI-1033, a pan-erbB tyrosine kinase inhibitor. Semin. Oncol., 2001, 28(5)(Suppl. 16), 80-85.
[http://dx.doi.org/10.1016/S0093-7754(01)90285-4] [PMID: 11706399]
[99]
Calvo, E.; Tolcher, A.W.; Hammond, L.A.; Patnaik, A.; de Bono, J.S.; Eiseman, I.A.; Olson, S.C.; Lenehan, P.F.; McCreery, H.; Lorusso, P.; Rowinsky, E.K. Administration of CI-1033, an irreversible pan-erbB tyrosine kinase inhibitor, is feasible on a 7-day on, 7-day off schedule: a phase I pharmacokinetic and food effect study. Clin. Cancer Res., 2004, 10(21), 7112-7120.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1187] [PMID: 15534081]
[100]
Herbst, R.S. Review of epidermal growth factor receptor biology. Int. J. Radiat. Oncol. Biol. Phys., 2004, 59(2)(Suppl.), 21-26.
[http://dx.doi.org/10.1016/j.ijrobp.2003.11.041] [PMID: 15142631]
[101]
Kim, E.S.; Khuri, F.R.; Herbst, R.S. Epidermal growth factor receptor biology (IMC-C225). Curr. Opin. Oncol., 2001, 13(6), 506-513.
[http://dx.doi.org/10.1097/00001622-200111000-00014] [PMID: 11673692]
[102]
Carey, L.A.; Rugo, H.S.; Marcom, P.K.; Mayer, E.L.; Esteva, F.J.; Ma, C.X.; Liu, M.C.; Storniolo, A.M.; Rimawi, M.F.; Forero-Torres, A.; Wolff, A.C.; Hobday, T.J.; Ivanova, A.; Chiu, W.K.; Ferraro, M.; Burrows, E.; Bernard, P.S.; Hoadley, K.A.; Perou, C.M.; Winer, E.P. TBCRC 001: randomized phase II study of cetuximab in combination with carboplatin in stage IV triple-negative breast cancer. J. Clin. Oncol., 2012, 30(21), 2615-2623.
[http://dx.doi.org/10.1200/JCO.2010.34.5579] [PMID: 22665533]
[103]
Harding, J.; Burtness, B. Cetuximab: an epidermal growth factor receptor chemeric human-murine monoclonal antibody. Drugs Today (Barc), 2005, 41(2), 107-127.
[http://dx.doi.org/10.1358/dot.2005.41.2.882662] [PMID: 15821783]
[104]
Uberall, I.; Krízová, K.; Steigerová, J. Cetuximab enhances the anti-proliferative effect of trastuzumab in ERBB2 over-expressing breast cancer cells--preliminary study. Klin. Onkol., 2011, 24(5), 356-360.
[PMID: 22070017]
[105]
Kaufman, B.; Stein, S.; Casey, M.A.; Newstat, B.O. Lapatinib in combination with capecitabine in the management of ErbB2-positive (HER2-positive) advanced breast cancer. Biologics, 2008, 2(1), 61-65.
[PMID: 19707428]
[106]
Johnston, S.; Pippen, J., Jr; Pivot, X.; Lichinitser, M.; Sadeghi, S.; Dieras, V.; Gomez, H.L.; Romieu, G.; Manikhas, A.; Kennedy, M.J.; Press, M.F.; Maltzman, J.; Florance, A.; O’Rourke, L.; Oliva, C.; Stein, S.; Pegram, M. Lapatinib combined with letrozole versus letrozole and placebo as first-line therapy for postmenopausal hormone receptor-positive metastatic breast cancer. J. Clin. Oncol., 2009, 27(33), 5538-5546.
[http://dx.doi.org/10.1200/JCO.2009.23.3734] [PMID: 19786658]
[107]
Blackwell, K.L.; Burstein, H.J.; Storniolo, A.M.; Rugo, H.S.; Sledge, G.; Aktan, G.; Ellis, C.; Florance, A.; Vukelja, S.; Bischoff, J.; Baselga, J.; O’Shaughnessy, J. Overall survival benefit with lapatinib in combination with trastuzumab for patients with human epidermal growth factor receptor 2-positive metastatic breast cancer: final results from the EGF104900 Study. J. Clin. Oncol., 2012, 30(21), 2585-2592.
[http://dx.doi.org/10.1200/JCO.2011.35.6725] [PMID: 22689807]
[108]
Cameron, D.; Casey, M.; Oliva, C.; Newstat, B.; Imwalle, B.; Geyer, C.E. Lapatinib plus capecitabine in women with HER-2-positive advanced breast cancer: final survival analysis of a phase III randomized trial. Oncologist, 2010, 15(9), 924-934.
[http://dx.doi.org/10.1634/theoncologist.2009-0181] [PMID: 20736298]
[109]
Cameron, D.; Casey, M.; Press, M.; Lindquist, D.; Pienkowski, T.; Romieu, C.G.; Chan, S.; Jagiello-Gruszfeld, A.; Kaufman, B.; Crown, J.; Chan, A.; Campone, M.; Viens, P.; Davidson, N.; Gorbounova, V.; Raats, J.I.; Skarlos, D.; Newstat, B.; Roychowdhury, D.; Paoletti, P.; Oliva, C.; Rubin, S.; Stein, S.; Geyer, C.E. A phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses. Breast Cancer Res. Treat., 2008, 112(3), 533-543.
[http://dx.doi.org/10.1007/s10549-007-9885-0] [PMID: 18188694]
[110]
Geyer, C.E.; Forster, J.; Lindquist, D.; Chan, S.; Romieu, C.G.; Pienkowski, T.; Jagiello-Gruszfeld, A.; Crown, J.; Chan, A.; Kaufman, B.; Skarlos, D.; Campone, M.; Davidson, N.; Berger, M.; Oliva, C.; Rubin, S.D.; Stein, S.; Cameron, D. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N. Engl. J. Med., 2006, 355(26), 2733-2743.
[http://dx.doi.org/10.1056/NEJMoa064320] [PMID: 17192538]
[111]
Konecny, G.E.; Pegram, M.D.; Venkatesan, N.; Finn, R.; Yang, G.; Rahmeh, M.; Untch, M.; Rusnak, D.W.; Spehar, G.; Mullin, R.J.; Keith, B.R.; Gilmer, T.M.; Berger, M.; Podratz, K.C.; Slamon, D.J. Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res., 2006, 66(3), 1630-1639.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1182] [PMID: 16452222]
[112]
Blackwell, K.L.; Burstein, H.J.; Storniolo, A.M.; Rugo, H.; Sledge, G.; Koehler, M.; Ellis, C.; Casey, M.; Vukelja, S.; Bischoff, J.; Baselga, J.; O’Shaughnessy, J. Randomized study of Lapatinib alone or in combination with trastuzumab in women with ErbB2-positive, trastuzumab-refractory metastatic breast cancer. J. Clin. Oncol., 2010, 28(7), 1124-1130.
[http://dx.doi.org/10.1200/JCO.2008.21.4437] [PMID: 20124187]
[113]
Canonici, A.; Gijsen, M.; Mullooly, M.; Bennett, R.; Bouguern, N.; Pedersen, K.; O’Brien, N.A.; Roxanis, I.; Li, J.L.; Bridge, E.; Finn, R.; Siamon, D.; McGowan, P.; Duffy, M.J.; O’Donovan, N.; Crown, J.; Kong, A. Neratinib overcomes trastuzumab resistance in HER2 amplified breast cancer. Oncotarget, 2013, 4(10), 1592-1605.
[http://dx.doi.org/10.18632/oncotarget.1148] [PMID: 24009064]
[114]
Zhao, X.Q.; Xie, J.D.; Chen, X.G.; Sim, H.M.; Zhang, X.; Liang, Y.J.; Singh, S.; Talele, T.T.; Sun, Y.; Ambudkar, S.V.; Chen, Z.S.; Fu, L.W. Neratinib reverses ATP-binding cassette B1-mediated chemotherapeutic drug resistance in vitro, in vivo, and ex vivo. Mol. Pharmacol., 2012, 82(1), 47-58.
[http://dx.doi.org/10.1124/mol.111.076299] [PMID: 22491935]
[115]
Awada, A.; Colomer, R.; Inoue, K.; Bondarenko, I.; Badwe, R.A.; Demetriou, G.; Lee, S.C.; Mehta, A.O.; Kim, S.B.; Bachelot, T.; Goswami, C.; Deo, S.; Bose, R.; Wong, A.; Xu, F.; Yao, B.; Bryce, R.; Carey, L.A. Neratinib plus paclitaxel vs trastuzumab plus paclitaxel in previously untreated metastatic ERBB2-positive breast cancer: The NEfERT-T Randomized Clinical Trial. JAMA Oncol., 2016, 2(12), 1557-1564.
[http://dx.doi.org/10.1001/jamaoncol.2016.0237] [PMID: 27078022]
[116]
Robert, N.; Leyland-Jones, B.; Asmar, L.; Belt, R.; Ilegbodu, D.; Loesch, D.; Raju, R.; Valentine, E.; Sayre, R.; Cobleigh, M.; Albain, K.; McCullough, C.; Fuchs, L.; Slamon, D. Randomized phase III study of trastuzumab, paclitaxel, and carboplatin compared with trastuzumab and paclitaxel in women with HER-2-overexpressing metastatic breast cancer. J. Clin. Oncol., 2006, 24(18), 2786-2792.
[http://dx.doi.org/10.1200/JCO.2005.04.1764] [PMID: 16782917]
[117]
Jankowitz, R.C.; Abraham, J.; Tan, A.R.; Limentani, S.A.; Tierno, M.B.; Adamson, L.M.; Buyse, M.; Wolmark, N.; Jacobs, S.A. Safety and efficacy of neratinib in combination with weekly paclitaxel and trastuzumab in women with metastatic HER2 positive breast cancer: an NSABP Foundation Research Program phase I study. Cancer Chemother. Pharmacol., 2013, 72(6), 1205-1212.
[http://dx.doi.org/10.1007/s00280-013-2262-2] [PMID: 24077916]
[118]
Ciardiello, F.; Troiani, T.; Caputo, F.; De Laurentiis, M.; Tortora, G.; Palmieri, G.; De Vita, F.; Diadema, M.R.; Orditura, M.; Colantuoni, G.; Gridelli, C.; Catalano, G.; De Placido, S.; Bianco, A.R. Phase II study of gefitinib in combination with docetaxel as first-line therapy in metastatic breast cancer. Br. J. Cancer, 2006, 94(11), 1604-1609.
[http://dx.doi.org/10.1038/sj.bjc.6603141] [PMID: 16685276]
[119]
von Minckwitz, G.; Jonat, W.; Fasching, P.; du Bois, A.; Kleeberg, U.; Lück, H.J.; Kettner, E.; Hilfrich, J.; Eiermann, W.; Torode, J.; Schneeweiss, A. A multicentre phase II study on gefitinib in taxane- and anthracycline-pretreated metastatic breast cancer. Breast Cancer Res. Treat., 2005, 89(2), 165-172.
[http://dx.doi.org/10.1007/s10549-004-1720-2] [PMID: 15692759]
[120]
Polychronis, A.; Sinnett, H.D.; Hadjiminas, D.; Singhal, H.; Mansi, J.L.; Shivapatham, D.; Shousha, S.; Jiang, J.; Peston, D.; Barrett, N.; Vigushin, D.; Morrison, K.; Beresford, E.; Ali, S.; Slade, M.J.; Coombes, R.C. Preoperative gefitinib versus gefitinib and anastrozole in postmenopausal patients with oestrogen-receptor positive and epidermal-growth-factor-receptor-positive primary breast cancer: a double-blind placebo-controlled phase II randomised trial. Lancet Oncol., 2005, 6(6), 383-391.
[http://dx.doi.org/10.1016/S1470-2045(05)70176-5] [PMID: 15925816]
[121]
Gianni, L.; Pienkowski, T.; Im, Y.H.; Roman, L.; Tseng, L.M.; Liu, M.C.; Lluch, A.; Staroslawska, E.; de la Haba-Rodriguez, J.; Im, S.A.; Pedrini, J.L.; Poirier, B.; Morandi, P.; Semiglazov, V.; Srimuninnimit, V.; Bianchi, G.; Szado, T.; Ratnayake, J.; Ross, G.; Valagussa, P. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol., 2012, 13(1), 25-32.
[http://dx.doi.org/10.1016/S1470-2045(11)70336-9] [PMID: 22153890]
[122]
Agus, D.B.; Gordon, M.S.; Taylor, C.; Natale, R.B.; Karlan, B.; Mendelson, D.S.; Press, M.F.; Allison, D.E.; Sliwkowski, M.X.; Lieberman, G.; Kelsey, S.M.; Fyfe, G. Phase I clinical study of pertuzumab, a novel HER dimerization inhibitor, in patients with advanced cancer. J. Clin. Oncol., 2005, 23(11), 2534-2543.
[http://dx.doi.org/10.1200/JCO.2005.03.184] [PMID: 15699478]
[123]
Xuhong, J-C.; Qi, X-W.; Zhang, Y.; Jiang, J. Mechanism, safety and efficacy of three tyrosine kinase inhibitors lapatinib, neratinib and pyrotinib in HER2-positive breast cancer. Am. J. Cancer Res., 2019, 9(10), 2103-2119.
[PMID: 31720077]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy