Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Diabetes Mellitus during the Pandemic Covid-19: Prevalence, Pathophysiology, Mechanism, and Management: An updated overview

Author(s): Nadeem Rais, Rizwan Ahmad, Akash Ved*, Kehkashan Parveen, Tauheed Ishrat, Om Prakash, Mohd Shadab, Darakhshan Gazala Bari and Nasir Ali Siddiqui

Volume 18, Issue 3, 2022

Published on: 07 January, 2022

Article ID: e120721194712 Pages: 18

DOI: 10.2174/1573399817666210712160651

Price: $65

Abstract

Background: Diabetes mellitus (DM) is among the most frequently reported comorbidities in patients tainted with the pandemic coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With a high pervasiveness of diabetes mellitus, there is an urgency to understand the special aspects of COVID-19 in hyperglycemic patients. Diabetic patients are at higher risk than the general population of viral or bacterial infections, thus require special attention since diabetes is linked with severe, critical, and lethal modes of COVID-19.

Objective: The objective of this study was to focus on epidemiology, pathophysiology, mechanism, and management of DM with COVID-19.

Methods: The search was carried out on databases portals such as Pubmed, EMBASE, Google Scholar, and CINAHL with the keywords, i.e., COVID-19, coronavirus, SARS-CoV-2, diabetes, covid-19, etc.

Result: DM and COVID-19 disease conditions can impact each other in terms of clinical progression and outcome. Available laboratory/clinical observations suggest that hyperglycemia-induced immune dysfunction, inflated lactate grades, and cytokines storm may play critical roles in the seriousness of COVID-19 in patients with diabetes; however, the exact mechanisms linking diabetes and COVID-19 remain to be further clarified.

Conclusion: Standards to constrain the disease spread at the individual and community level are the key to extenuate the speedily rising pandemic, while definitive treatment, like plasma therapy, chemoprophylaxis, or vaccine for COVID-19, has yet to be discovered.

Keywords: Coronavirus, COVID-19, diabetes mellitus, epidemiology, pathophysiology, pandemic.

[1]
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020; 395: 1054-62.
[2]
Muniyappa R, Gubbi S. COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am J Physiol Endocrinol Metab 2020; 318(5): E736-41.
[http://dx.doi.org/10.1152/ajpendo.00124.2020] [PMID: 32228322]
[3]
Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir Med 2020; 8: 475-81.
[4]
Ran J, Song Y, Zhuang Z, et al. Blood pressure control and adverse outcomes of COVID-19 infection in patients with concomitant hypertension in Wuhan, China. Hypertens Res 2020; 43(11): 1267-76.
[http://dx.doi.org/10.1038/s41440-020-00541-w] [PMID: 32855527]
[5]
WHO. COVID-19 weekly epidemiological update 2021. Data as received by WHO from national authorities, as of 17 January 2021, 10 am CET. Retrieved January 26, 2021 from: file:///C:/Users/Dell/Downloads/Weekly_Epidemiological_Update_23%20(2).pdf
[6]
Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. The Journal of allergy and clinical immunology 2020; 146: 110-8.
[7]
Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm' in COVID-19. J Infect 2020; 80: 607-13.
[8]
Bode B, Garrett V, Messler J, et al. Glycemic characteristics and clinical outcomes of covid-19 patients hospitalized in the united states. J Diabetes Sci Technol 2020; 14(4): 813-21.
[http://dx.doi.org/10.1177/1932296820924469] [PMID: 32389027]
[9]
Nadeem R, Akash V, Rizwan A, Kehkashan P, Om P. Prevalence of diabetes mellitus and socio-demographic survey in the community of western uttar pradesh, india in the year 2019-2020. Int J Cur Res Rev 2021; 13(1): 10-5.
[http://dx.doi.org/10.31782/IJCRR.2021.13129]
[10]
Shu CJ, Benoist C, Mathis D. The immune system’s involvement in obesity-driven type 2 diabetes. Semin Immunol 2012; 24(6): 436-42.
[http://dx.doi.org/10.1016/j.smim.2012.12.001] [PMID: 23333525]
[11]
International Diabetes Federation. Covid-19 and diabetes 2020. Available from: https://www.idf.org/covid-19 [Last update: 03/11/2020]
[12]
Lin L, Lu L, Cao W, Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect 2020; 9(1): 727-32.
[http://dx.doi.org/10.1080/22221751.2020.1746199] [PMID: 32196410]
[13]
Prada-Medina CA, Fukutani KF, Pavan Kumar N, et al. Systems immunology of diabetes-tuberculosis comorbidity reveals signatures of disease complications. Sci Rep 1999; 2017(7): 1-16.
[http://dx.doi.org/10.1038/s41598-017-01767-4] [PMID: 28515464]
[14]
Kornum JB, Thomsen RW, Riis A, Lervang HH, Schønheyder HC, Sørensen HT. Type 2 diabetes and pneumonia outcomes: A population-based cohort study. Diabetes Care 2007; 30(9): 2251-7.
[http://dx.doi.org/10.2337/dc06-2417] [PMID: 17595354]
[15]
Boyko EJ, Fihn SD, Scholes D, Chen C-L, Normand EH, Yarbro P. Diabetes and the risk of acute urinary tract infection among postmenopausal women. Diabetes Care 2002; 25(10): 1778-83.
[http://dx.doi.org/10.2337/diacare.25.10.1778] [PMID: 12351477]
[16]
Jenkins TC, Knepper BC, Jason Moore S, et al. Comparison of the microbiology and antibiotic treatment among diabetic and nondiabetic patients hospitalized for cellulitis or cutaneous abscess. J Hosp Med 2014; 9(12): 788-94.
[http://dx.doi.org/10.1002/jhm.2267] [PMID: 25266293]
[17]
Leibovici L, Yehezkelli Y, Porter A, Regev A, Krauze I, Harell D. Influence of diabetes mellitus and glycaemic control on the characteristics and outcome of common infections. Diabet Med 1996; 13(5): 457-63.
[http://dx.doi.org/10.1002/(SICI)1096-9136(199605)13:5<457::AID-DIA83>3.0.CO;2-T] [PMID: 8737028]
[18]
Zirkel F, Kurth A, Quan PL, et al. An insect nidovirus emerging from a primary tropical rainforest. MBio 2011; 2(3): e00077-11.
[http://dx.doi.org/10.1128/mBio.00077-11] [PMID: 21673192]
[19]
Gorbalenya AE, Enjuanes L, Ziebuhr J, Snijder EJ. Nidovirales: Evolving the largest RNA virus genome. Virus Res 2006; 117(1): 17-37.
[http://dx.doi.org/10.1016/j.virusres.2006.01.017] [PMID: 16503362]
[20]
De Groot RJ, Baker SC, Baric R, et al. Family coronaviridae.Virus taxonomy; ninth report of the international committee on taxonomy of viruses. Oxford: Elsevier Academic Press 2012; pp. 806-28.
[21]
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019; 17(3): 181-92.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[22]
Lissenberg A, Vrolijk MM, van Vliet AL, et al. Luxury at a cost? Recombinant mouse hepatitis viruses expressing the accessory hemagglutinin esterase protein display reduced fitness in vitro. J Virol 2005; 79(24): 15054-63.
[http://dx.doi.org/10.1128/JVI.79.24.15054-15063.2005] [PMID: 16306576]
[23]
Jafari A, Rezaei-Tavirani M, Karami S, Yazdani M, Zali H, Jafari Z. Cancer care management during the COVID-19 pandemic. Risk Manag Healthc Policy 2020; 13: 1711-21.
[http://dx.doi.org/10.2147/RMHP.S261357] [PMID: 33061705]
[24]
Jordan D. The deadliest flu: The complete story of the discovery and reconstruction of the 1918 pandemic virus. 2019. Available from: https://www.cdc.gov/flu/pandemic-resources/reconstruction-1918-virus.html
[25]
Glezen WP. Emerging infections: Pandemic influenza. Epidemiol Rev 1996; 18(1): 64-76.
[http://dx.doi.org/10.1093/oxfordjournals.epirev.a017917] [PMID: 8877331]
[26]
Viboud C, Grais RF, Lafont BA, Miller MA, Simonsen L. Multinational impact of the 1968 Hong Kong influenza pandemic: Evidence for a smoldering pandemic. J Infect Dis 2005; 192(2): 233-48.
[http://dx.doi.org/10.1086/431150] [PMID: 15962218]
[27]
Garten RJ, Davis CT, Russell CA, et al. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 2009; 325(5937): 197-201.
[http://dx.doi.org/10.1126/science.1176225] [PMID: 19465683]
[28]
Shieh WJ, Blau DM, Denison AM, et al. 2009 pandemic influenza A (H1N1): Pathology and pathogenesis of 100 fatal cases in the United States. Am J Pathol 2010; 177(1): 166-75.
[http://dx.doi.org/10.2353/ajpath.2010.100115] [PMID: 20508031]
[29]
Peiris JSM, Yuen KY, Osterhaus ADME, Stöhr K. The severe acute respiratory syndrome. N Engl J Med 2003; 349(25): 2431-41.
[http://dx.doi.org/10.1056/NEJMra032498] [PMID: 14681510]
[30]
Zumla A, Hui DS, Perlman S. Middle East respiratory syndrome. Lancet 2015; 386(9997): 995-1007.
[http://dx.doi.org/10.1016/S0140-6736(15)60454-8] [PMID: 26049252]
[31]
Emerging understandings of 2019-nCoV. Lancet 2020; 395(10221): 311.
[http://dx.doi.org/10.1016/S0140-6736(20)30186-0] [PMID: 31986259]
[32]
Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J Med Virol 2020; 92(4): 401-2.
[http://dx.doi.org/10.1002/jmv.25678] [PMID: 31950516]
[33]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[34]
World health organization director-general’s opening remarks at the media briefing on covid-19-11 march 2020. 2020. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19-11-march-2020
[35]
Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020; 323(13): 1239-42.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[36]
Pititto BA, Ferreira SRG. Diabetes and covid-19: More than the sum of two morbidities. Rev Saude Publica 2020; 54: 54.
[http://dx.doi.org/10.11606//s1518-8787.2020054002577] [PMID: 32491053]
[37]
King H, Aubert RE, Herman WH. Global burden of diabetes, 1995-2025: Prevalence, numerical estimates, and projections. Diabetes Care 1998; 21(9): 1414-31.
[http://dx.doi.org/10.2337/diacare.21.9.1414] [PMID: 9727886]
[38]
Cho NH, Shaw JE, Karuranga S, et al. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 2018; 138: 271-81.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[39]
Gupta R, Hussain A, Misra A. Diabetes and COVID-19: Evidence, current status and unanswered research questions. Eur J Clin Nutr 2020; 74(6): 864-70.
[http://dx.doi.org/10.1038/s41430-020-0652-1] [PMID: 32404898]
[40]
Hussain A, Bhowmik B, do Vale Moreira NC. COVID-19 and diabetes: Knowledge in progress. Diabetes Res Clin Pract 2020; 162: 108142.
[http://dx.doi.org/10.1016/j.diabres.2020.108142] [PMID: 32278764]
[41]
Yang JK, Feng Y, Yuan MY, et al. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet Med 2006; 23(6): 623-8.
[http://dx.doi.org/10.1111/j.1464-5491.2006.01861.x] [PMID: 16759303]
[42]
Yang YM, Hsu CY, Lai CC, et al. Impact of comorbidity on fatality rate of patients with Middle East respiratory syndrome. Sci Rep 2017; 7(1): 11307.
[http://dx.doi.org/10.1038/s41598-017-10402-1] [PMID: 28900101]
[43]
Marazuela M, Giustina A, Puig-Domingo M. Endocrine and metabolic aspects of the COVID-19 pandemic. Rev Endocr Metab Disord 2020; 21(4): 495-507.
[http://dx.doi.org/10.1007/s11154-020-09569-2] [PMID: 32643004]
[44]
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in wuhan, china. JAMA 2020; 323(11): 1061-9.
[45]
Barron E, Bakhai C, Kar P, et al. Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: A whole-population study. Lancet Diabetes Endocrinol 2020; 8(10): 813-22.
[http://dx.doi.org/10.1016/S2213-8587(20)30272-2] [PMID: 32798472]
[46]
Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 2020; 323(18): 1775-6.
[http://dx.doi.org/10.1001/jama.2020.4683] [PMID: 32203977]
[47]
Petrilli CM, Jones SA, Yang J, Rajagopalan H. Factors associated with hospitalization and critical illness among 4,103 patients with COVID-19 disease in New York City. BMJ 2020.
[48]
Chen Q, Zheng Z, Zhang C, et al. Clinical characteristics of 145 patients with corona virus disease 2019 (COVID-19) in Taizhou, Zhejiang, China. Infection 2020; 48(4): 543-51.
[http://dx.doi.org/10.1007/s15010-020-01432-5] [PMID: 32342479]
[49]
CDC COVID-19 Response Team. Preliminary estimates of the prevalence of selected underlying health conditions among patients with coronavirus disease 2019 - united states, february 12-march 28, 2020. MMWR Morb Mortal Wkly Rep 2020; 69(13): 382-6.
[http://dx.doi.org/10.15585/mmwr.mm6913e2] [PMID: 32240123]
[50]
Guan WJ, Ni ZY, Hu Y, et al. Medical treatment expert group for covid-19. Clinical characteristics of coronavirus disease 2019 in china. N Engl J Med 2020; 382(18): 1708-20.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[51]
Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in wuhan, China. JAMA Intern Med 2020; 180(7): 934-43.
[http://dx.doi.org/10.1001/jamainternmed.2020.0994] [PMID: 32167524]
[52]
Li B, Yang J, Zhao F, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol 2020; 109(5): 531-8.
[http://dx.doi.org/10.1007/s00392-020-01626-9] [PMID: 32161990]
[53]
Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID 19 in the New York city Area. JAMA 2020; 323(20): 2052-9.
[http://dx.doi.org/10.1001/jama.2020.6775] [PMID: 32320003]
[54]
Cariou B, Hadjadj S, Wargny M, et al. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: The coronado study. Diabetologia 2020; 63(8): 1500-15.
[http://dx.doi.org/10.1007/s00125-020-05180-x] [PMID: 32472191]
[55]
Infection prevention and control of epidemic- and pandemic-prone acute respiratory infections in health care. 2014. Available from: https://www.ncbi.nlm.nih.gov/books/NBK214359/
[56]
Karia R, Gupta I, Khandait H, Yadav A, Yadav A. Covid-19 and its modes of transmission. SN Compr Clin Med 2020; 2: 1-4.
[http://dx.doi.org/10.1007/s42399-020-00498-4] [PMID: 32904860]
[57]
van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med 2020; 382(16): 1564-7.
[http://dx.doi.org/10.1056/NEJMc2004973] [PMID: 32182409]
[58]
Scientific brief - WHO. Transmission of SARS-CoV-2: Implications for infection prevention precautions. 2020. Available from: https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions
[59]
Pan L, Mu M, Yang P, et al. Clinical characteristics of covid-19 patients with digestive symptoms in hubei, china: A descriptive, cross-sectional, multicenter study. Am J Gastroenterol 2020; 115(5): 766-73.
[http://dx.doi.org/10.14309/ajg.0000000000000620] [PMID: 32287140]
[60]
Giacomelli A, Pezzati L, Conti F, et al. Self-reported olfactory and taste disorders in patients with severe acute respiratory coronavirus 2 infection: A cross-sectional study. Clin Infect Dis 2020; 71(15): 889-90.
[http://dx.doi.org/10.1093/cid/ciaa330] [PMID: 32215618]
[61]
Stokes EK, Zambrano LD, Anderson KN, et al. Coronavirus disease 2019 case surveillance - United States, January 22-May 30, 2020. MMWR Morb Mortal Wkly Rep 2020; 69(24): 759-65. Available from: https://www.cdc.gov/mmwr/volumes/69/wr/mm6924e2.htm#contribAff
[http://dx.doi.org/10.15585/mmwr.mm6924e2] [PMID: 32555134]
[62]
Lauer SA, Grantz KH, Bi Q, et al. The incubation period of coronavirus disease 2019 (covid-19) from publicly reported confirmed cases: Estimation and application. Ann Intern Med 2020; 172(9): 577-82.
[http://dx.doi.org/10.7326/M20-0504] [PMID: 32150748]
[63]
Qin J, You C, Lin Q, Hu T, Yu S, Zhou XH. Estimation of incubation period distribution of COVID-19 using disease onset forward time: A novel cross-sectional and forward follow-up study. Sci Adv 2020; 6(33): eabc1202.
[http://dx.doi.org/10.1126/sciadv.abc1202] [PMID: 32851189]
[64]
Centers for diasease control and prevention. your health - symptoms of coronavirus: Covid-19 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html
[65]
Cevik M, Kuppalli K, Kindrachuk J, Peiris M. Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ 2020; 371: m3862.
[http://dx.doi.org/10.1136/bmj.m3862] [PMID: 33097561]
[66]
Loeffelholz MJ, Tang YW. Laboratory diagnosis of emerging human coronavirus infections - the state of the art. Emerg Microbes Infect 2020; 9(1): 747-56.
[http://dx.doi.org/10.1080/22221751.2020.1745095] [PMID: 32196430]
[67]
Chan PK, To WK, Ng KC, et al. Laboratory diagnosis of SARS. Emerg Infect Dis 2004; 10(5): 825-31.
[http://dx.doi.org/10.3201/eid1005.030682] [PMID: 15200815]
[68]
Zhang W, Du RH, Li B, et al. Molecular and serological investigation of 2019-nCoV infected patients: Implication of multiple shedding routes. Emerg Microbes Infect 2020; 9(1): 386-9.
[http://dx.doi.org/10.1080/22221751.2020.1729071] [PMID: 32065057]
[69]
Zhang Y, Chen C, Zhu S, Chang S, Xu W. Isolation of 2019-nCoV from a stool specimen of a laboratory-confirmed case of the coronavirus disease 2019 (COVID-19). China CDC Weekly 2020; 2: 123-4.
[http://dx.doi.org/10.46234/ccdcw2020.033]
[70]
Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis 2020; 34: 101623.
[http://dx.doi.org/10.1016/j.tmaid.2020.101623] [PMID: 32179124]
[71]
Memish ZA, Assiri AM, Al-Tawfiq JA. Middle East respiratory syndrome coronavirus (MERS-CoV) viral shedding in the respiratory tract: An observational analysis with infection control implications. Int J Infect Dis 2014; 29: 307-8.
[http://dx.doi.org/10.1016/j.ijid.2014.10.002] [PMID: 25448335]
[72]
Peiris JS, Chu CM, Cheng VC, et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: A prospective study. Lancet 2003; 361(9371): 1767-72.
[http://dx.doi.org/10.1016/S0140-6736(03)13412-5] [PMID: 12781535]
[73]
Ai T, Yang Z, Hou H, et al. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases. Radiology 2020; 296(2): E32-40.
[http://dx.doi.org/10.1148/radiol.2020200642] [PMID: 32101510]
[74]
Trafton A, Chu J, Chandler DL. Covid-19 diagnostic based on MIT technology might be tested on patient samples soon 2020. Available from: http://news.mit.edu/2020/covid-19-diagnostic- test-prevention-0312
[75]
Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 2016; 24(6): 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003] [PMID: 27012512]
[76]
Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med 2020; 26(4): 450-2.
[http://dx.doi.org/10.1038/s41591-020-0820-9] [PMID: 32284615]
[77]
Raj VS, Mou H, Smits SL, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013; 495(7440): 251-4.
[http://dx.doi.org/10.1038/nature12005] [PMID: 23486063]
[78]
Liu F, Long X, Zou W, et al. Highly ACE2 expression in pancreas may cause pancreas damage after SARS-CoV-2 infection. Clin Gastroenterot Heatol 2020; 18(9): 2128-30e2.
[79]
Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 2000; 87(5): E1-9.
[http://dx.doi.org/10.1161/01.RES.87.5.e1] [PMID: 10969042]
[80]
Bosch BJ, van der Zee R, de Haan CA, Rottier PJ. The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex. J Virol 2003; 77(16): 8801-11.
[http://dx.doi.org/10.1128/JVI.77.16.8801-8811.2003] [PMID: 12885899]
[81]
van Hemert MJ, van den Worm SHE, Knoops K, Mommaas AM, Gorbalenya AE, Snijder EJ. SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro. PLoS Pathog 2008; 4(5): e1000054.
[http://dx.doi.org/10.1371/journal.ppat.1000054] [PMID: 18451981]
[82]
Song HC, Seo MY, Stadler K, et al. Synthesis and characterization of a native, oligomeric form of recombinant severe acute respiratory syndrome coronavirus spike glycoprotein. J Virol 2004; 78(19): 10328-35.
[http://dx.doi.org/10.1128/JVI.78.19.10328-10335.2004] [PMID: 15367599]
[83]
Masters PS. The molecular biology of coronaviruses. Adv Virus Res 2006; 66(06): 193-292.
[http://dx.doi.org/10.1016/S0065-3527(06)66005-3] [PMID: 16877062]
[84]
de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: Recent insights into emerging coronaviruses. Nat Rev Microbiol 2016; 14(8): 523-34.
[http://dx.doi.org/10.1038/nrmicro.2016.81] [PMID: 27344959]
[85]
Palm NW, Medzhitov R. Not so fast: Adaptive suppression of innate immunity. Nat Med 2007; 13(10): 1142-4.
[http://dx.doi.org/10.1038/nm1007-1142b] [PMID: 17917657]
[86]
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229): 1033-4.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[87]
Means C. Letter to the Editor: Mechanisms of increased morbidity and mortality of SARS-CoV-2 infection in individuals with diabetes: what this means for an effective management strategy. Meta Clin Experim 2020; 108: 154254.
[88]
Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367(6483): 1260-3.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[89]
He J, Tao H, Yan Y, Huang SY, Xiao Y. Molecular mechanism of evolution and human infection with sars-cov-2. Viruses 2020; 12(4): 428.
[http://dx.doi.org/10.3390/v12040428] [PMID: 32290077]
[90]
Imai Y, Kuba K, Penninger JM. The discovery of angiotensin-converting enzyme 2 and its role in acute lung injury in mice. Exp Physiol 2008; 93(5): 543-8.
[http://dx.doi.org/10.1113/expphysiol.2007.040048] [PMID: 18448662]
[91]
Lim S, Bae JH, Kwon HS, Nauck MA. COVID-19 and diabetes mellitus: From pathophysiology to clinical management. Nat Rev Endocrinol 2021; 17(1): 11-30.
[http://dx.doi.org/10.1038/s41574-020-00435-4] [PMID: 33188364]
[92]
Lecube A, Simó R, Pallayova M, et al. Pulmonary function and sleep breathing: Two new targets for type 2 diabetes care. Endocr Rev 2017; 38(6): 550-73.
[http://dx.doi.org/10.1210/er.2017-00173] [PMID: 28938479]
[93]
Wang Z, Du Z, Zhu F. Glycosylated hemoglobin is associated with systemic inflammation, hypercoagulability, and prognosis of COVID-19 patients. Diabetes Res Clin Pract 2020; 164: 108214.
[http://dx.doi.org/10.1016/j.diabres.2020.108214] [PMID: 32416121]
[94]
Liu WZ, Li HL. Covid-19-attacks the 1-β chain of hemoglobin and captures the porphyrin to inhibit human heme metabolism. ChemRxiv 2020.
[95]
Cheema AK, Kaur P, Fadel A, Younes N, Zirie M, Rizk NM. Integrated datasets of proteomic and metabolomic biomarkers to predict its impacts on comorbidities of type 2 diabetes mellitus. Diabetes Metab Syndr Obes 2020; 13: 2409-31.
[http://dx.doi.org/10.2147/DMSO.S244432] [PMID: 32753925]
[96]
Hodgson K, Morris J, Bridson T, Govan B, Rush C, Ketheesan N. Immunological mechanisms contributing to the double burden of diabetes and intracellular bacterial infections. Immunology 2015; 144(2): 171-85.
[http://dx.doi.org/10.1111/imm.12394] [PMID: 25262977]
[97]
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 8(4): 420-2.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[98]
Kulcsar KA, Coleman CM, Beck SE, Frieman MB. Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS-CoV infection. JCI Insight 2019; 4(20): e131774.
[http://dx.doi.org/10.1172/jci.insight.131774] [PMID: 31550243]
[99]
Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodríguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev 2020; 54: 62-75.
[http://dx.doi.org/10.1016/j.cytogfr.2020.06.001] [PMID: 32513566]
[100]
Chen C, Zhang XR, Ju ZY, He WF. Advances in the research of cytokine storm mechanism induced by Corona Virus Disease 2019 and the corresponding immunotherapies. Zhonghua Shao Shang Za Zhi 2020; 36: 471-5.
[http://dx.doi.org/10.3760/cma.j.cn501120-20200224-00088] [PMID: 32114747]
[101]
Wang H, Wang S, Yu K. COVID-19 infection epidemic: The medical management strategies in Heilongjiang Province, China. Crit Care 2020; 24(1): 107.
[http://dx.doi.org/10.1186/s13054-020-2832-8] [PMID: 32188482]
[102]
Gupta R, Ghosh A, Singh AK, Misra A. Clinical considerations for patients with diabetes in times of COVID-19 epidemic. Diabetes Metab Syndr 2020; 14(3): 211-2.
[http://dx.doi.org/10.1016/j.dsx.2020.03.002] [PMID: 32172175]
[103]
Banerjee M, Chakraborty S, Pal R. Diabetes self-management amid COVID-19 pandemic. Diabetes Metab Syndr 2020; 14(4): 351-4.
[http://dx.doi.org/10.1016/j.dsx.2020.04.013] [PMID: 32311652]
[104]
Indonesian Society of Endocrinology. Position statement on how to manage patients with diabetes and COVID-19. J ASEAN Fed Endocr Soc 2020; 35(1): 49-51. Available from: https://www.asean-endocrinejournal.org/index.php/JAFES/article/view/811
[http://dx.doi.org/10.15605/jafes.035.01.03] [PMID: 33442169]
[105]
Wang W, Lu J, Gu W, Zhang Y, Liu J, Ning G. Care for diabetes with COVID-19: Advice from China. J Diabetes 2020; 12(5): 417-9.
[http://dx.doi.org/10.1111/1753-0407.13036] [PMID: 32285556]
[106]
Centres for Disease Control and Prevention. COVID-19 (Coronavirus Disease). People with certain medical conditions. 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-with-medical-conditions.html
[107]
Madden KM, Lockhart C, Cuff D, Potter TF, Meneilly GS. Aerobic training in older adults with type 2 diabetes and vasodepressive carotid sinus hypersensitivity. Aging Clin Exp Res 2013; 25(6): 651-7.
[http://dx.doi.org/10.1007/s40520-013-0160-4] [PMID: 24146363]
[108]
Scheiner A, Hopper DL, Carlson GM. System and method for monitoring autonomic balance and physical activity. 2009. Available from: https://pubchem.ncbi.nlm.nih.gov/patent/US-7572226-B2
[109]
Misra A, Sharma R, Gulati S, et al. Consensus dietary guidelines for healthy living and prevention of obesity, the metabolic syndrome, diabetes, and related disorders in Asian Indians. Diabetes Technol Ther 2011; 13(6): 683-94.
[http://dx.doi.org/10.1089/dia.2010.0198] [PMID: 21488798]
[110]
Kelly JT, Reidlinger DP, Hoffmann TC, Campbell KL. Telehealth methods to deliver dietary interventions in adults with chronic disease: A systematic review and meta-analysis. Am J Clin Nutr 2016; 104(6): 1693-702.
[http://dx.doi.org/10.3945/ajcn.116.136333] [PMID: 27935523]
[111]
Erol A. High-dose intravenous vitamin C treatment for COVID-19. 2020.
[http://dx.doi.org/10.31219/osf.io/p7ex8]
[112]
Grant WB, Lahore H, McDonnell SL, et al. Vitamin D supplementation could prevent and treat influenza, coronavirus, and pneumonia infections. Nutrients 2020; 12: 988.
[http://dx.doi.org/10.3390/nu12040988] [PMID: 32252338]
[113]
Iran Endocrine Society. Joint statement of iranian scientific associations of endocrinologists and metabolists and rheumatology of iran regarding vitamin d and corona consumption 1998. Available from: http://www.iranendocrine.org/news/40
[114]
Wessels I, Maywald M, Rink L. Zinc as a gatekeeper of immune function. Nutrients 2017; 9(12): 1286.
[http://dx.doi.org/10.3390/nu9121286] [PMID: 29186856]
[115]
Arshad MS, Khan U, Sadiq A, et al. Coronavirus disease (COVID-19) and immunity booster green foods: A mini review. Food Sci Nutr 2020; 8: 3971-6.
[http://dx.doi.org/10.1002/fsn3.1719] [PMID: 32837716]
[116]
Bornstein SR, Rubino F, Khunti K, et al. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol 2020; 8(6): 546-50.
[http://dx.doi.org/10.1016/S2213-8587(20)30152-2] [PMID: 32334646]
[117]
Hemmingsen B, Schroll JB, Wetterslev J, et al. Sulfonylurea versus metformin monotherapy in patients with type 2 diabetes: A Cochrane systematic review and meta-analysis of randomized clinical trials and trial sequential analysis. CMAJ Open 2014; 2(3): E162-75.
[http://dx.doi.org/10.9778/cmajo.20130073] [PMID: 25295236]
[118]
Liu J, Li L, Deng K, et al. Incretin based treatments and mortality in patients with type 2 diabetes: Systematic review and meta-analysis. BMJ 2017; 357: j2499.
[http://dx.doi.org/10.1136/bmj.j2499] [PMID: 28596247]
[119]
McIntosh CH, Demuth HU, Pospisilik JA, Pederson R. Dipeptidyl peptidase IV inhibitors: How do they work as new antidiabetic agents? Regul Pept 2005; 128(2): 159-65.
[http://dx.doi.org/10.1016/j.regpep.2004.06.001] [PMID: 15780435]
[120]
Carboni E, Carta AR, Carboni E. Can pioglitazone be potentially useful therapeutically in treating patients with COVID-19? Med Hypotheses 2020; 140: 109776.
[http://dx.doi.org/10.1016/j.mehy.2020.109776] [PMID: 32344313]
[121]
Chen Y, Yang D, Cheng B, et al. Clinical characteristics and outcomes of patients with diabetes and COVID-19 in association with glucose-lowering medication. Diabetes Care 2020; 43(7): 1399-407.
[http://dx.doi.org/10.2337/dc20-0660] [PMID: 32409498]
[122]
Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med 2020; 8(4): e21.
[http://dx.doi.org/10.1016/S2213-2600(20)30116-8] [PMID: 32171062]
[123]
Bangash MN, Patel J, Parekh D. COVID-19 and the liver: Little cause for concern. Lancet Gastroenterol Hepatol 2020; 5(6): 529-30.
[http://dx.doi.org/10.1016/S2468-1253(20)30084-4] [PMID: 32203680]
[124]
Solinas C, Perra L, Aiello M, Migliori E, Petrosillo N. A critical evaluation of glucocorticoids in the management of severe COVID-19. Cytokine Growth Factor Rev 2020; 54: 8-23.
[http://dx.doi.org/10.1016/j.cytogfr.2020.06.012] [PMID: 32616381]
[125]
Lee N, Allen Chan KC, Hui DS, et al. Effects of early corticosteroid treatment on plasma SARS-associated Coronavirus RNA concentrations in adult patients. J Clin Virol 2004; 31(4): 304-9.
[http://dx.doi.org/10.1016/j.jcv.2004.07.006] [PMID: 15494274]
[126]
Williamson BN, Feldmann F, Schwarz B, et al. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. Nature 2020; 585(7824): 273-6.
[http://dx.doi.org/10.1038/s41586-020-2423-5] [PMID: 32516797]
[127]
Ho TC, Wang YH, Chen YL, et al. Chloroquine and hydroxychloroquine: Efficacy in the treatment of the covid-19. Pathogens 2021; 10(2): 217.
[http://dx.doi.org/10.3390/pathogens10020217] [PMID: 33671315]
[128]
Prajapat M, Sarma P, Shekhar N, et al. Drug targets for corona virus: A systematic review. Indian J Pharmacol 2020; 52(1): 56-65.
[http://dx.doi.org/10.4103/ijp.IJP_115_20] [PMID: 32201449]
[129]
Cao B, Wang Y, Wen D, et al. Wei. Wang C. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med 2020; 382(19): 1787-99.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[130]
COVID-19 Vaccine Tracker. Last Updated 2021. Available from: https://covid19.trackvaccines.org/
[131]
The New York Times. Coronavirus vaccine tracker. 2021. Available from: https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html
[132]
Kadlec RP. FDA. U.S. Food and Drug Administration. Convalescent plasma letter of authorization. 2020. Available from: https://www.fda.gov/media/141477/download
[133]
Iba T, Levy JH, Levi M, Thachil J. Coagulopathy in covid-19. J Thromb Haemost 2020; 18(9): 2103-9.
[http://dx.doi.org/10.1111/jth.14975] [PMID: 32558075]
[134]
Chong PY, Chui P, Ling AE, et al. Analysis of deaths during the severe acute respiratory syndrome (SARS) epidemic in Singapore: Challenges in determining a SARS diagnosis. Arch Pathol Lab Med 2004; 128(2): 195-204.
[http://dx.doi.org/10.5858/2004-128-195-AODDTS] [PMID: 14736283]
[135]
Lee N, Hui D, Wu A, et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med 2003; 348(20): 1986-94.
[http://dx.doi.org/10.1056/NEJMoa030685] [PMID: 12682352]
[136]
Zhang X, Yang X, Jiao H, Liu X. Coagulopathy in patients with COVID-19: A systematic review and meta-analysis. Aging (Albany NY) 2020; 12(24): 24535-51.
[http://dx.doi.org/10.18632/aging.104138] [PMID: 33229625]
[137]
Liu H, Wang Z, Sun H, et al. Thrombosis and coagulopathy in covid-19: Current understanding and implications for antithrombotic treatment in patients treated with percutaneous coronary intervention. Front Cardiovasc Med 2021; 7: 599334.
[http://dx.doi.org/10.3389/fcvm.2020.599334] [PMID: 33537347]
[138]
Erener S. Diabetes, infection risk and COVID-19. Mol Metab 2020; 39: 101044.
[http://dx.doi.org/10.1016/j.molmet.2020.101044] [PMID: 32585364]
[139]
Iglay K, Hannachi H, Joseph Howie P, et al. Prevalence and co-prevalence of comorbidities among patients with type 2 diabetes mellitus. Curr Med Res Opin 2016; 32(7): 1243-52.
[http://dx.doi.org/10.1185/03007995.2016.1168291] [PMID: 26986190]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy