Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Sulfated Extract of Abelmoschus Esculentus: A Potential Cancer Chemo-preventive Agent

Author(s): Amira M. Gamal-Eldeen *, Hassan Amer, Cinderella A. Fahmy , Haytham Dahlawi, Asma Salman and Bassem M. Raafat

Volume 23, Issue 7, 2022

Published on: 14 July, 2021

Page: [988 - 997] Pages: 10

DOI: 10.2174/1389201022666210714151419

Price: $65

Abstract

Background: Abelmoschus esculentus (AE) (okra), is an edible plant used in many food applications.

Objective: This study explored whether sulfated AE (SAE) has promising cancer chemopreventive activities that may recommend it as a functional food supplement instead of (or in addition to) AE for the population at risk of cancer and in the health food industry.

Methods: Cytochrome P450-1A (CYP1A) was estimated by fluorescence enzymatic reaction, using β-naphthoflavone-treated cells (CYP1A inducer). Peroxyl and hydroxyl radical scavenging was assayed by oxygen radical absorbance capacity assay. Flow cytometry was used to analyze apoptosis/necrosis in MCF-7 cells, cell cycle phases in MCF-7 cells, and macrophage binding to fluorescein isothiocyanate-lipopolysaccharide (FITC-LPS). Nitric oxide was determined by Griess assay in LPS-stimulated macrophages, and cytotoxicity was determined by MTT assay. Diethylnitrosamine (DEN) was used to induce hepatic tumor initiation in rats. Placental glutathione-S-transferase (GSTP; an initiation marker) was stained in a fluorescence immunohistochemical analysis of liver sections, and histopathological changes were examined.

Results: SAE exhibited strong antitumor initiation and antitumor promotion activities. It suppressed CYP1A, scavenged peroxyl and hydroxyl radicals, induced macrophage proliferation, suppressed macrophage binding to FITC-LPS, inhibited nitric oxide generation, showed specific cytotoxicity to human breast MCF-7 adenocarcinoma cells, and disturbed the cell cycle phases (S and G2/M phases) in association with an increased percentage of apoptotic/necrotic MCF-7 cells. Over a short time period, DEN stimulated liver cancer initiation, but SAE treatment reduced the DEN-induced histopathological alterations and inhibited CYP1A and GSTP.

Conclusion: SAE extract has the potential for use as an alternative to AE in health foods to provide cancer chemoprevention in populations at risk for cancer.

Keywords: Abelmoschus esculentus, CYP1A, cancer chemoprevention, antitumor initiation in liver, GSTP, anticancer, MCF-7 cells.

« Previous
Graphical Abstract

[1]
Di Bisceglie, A.M.; Osmack, P.; Brunt, E.M. Chemoprevention of hepatocellular carcinoma: Use of tamoxifen in an animal model of hepatocarcinogenesis. J. Lab. Clin. Med., 2005, 145(3), 134-138.
[http://dx.doi.org/10.1016/j.lab.2005.01.003] [PMID: 15871304]
[2]
Aziz, N.M.; Rowland, J.H. Trends and advances in cancer survivorship research: Challenge and opportunity. Semin. Radiat. Oncol., 2003, 13(3), 248-266.
[http://dx.doi.org/10.1016/S1053-4296(03)00024-9] [PMID: 12903014]
[3]
Chaiwut, P.; Pintathong, P.; Thitipramote, N.; Sangthong, S. Optimization of polysaccharide extraction from Okra (Abelmoschus esculentus) by using response surface methodology. J. Food Sci. Agri. Tech., 2019, 5, 99-105.
[4]
Ndjouenkeu, R.; Goycoolea, F.M.; Morris, E.R.; Akingbala, J.O. Rheology of okra (Hibiscus esculentus L.) and dika nut (Irvingia gabonensis) polysaccharides. Carbohydr. Polym., 1996, 29, 263-269.
[5]
Sabitha, V.; Ramachandran, S.; Naveen, K.R.; Panneerselvam, K. Antidiabetic and antihyperlipidemic potential of Abelmoschus esculentus (L.) Moench. in streptozotocin-induced diabetic rats. J. Pharm. Bioallied Sci., 2011, 3(3), 397-402.
[http://dx.doi.org/10.4103/0975-7406.84447] [PMID: 21966160]
[6]
Ghori, M.U.; Alba, K.; Smith, A.M.; Conway, B.R.; Kontogiorgos, V. Okra extracts in pharmaceutical and food applications. Food Hydrocoll., 2014, 42, 342-347.
[7]
Liu, J.; Zhao, Y.; Wu, Q.; John, A.; Jiang, Y.; Yang, J.; Liu, H.; Yang, B. Structure characterisation of polysaccharides in vegetable “okra” and evaluation of hypoglycemic activity. Food Chem., 2018, 242, 211-216.
[http://dx.doi.org/10.1016/j.foodchem.2017.09.051] [PMID: 29037680]
[8]
Moïse, M.M.; Benjamin, L.M.; Doris, T.M.; Dalida, K.N.; Augustin, N.O. Role of Mediterranean diet, tropical vegetables rich in antioxidants, and sunlight exposure in blindness, cataract and glaucoma among African type 2 diabetics. Int. J. Ophthalmol., 2012, 5(2), 231-237.
[PMID: 22762057]
[9]
Fan, S.; Guo, L.; Zhang, Y.; Sun, Q.; Yang, B.; Huang, C. Okra polysaccharide improves metabolic disorders in high-fat diet-induced obese C57BL/6 mice. Mol. Nutr. Food Res., 2013, 57(11), 2075-2078.
[10]
Liu, Y.; Qi, J.; Luo, J.; Qin, W.; Luo, Q.; Zhang, Q.; Wu, D. Lin, D.; Li, S.; Dong, H. Okra in food field: Nutritional value, health benefits and effects of processing methods on quality. Food Rev. Int., 2021, 37(1), 67-90.
[11]
Peng, C.H.; Chyau, C.C.; Wang, C.J.; Lin, H.T.; Huang, C.N.; Ker, Y.B. Abelmoschus esculentus fractions potently inhibited the pathogenic targets associated with diabetic renal epithelial to mesenchymal transition. Food Funct., 2016, 7(2), 728-740.
[http://dx.doi.org/10.1039/C5FO01214G] [PMID: 26787242]
[12]
Alba, K.; Ritzoulis, C.; Georgiadis, N.; Kontogiorgos, V. Okra extracts as emulsifiers for acidic emulsions. Food Res. Int., 2013, 54, 1730-1737.
[13]
Dimopoulou, M.; Ritzoulis, C.; Papastergiadis, E.S.; Panayiotou, C. 2014.
[14]
Sengkhamparn, N.; Verhoef, R.; Schols, H.A.; Sajjaanantakul, T.; Voragen, A.G. 2009.
[15]
Samavati, V. Polysaccharide extraction from Abelmoschus esculentus: Optimization by response surface methodology. Carbohydr. Polym., 2013, 95(1), 588-597.
[http://dx.doi.org/10.1016/j.carbpol.2013.02.041] [PMID: 23618310]
[16]
Gamal-Eldeen, A.M.; Amer, H.; Helmy, W.A. Cancer chemopreventive and anti-inflammatory activities of chemically modified guar gum. Chem. Biol. Interact., 2006, 161(3), 229-240.
[http://dx.doi.org/10.1016/j.cbi.2006.03.010] [PMID: 16756967]
[17]
Gamal-Eldeen, A.M.; Amer, H.; Helmy, W.A.; Ragab, H.M.; Talaat, R.M. Antiproliferative and cancer-chemopreventive properties of Sulphated glycosylated extract derived from Leucaena leucocephala. Ind. Pharm. Sci., 2007, 69, 805-811.
[http://dx.doi.org/10.4103/0250-474X.39438]
[18]
Gamal-Eldeen, A.M.; Amer, H.; Helmy, W.A.; Ragab, H.; Talaat, R.M. Chemically-modified polysaccharide extract derived from Leucaena leucocephala alters RAW 2647 murine macrophage functions. Int. Immunopharmacol., 2007, 7, 871-878.
[PMID: 17466921]
[19]
Gamal-Eldeen, A.M.; Amer, H.; Alrehaili, A.A.; Saleh, A.; Al Ghamdi, A.; Hawsawi, N.M.; Salman, A.; Raafat, B.M. Cancer chemopreventive properties of sulphated enterolobium cyclocarpum extract. Nutr.. Cancer, 2021, 73(5), 856-868.
[20]
Mähner, C.; Lechner, M.D.; Nordmeier, E. Synthesis and characterisation of dextran and pullulan sulphate. Carbohydr. Res., 2001, 331(2), 203-208.
[http://dx.doi.org/10.1016/S0008-6215(00)00315-3] [PMID: 11322734]
[21]
Yang, J.; Du, Y.; Wen, Y.; Li, T.; Hu, L. Sulphation of chinese lacquer polysaccharides in different solvents. Carbohydr. Polym., 2003, 52, 397-403.
[http://dx.doi.org/10.1016/S0144-8617(02)00330-2]
[22]
Dubois, M.; Gillls, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colourimetric method for determination of sugars and related substances. Anal. Chem., 1956, 28, 350-356.
[23]
Lowry, O.H.; Rosenbrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin–phenol reagent. J. Biol. Chem., 1952, 193, 265-275.
[24]
Larsen, B.; Haug, A.; Painter, J.T.J. Sulphated polysaccharides in brown algae I— isolation and preliminary characterization of three sulphated polysaccharides from Ascophylum nodosum. Acta Chem. Scand., 1966, 20, 219-230.
[http://dx.doi.org/10.3891/acta.chem.scand.20-0219]
[25]
Hunt, J. Determination of total sulphur in small amounts of plant material. Analyst (Lond.), 1980, 105, 83-85.
[http://dx.doi.org/10.1039/an9800500083]
[26]
Partridge, S.M. Aniline hydrogen phthalate as spraying reagent for chromatography of sugars. Nature, 1949, 164, 443-446.
[http://dx.doi.org/10.1038/164443a0]
[27]
Crespi, C.L.; Miller, V.P.; Penman, B.W. Microtiter plate assays for inhibition of human, drug-metabolizing cytochromes P450. Anal. Biochem., 1997, 248(1), 188-190.
[http://dx.doi.org/10.1006/abio.1997.2145] [PMID: 9177742]
[28]
Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem., 1974, 249(22), 7130-7139.
[http://dx.doi.org/10.1016/S0021-9258(19)42083-8] [PMID: 4436300]
[29]
Griffith, O.W. Determination of glutathione and glutathione disulphide using glutathione reductase and 2-vinylpyridine. Anal. Biochem., 1981, 106, 207-212.
[30]
Cao, G.; Prior, R.L. Measurement of oxygen radical absorbance capacity in biological samples. Methods Enzymol., 1999, 299, 50-62.
[http://dx.doi.org/10.1016/S0076-6879(99)99008-0] [PMID: 9916196]
[31]
Gamal-Eldeen, A.M.; Kawashty, S.; Ibrahim, L.; Shabana, M.; El-Negoumy, S. Evaluation of antioxidant, anti-inflammatory, and antinociceptive properties of aerial parts of Vicia sativa and its flavonoids. J. Nat. Rem., 2004, 4, 81-96.
[32]
Hansen, M.B.; Nielsen, S.E.; Berg, K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods, 1989, 119(2), 203-210.
[http://dx.doi.org/10.1016/0022-1759(89)90397-9] [PMID: 2470825]
[33]
Moorcroft, M.; Davis, J.; Compton, R.G. Detection and determination of nitrate and nitrite, A review. Talanta, 2001, 54, 785-803.
[http://dx.doi.org/10.1016/S0039-9140(01)00323-X]
[34]
Carracedo, J.; Ramírez, R.; Martin-Malo, A.; Rodríguez, M.; Aljama, P. The effect of LPS, uraemia, and haemodialysis membrane exposure on CD14 expression in mononuclear cells and its relation to apoptosis. Nephrol. Dial. Transplant., 2002, 17(3), 428-434.
[http://dx.doi.org/10.1093/ndt/17.3.428] [PMID: 11865088]
[35]
Tan, A.C.; Konczak, I.; Sze, D.M.; Ramzan, I. Molecular pathways for cancer chemoprevention by dietary phytochemicals. Nutr. Cancer, 2011, 63(4), 495-505.
[http://dx.doi.org/10.1080/01635581.2011.538953] [PMID: 21500099]
[36]
Bertram, J.S. The molecular biology of cancer. Mol. Aspects Med., 2000, 21(6), 167-223.
[http://dx.doi.org/10.1016/S0098-2997(00)00007-8] [PMID: 11173079]
[37]
Aggarwal, B.B.; Shishodia, S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem. Pharmacol., 2006, 71(10), 1397-1421.
[http://dx.doi.org/10.1016/j.bcp.2006.02.009] [PMID: 16563357]
[38]
Bose, D.S.; Sudharshan, M.; Chavhan, S.W. New protocol for Biginelli reaction–A practical synthesis of monastrol. ARKIVOC, 2005, iii, 228-331.
[39]
Prabhu, V.; Guruvayoorappan, C. Nitric oxide, pros and cons in tumor progression. Immunopharmacol. Immunotoxicol., 2010, 32, 387-392.
[http://dx.doi.org/10.3109/08923970903440192]
[40]
Kitchens, R.L. Role of CD14 in cellular recognition of bacterial lipopolysaccharides. Chem. Immunol., 2000, 74, 61-82.
[http://dx.doi.org/10.1159/000058750] [PMID: 10608082]
[41]
Tanaka, T.; Ishigamori, R. Understanding carcinogenesis for fighting oral cancer. J. Oncol., 2011, 2011603740
[http://dx.doi.org/10.1155/2011/603740] [PMID: 21772845]
[42]
Lund, E. An exposure driven functional model of carcinogenesis. Med. Hypotheses, 2011, 77(2), 195-198.
[http://dx.doi.org/10.1016/j.mehy.2011.04.009] [PMID: 21550177]
[43]
Xu, X.; Lai, Y.; Hua, Z.C. Apoptosis and apoptotic body: Disease message and therapeutic target potentials. Biosci. Rep., 2019, 39(1)BSR20180992
[http://dx.doi.org/10.1042/BSR20180992] [PMID: 30530866]
[44]
Dragan, Y.P.; Hully, J.; Baker, K.; Crow, R.; Mass, M.J.; Pitot, H.C. Comparison of experimental and theoretical parameters of the Moolgavkar-Venzon-Knudson incidence functions for the stages of initiation and promotion in rat hepatocarcinogenesis. Toxicol., 1995, 102(1-2), 161-175.
[45]
Moore, M.A.; Nakagawa, K.; Satoh, K.; Ishikawa, T.; Sato, K. Single GST-P positive liver cells putative initiated hepatocytes. Carcinogenesis, 1987, 8(3), 483-486.
[http://dx.doi.org/10.1093/carcin/8.3.483] [PMID: 3815743]
[46]
Satoh, K.; Hatayama, I.; Tateoka, N.; Tamai, K.; Shimizu, T.; Tatematsu, M.; Ito, N.; Sato, K. Transient induction of single GST-P positive hepatocytes by DEN. Carcinogenesis, 1989, 10(11), 2107-2111.
[http://dx.doi.org/10.1093/carcin/10.11.2107] [PMID: 2805231]
[47]
Abnet, C.C. Carcinogenic food contaminants. Cancer Invest., 2007, 25(3), 189-196.
[http://dx.doi.org/10.1080/07357900701208733] [PMID: 17530489]
[48]
Ichimura, R.; Mizukami, S.; Takahashi, M.; Taniai, E.; Kemmochi, S.; Mitsumori, K.; Shibutani, M. Disruption of Smad-dependent signaling for growth of GST-P-positive lesions from the early stage in a rat two-stage hepatocarcinogenesis model. Toxicol. Appl. Pharmacol., 2010, 246(3), 128-140.
[http://dx.doi.org/10.1016/j.taap.2010.04.016] [PMID: 20423715]
[49]
Tsuda, H.; Fukushima, S.; Wanibuchi, H.; Morimura, K.; Nakae, D.; Imaida, K.; Tatematsu, M.; Hirose, M.; Wakabayashi, K.; Moore, M.A. Value of GST-P positive preneoplastic hepatic foci in dose-response studies of hepatocarcinogenesis: Evidence for practical thresholds with both genotoxic and nongenotoxic carcinogens. A review of recent work. Toxicol. Pathol., 2003, 31(1), 80-86.
[PMID: 12597451]
[50]
Kar, R.K.; Mohapatra, S.; Barik, B. Design and characterization of controlled release maatrix tablets of Zidovudine. Asian J. pharmaaceut. Clinc. Res., 2009, 2(2), 54-61.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy