Abstract
Abstract: Research for discovering chemical entities with antiproliferative properties to combat globally rising cancer cases has witnessed tremendous interest in recent years. Phenothiazines possess novel antiproliferative potentials and have often be described as crucial sources of scaffolds for anticancer drug discovery. Some several phenothiazine-hybrid compounds recently synthesised are effective against various cancer cell lines with improved multidrug resistance. In synthesising these phenothiazine-derivatives, therapeutic potentials of the phenothiazines are exploited, and they are enriched by molecular hybridisation with moieties known to possess great pharmacological profiles. This article critically reviews the anticancer properties of phenothiazine derivatives and focuses on the possibility of the derivation of the leads for a further spectrum of antiproliferative activities.
Keywords: Phenothiazine, dithiocarbamate, anticancer, apoptosis, glioblastoma, chalcones.
Graphical Abstract
[http://dx.doi.org/10.1039/C9NJ03394G]
(b) Zhang, J.; Ming, C.; Zhang, W.; Okechukwu, P.N.; Morak-Młodawska, B.; Pluta, K.; Jeleń, M.; Akim, A.M.; Ang, K-P.; Ooi, K.K. 10H-3,6-Diazaphenothiazine induces G2/M phase cell cycle arrest and caspase-dependent apoptosis and inhibits cell invasion of A2780 ovarian carcinoma cells through the regulation of NF-κB and (BIRC6-XIAP) complexes. Drug Des. Devel. Ther., 2017, 11, 3045-3063.
[http://dx.doi.org/10.2147/DDDT.S144415] [PMID: 29123378]
[http://dx.doi.org/10.1158/1055-9965.EPI-15-0578] [PMID: 26667886]
(b) Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin., 2015, 65(1), 5-29.
[http://dx.doi.org/10.3322/caac.21254] [PMID: 25559415]
(c) Nuyttens, J.J.; Rust, P.F.; Thomas, C.R., Jr; Turrisi, A.T. Surgery versus radiation therapy for patients with aggressive fibromatosis or desmoid tumors: A comparative review of 22 articles. Cancer, 2000, 88(7), 1517-1523.
[http://dx.doi.org/10.1002/(SICI)1097-0142(20000401)88:7<1517:AID-CNCR3>3.0.CO;2-9] [PMID: 10738207]
[http://dx.doi.org/10.1080/14756366.2019.1639695] [PMID: 31307242]
[http://dx.doi.org/10.1016/j.ejmech.2016.11.028] [PMID: 27875779]
(b) Eckhardt, S. Recent progress in the development of anticancer agents. Curr. Med. Chem. Anticancer Agents, 2002, 2(3), 419-439.
[http://dx.doi.org/10.2174/1568011024606389] [PMID: 12678741]
[http://dx.doi.org/10.1016/j.ejmech.2015.04.051] [PMID: 25965776]
(b) Yugandhar, D.; Nayak, V.L.; Archana, S.; Shekar, K.C.; Srivastava, A.K. Design, synthesis and anticancer properties of novel oxa/azaspiro[4,5]trienones as potent apoptosis inducers through mitochondrial disruption. Eur. J. Med. Chem., 2015, 101, 348-357.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.050] [PMID: 26163220]
[http://dx.doi.org/10.1038/s41598-016-0001-8] [PMID: 28442746]
(b) Jeleń, M.; Pluta, K.; Zimecki, M.; Morak-Młodawska, B.; Artym, J.; Kocięba, M. 6-Substituted 9-fluoroquino[3,2-b]benzo[1,4]thiazines display strong antiproliferative and antitumor properties. Eur. J. Med. Chem., 2015, 89, 411-420.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.070] [PMID: 25462256]
(c) Lee, M.S.; Johansen, L.; Zhang, Y.; Wilson, A.; Keegan, M.; Avery, W.; Elliott, P.; Borisy, A.A.; Keith, C.T. The novel combination of chlorpromazine and pentamidine exerts synergistic antiproliferative effects through dual mitotic action. Cancer Res., 2007, 67(23), 11359-11367.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2235] [PMID: 18056463]
(d) Varga, B.; Csonka, Á.; Csonka, A.; Molnár, J.; Amaral, L.; Spengler, G. Possible biological and clinical applications of phenothiazines. Anticancer Res., 2017, 37(11), 5983-5993.
[PMID: 29061777]
[http://dx.doi.org/10.2174/1389450003349191] [PMID: 11465073]
(b) Sadanandam, Y.S.; Shetty, M.M.; Rao, A.B.; Rambabu, Y. 10H-Phenothiazines: A new class of enzyme inhibitors for inflam-matory diseases. Eur. J. Med. Chem., 2009, 44(1), 197-202.
[http://dx.doi.org/10.1016/j.ejmech.2008.02.028] [PMID: 18400337]
(c) Pluta, K.; Morak-Młodawska, B.; Jeleń, M. Recent progress in biological activities of synthesized phenothiazines. Eur. J. Med. Chem., 2011, 46(8), 3179-3189.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.013] [PMID: 21620536]
(d) Sarmiento, G.P.; Vitale, R.G.; Afeltra, J.; Moltrasio, G.Y.; Moglioni, A.G. Synthesis and antifungal activity of some substituted phenothiazines and related compounds. Eur. J. Med. Chem., 2011, 46(1), 101-105.
[http://dx.doi.org/10.1016/j.ejmech.2010.10.019] [PMID: 21093111]
(e) Bansode, T.N.; Shelke, J.V.; Dongre, V.G. Synthesis and antimicrobial activity of some new N-acyl substituted phenothiazines. Eur. J. Med. Chem., 2009, 44(12), 5094-5098.
[http://dx.doi.org/10.1016/j.ejmech.2009.07.006] [PMID: 19651462]
[http://dx.doi.org/10.1016/j.str.2013.11.009] [PMID: 24373770]
(b) Korth, C.; May, B.C.; Cohen, F.E.; Prusiner, S.B. Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc. Natl. Acad. Sci. USA, 2001, 98(17), 9836-9841.
[http://dx.doi.org/10.1073/pnas.161274798] [PMID: 11504948]
[http://dx.doi.org/10.1016/j.ejmech.2017.07.009] [PMID: 28734245]
[http://dx.doi.org/10.1001/archpsyc.1961.01710100093011]
[http://dx.doi.org/10.3390/antibiotics2010058] [PMID: 27029292]
[http://dx.doi.org/10.1097/01.mjt.0000212897.20458.63] [PMID: 16772768]
[http://dx.doi.org/10.1016/j.bmc.2016.04.001] [PMID: 27073050]
[http://dx.doi.org/10.1016/j.bmcl.2012.10.135] [PMID: 23200248]
[http://dx.doi.org/10.1038/s41598-016-0028-x] [PMID: 28127051]
(b) Dheer, D.; Singh, V.; Shankar, R. Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorg. Chem., 2017, 71, 30-54.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.010] [PMID: 28126288]
(c) Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg. Med. Chem., 2019, 27(16), 3511-3531.
[http://dx.doi.org/10.1016/j.bmc.2019.07.005] [PMID: 31300317]
(d) Pingaew, R.; Mandi, P.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Design, synthesis and molecular docking studies of novel N-benzenesulfonyl-1,2,3,4-tetrahydroisoquinoline-based triazoles with potential anticancer activity. Eur. J. Med. Chem., 2014, 81, 192-203.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.019] [PMID: 24836071]
(e) Holla, B.S.; Poojary, K.N.; Rao, B.S.; Shivananda, M.K. New bis-aminomercaptotriazoles and bis-triazolothiadiazoles as possible anticancer agents. Eur. J. Med. Chem., 2002, 37(6), 511-517.
[http://dx.doi.org/10.1016/S0223-5234(02)01358-2] [PMID: 12204477]
(f) Holla, B.S.; Veerendra, B.; Shivananda, M.; Poojary, B. Synthesis characterization and anticancer activity studies on some Mannich bases derived from 1,2,4-triazoles. Eur. J. Med. Chem., 2003, 38, 759-767.
[http://dx.doi.org/10.1016/S0223-5234(03)00128-4] [PMID: 12932907]
[http://dx.doi.org/10.1016/j.bmcl.2008.01.102] [PMID: 18267360]
(b) Vatmurge, N.S.; Hazra, B.G.; Pore, V.S.; Shirazi, F.; Deshpande, M.V.; Kadreppa, S.; Chattopadhyay, S.; Gonnade, R.G. Synthesis and biological evaluation of bile acid dimers linked with 1,2,3-triazole and bis-beta-lactam. Org. Biomol. Chem., 2008, 6(20), 3823-30.
[http://dx.doi.org/10.3390/molecules23061288]
[http://dx.doi.org/10.3184/174751917X15122516000140]
[http://dx.doi.org/10.2174/092986707781058805] [PMID: 17627520]
[http://dx.doi.org/10.1002/asia.201100432] [PMID: 21954075]
(b) Kolb, H.C.; Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today, 2003, 8(24), 1128-1137.
[http://dx.doi.org/10.1016/S1359-6446(03)02933-7] [PMID: 14678739]
[http://dx.doi.org/10.3390/molecules24234388]
[http://dx.doi.org/10.1016/j.ymeth.2010.01.002] [PMID: 20064613]
[http://dx.doi.org/10.1007/s10637-018-0682-x] [PMID: 30345465]
[http://dx.doi.org/10.1021/jf950751y]
(b) Manav, N.; Mishra, A.K.; Kaushik, N.K. In vitro antitumour and antibacterial studies of some Pt(IV) dithiocarbamate complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2006, 65(1), 32-35.
[http://dx.doi.org/10.1016/j.saa.2005.09.023] [PMID: 16522376]
(c) Vullo, D.; Durante, M.; Di Leva, F.S.; Cosconati, S.; Masini, E.; Scozzafava, A.; Novellino, E.; Supuran, C.T.; Carta, F. Monothio-carbamates strongly inhibit carbonic anhydrases in vitro and possess intraocular pressure lowering activity in an animal model of glaucoma. J. Med. Chem., 2016, 59(12), 5857-5867.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00462] [PMID: 27253845]
(d) Li, R-D.; Wang, H-L.; Li, Y-B.; Wang, Z-Q.; Wang, X.; Wang, Y-T.; Ge, Z-M.; Li, R-T. Discovery and optimization of novel dual dithiocarbamates as potent anticancer agents. Eur. J. Med. Chem., 2015, 93, 381-391.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.030] [PMID: 25725374]
(e) Altıntop, M.D.; Sever, B.; Akalın Çiftçi, G.; Kucukoglu, K.; Özdemir, A.; Soleimani, S.S.; Nadaroglu, H.; Kaplancıklı, Z.A. Synthesis and evaluation of new benzodioxole-based dithiocarba-mate derivatives as potential anticancer agents and hCA-I and hCA-II inhibitors. Eur. J. Med. Chem., 2017, 125, 190-196.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.035] [PMID: 27657811]
(f) Bozdag, M.; Carta, F.; Vullo, D.; Akdemir, A.; Isik, S.; Lanzi, C.; Scozzafava, A.; Masini, E.; Supuran, C.T. Synthesis of a new series of dithiocarbamates with effective human carbonic anhydrase inhibitory activity and antiglaucoma action. Bioorg. Med. Chem., 2015, 23(10), 2368-2376.
[http://dx.doi.org/10.1016/j.bmc.2015.03.068] [PMID: 25846066]
[http://dx.doi.org/10.1007/s11030-017-9773-4] [PMID: 28785928]
[http://dx.doi.org/10.1016/j.ejmech.2012.12.046] [PMID: 23353743]
[http://dx.doi.org/10.1016/j.biopha.2011.04.001] [PMID: 21641752]
[http://dx.doi.org/10.1517/13543776.18.11.1211]
[http://dx.doi.org/10.1016/j.ejmech.2012.10.051] [PMID: 23202849]
(b) Moriya, K.; Rivera, J.; Odom, S.; Sakuma, Y.; Muramato, K.; Yoshiuchi, T.; Miyamoto, M.; Yamada, K. ER-27319, an acridone-related compound, inhibits release of antigen-induced allergic mediators from mast cells by selective inhibition of fcepsilon receptor I-mediated activation of Syk. Proc. Natl. Acad. Sci. USA, 1997, 94(23), 12539-12544.
[http://dx.doi.org/10.1073/pnas.94.23.12539] [PMID: 9356485]
[http://dx.doi.org/10.1039/C6DT03578G] [PMID: 27819372]
[http://dx.doi.org/10.1021/jm200436t] [PMID: 21563750]
[http://dx.doi.org/10.1016/j.ejmech.2017.04.028] [PMID: 28427017]
[http://dx.doi.org/10.1093/jnci/82.13.1107] [PMID: 2359136]
[http://dx.doi.org/10.1034/j.1600-065X.2003.00048.x] [PMID: 12752666]
[http://dx.doi.org/10.1016/j.jinorgbio.2018.01.015] [PMID: 29407865]
[http://dx.doi.org/10.1016/j.biopha.2016.05.038] [PMID: 27470396]
[http://dx.doi.org/10.1007/s11164-018-3594-7]
[http://dx.doi.org/10.1016/j.molstruc.2019.127037]
[PMID: 8669819]
(b) Motohashi, N.; Sakagami, H.; Kamata, K.; Yamamoto, Y. Cytotoxicity and differentiation-inducing activity of phenothiazine and benzo[a]phenothiazine derivatives. Anticancer Res., 1991, 11(5), 1933-1937.
[PMID: 1662929]
[PMID: 10470128]
[PMID: 9568100]
[PMID: 8712720]
(b) Motohashi, N.; Kawase, M.; Kurihara, T.; Hevér, A.; Nagy, S.; Ocsocvszki, I.; Tanaka, M.; Molnár, J. Synthesis and antitumor activity of 1-[2-(chloroethyl)-3-(2-substituted-10H-phenothiazin-10-yl)alkyl- 1-urea s as potent anticancer agents. Anticancer Res., 1996, 16(5A), 2525-2532.
[PMID: 8917346]
[http://dx.doi.org/10.1016/S0924-8579(99)00156-9] [PMID: 10773488]
[http://dx.doi.org/10.2174/138945006778226624] [PMID: 17017885]
(b) Aaron, J.; Seye, M.G.; Trajkovska, S.; Motohashi, N. .Bioactive Phenothiazines and Benzo[a]phenothiazines: Spectroscopic Studies, and Biological and Biomedical Properties and Applications. In: Bioactive Heterocycles VII; Springer: Berlin, 2008, pp. 153-231;
[http://dx.doi.org/10.1007/7081_2008_125]
[http://dx.doi.org/10.1016/j.toxlet.2006.05.011] [PMID: 16814965]
[http://dx.doi.org/10.1016/S1734-1140(10)70272-3] [PMID: 20508288]
[http://dx.doi.org/10.3987/COM-07-11035]
[http://dx.doi.org/10.1080/10426500008043652]
[http://dx.doi.org/10.1016/j.bioorg.2019.04.005] [PMID: 30981160]
[http://dx.doi.org/10.2478/s11658-009-0025-1] [PMID: 19557312]
[http://dx.doi.org/10.1007/s00044-016-1646-3] [PMID: 27818603]
[http://dx.doi.org/10.1007/s00044-014-1220-9] [PMID: 25750499]
[http://dx.doi.org/10.1016/j.ejmech.2008.06.025] [PMID: 18708272]
[http://dx.doi.org/10.3109/14756366.2016.1151014] [PMID: 26950280]
[http://dx.doi.org/10.1016/j.clineuro.2017.05.021] [PMID: 28687250]
[http://dx.doi.org/10.2174/1570180816666181115112236]
[PMID: 20430723]
(b) Szliszka, E.; Czuba, Z.P.; Mazur, B.; Sedek, L.; Paradysz, A.; Krol, W. Chalcones enhance TRAIL-induced apoptosis in prostate cancer cells. Int. J. Mol. Sci., 2009, 11(1), 1-13.
[http://dx.doi.org/10.3390/ijms11010001] [PMID: 20161998]
(c) Nowakowska, Z. A review of anti-infective and anti-inflam-matory chalcones. Eur. J. Med. Chem., 2007, 42(2), 125-137.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.019] [PMID: 17112640]
(d) Echeverria, C.; Santibañez, J.F.; Donoso-Tauda, O.; Escobar, C.A.; Ramirez-Tagle, R. Structural antitumoral activity relation-ships of synthetic chalcones. Int. J. Mol. Sci., 2009, 10(1), 221-231.
[http://dx.doi.org/10.3390/ijms10010221] [PMID: 19333443]
(e) Hsieh, C-T.; Hsieh, T-J.; El-Shazly, M.; Chuang, D-W.; Tsai, Y-H.; Yen, C-T.; Wu, S-F.; Wu, Y-C.; Chang, F-R. Synthesis of chalcone derivatives as potential anti-diabetic agents. Bioorg. Med. Chem. Lett., 2012, 22(12), 3912-3915.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.108] [PMID: 22608392]
(f) Singh, P.; Anand, A.; Kumar, V. Recent developments in biological activities of chalcones: A mini review. Eur. J. Med. Chem., 2014, 85, 758-777.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.033] [PMID: 25137491]
(g) Sahu, N.K.; Balbhadra, S.S.; Choudhary, J.; Kohli, D.V. Exploring pharmacological significance of chalcone scaffold: A review. Curr. Med. Chem., 2012, 19(2), 209-225.
[http://dx.doi.org/10.2174/092986712803414132] [PMID: 22320299]
(h) Kuete, V.; Sandjo, L.P. Isobavachalcone: An overview. Chin. J. Integr. Med., 2012, 18(7), 543-547.
[http://dx.doi.org/10.1007/s11655-012-1142-7] [PMID: 22772918]
[http://dx.doi.org/10.3390/molecules25194566]
[http://dx.doi.org/10.7554/eLife.02200] [PMID: 24867637]
[http://dx.doi.org/10.1016/j.ejmech.2016.02.057] [PMID: 26974379]
[http://dx.doi.org/10.1038/s41467-016-0009-6] [PMID: 28232747]
(b) Czabotar, P.E.; Lessene, G.; Strasser, A.; Adams, J.M. Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat. Rev. Mol. Cell Biol., 2014, 15(1), 49-63.
[http://dx.doi.org/10.1038/nrm3722] [PMID: 24355989]
[http://dx.doi.org/10.1021/acs.jmedchem.6b01591] [PMID: 28045256]
[http://dx.doi.org/10.3892/or.2014.3068] [PMID: 24604290]
(b) Huang, J.; Zhao, D.; Liu, Z.; Liu, F. Repurposing psychiatric drugs as anti-cancer agents. Cancer Lett., 2018, 419, 257-265.
[http://dx.doi.org/10.1016/j.canlet.2018.01.058] [PMID: 29414306]
[http://dx.doi.org/10.1371/journal.pone.0046294] [PMID: 23115626]
[http://dx.doi.org/10.1126/science.1092472] [PMID: 14704432]
[http://dx.doi.org/10.1038/sj.cdd.4401962] [PMID: 16710363]
(b) Antonsson, B.; Montessuit, S.; Sanchez, B.; Martinou, J-C. Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J. Biol. Chem., 2001, 276(15), 11615-11623.
[http://dx.doi.org/10.1074/jbc.M010810200] [PMID: 11136736]
(c) Scorrano, L.; Korsmeyer, S.J. Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem. Biophys. Res. Commun., 2003, 304(3), 437-444.
[http://dx.doi.org/10.1016/S0006-291X(03)00615-6] [PMID: 12729577]
(d) Antonsson, B.; Martinou, J-C. The Bcl-2 protein family. Exp. Cell Res., 2000, 256(1), 50-57.
[http://dx.doi.org/10.1006/excr.2000.4839] [PMID: 10739651]