Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Meta-Analysis

The Effect of GLUT1 on the Survival Rate and Immune Cell Infiltration of Lung Adenocarcinoma and Squamous Cell Carcinoma: A Meta and Bioinformatics Analysis

Author(s): Guihua Zhang*, Rong Dong, Demiao Kong, Bo Liu, Yan Zha and Meng Luo

Volume 22, Issue 2, 2022

Published on: 08 July, 2021

Page: [223 - 238] Pages: 16

DOI: 10.2174/1871520621666210708115406

Price: $65

Abstract

Background: Lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) are two major subtypes of Non-Small Cell Lung Cancer (NSCLC). Studies have shown that abnormal expression of glucose transport type 1 (GLUT1) in NSCLC patients has been associated with cancer progression, aggressiveness, and poor clinical outcome. However, the clinical effect of GLUT1 expression on LUAD and LUSC is unclear.

Objective: This study aims to learn more about the character of GLUT1 in LUAD and LUSC.

Methods: A meta-analysis was performed to evaluate the GLUT1 protein level, and the bioinformatics analysis was used to detect the GLUT1 mRNA expression level, survival differences, and the infiltration abundance of immune cells in samples from TCGA. Meanwhile, functional and network analysis was conducted to detect important signaling pathways and key genes with the Gene Expression Omnibus (GEO) dataset.

Results: Our results showed that GLUT1 was over-expressed both in LUAD and LUSC. LUAD patients with high GLUT1 expression had a poor prognosis. Additionally, GLUT1 was related to B cell and neutrophil infiltration of LUAD. In LUSC, GLUT1 was correlated with tumor purity, B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil, and dendritic cell infiltration. The GEO dataset analysis results suggested GLUT1 potentially participated in the p53 signaling pathway and metabolism of xenobiotics through cytochrome P450 and was associated with KDR, TOX3, AGR2, FOXA1, ERBB3, ANGPT1, and COL4A3 gene in LUAD and LUSC.

Conclusion: GLUT1 might be a potential biomarker for aggressive progression and poor prognosis in LUAD, and a therapeutic biomarker in LUSC.

Keywords: Glucose transport type 1, non-small cell lung cancer, lung adenocarcinoma, lung squamous cell carcinoma, immune cell infiltration, survival rate.

Graphical Abstract

[1]
Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689), 446-454.
[http://dx.doi.org/10.1038/nature25183] [PMID: 29364287]
[2]
Lee, J.J.K.; Park, S.; Park, H.; Kim, S.; Lee, J.; Lee, J.; Youk, J.; Yi, K.; An, Y.; Park, I.K.; Kang, C.H.; Chung, D.H.; Kim, T.M.; Jeon, Y.K.; Hong, D.; Park, P.J.; Ju, Y.S.; Kim, Y.T. Tracing oncogene rearrangements in the mutational history of lung adenocarcinoma. Cell, 2019, 177(7), 1842-1857.e21.
[http://dx.doi.org/10.1016/j.cell.2019.05.013] [PMID: 31155235]
[3]
Gridelli, C.; Rossi, A.; Carbone, D.P.; Guarize, J.; Karachaliou, N.; Mok, T.; Petrella, F.; Spaggiari, L.; Rosell, R. Non-small-cell lung cancer. Nat. Rev. Dis. Primers, 2015, 1, 15009.
[http://dx.doi.org/10.1038/nrdp.2015.9] [PMID: 27188576]
[4]
Zheng, H.; Cui, Y.; Li, X.; Du, B.; Li, Y. Prognostic significance of 18F-FDG PET/CT metabolic parameters and tumor galectin-1 expression in patients with surgically resected lung adenocarcinoma. Clin. Lung Cancer, 2019, 20(6), 420-428.
[http://dx.doi.org/10.1016/j.cllc.2019.04.002] [PMID: 31300363]
[5]
Goodwin, J.; Neugent, M.L.; Lee, S.Y.; Choe, J.H.; Choi, H.; Jenkins, D.M.R.; Ruthenborg, R.J.; Robinson, M.W.; Jeong, J.Y.; Wake, M.; Abe, H.; Takeda, N.; Endo, H.; Inoue, M.; Xuan, Z.; Yoo, H.; Chen, M.; Ahn, J.M.; Minna, J.D.; Helke, K.L.; Singh, P.K.; Shackelford, D.B.; Kim, J.W. The distinct metabolic phenotype of lung squamous cell carcinoma defines selective vulnerability to glycolytic inhibition. Nat. Commun., 2017, 8, 15503.
[http://dx.doi.org/10.1038/ncomms15503] [PMID: 28548087]
[6]
Kashyap, A.; Bujamma, D. Bioinformatics of Non Small Cell Lung Cancer and the Ras Proto-Oncogene, 1st ed; Springer: Singapore, 2015.
[http://dx.doi.org/10.1007/978-981-4585-08-8]
[7]
Luis-Moreira, A.; Saqi, A. Diagnosing Non-small Cell Carcinoma in Small Biopsy and Cytology, 1st ed; Springer: New York, 2015.
[8]
Nagasaka, M.; Gadgeel, S.M. Role of chemotherapy and targeted therapy in early-stage non-small cell lung cancer. Expert Rev. Anticancer Ther., 2018, 18(1), 63-70.
[http://dx.doi.org/10.1080/14737140.2018.1409624] [PMID: 29168933]
[9]
Saito, M.; Suzuki, H.; Kono, K.; Takenoshita, S.; Kohno, T. Treatment of lung adenocarcinoma by molecular-targeted therapy and immunotherapy. Surg. Today, 2018, 48(1), 1-8.
[http://dx.doi.org/10.1007/s00595-017-1497-7] [PMID: 28280984]
[10]
Li, Y.; Gu, J.; Xu, F.; Zhu, Q.; Ge, D.; Lu, C. Transcriptomic and functional network features of lung squamous cell carcinoma through integrative analysis of GEO and TCGA data. Sci. Rep., 2018, 8(1), 15834.
[http://dx.doi.org/10.1038/s41598-018-34160-w] [PMID: 30367091]
[11]
Shibuya, K.; Okada, M.; Suzuki, S.; Seino, M.; Seino, S.; Takeda, H.; Kitanaka, C. Targeting the facilitative glucose transporter GLUT1 inhibits the self-renewal and tumor-initiating capacity of cancer stem cells. Oncotarget, 2015, 6(2), 651-661.
[http://dx.doi.org/10.18632/oncotarget.2892] [PMID: 25528771]
[12]
Maric, T.; Mikhaylov, G.; Khodakivskyi, P.; Bazhin, A.; Sinisi, R.; Bonhoure, N.; Yevtodiyenko, A.; Jones, A.; Muhunthan, V.; Abdelhady, G.; Shackelford, D.; Goun, E. Bioluminescent-based imaging and quantification of glucose uptake in vivo. Nat. Methods, 2019, 16(6), 526-532.
[http://dx.doi.org/10.1038/s41592-019-0421-z] [PMID: 31086341]
[13]
Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 2009, 324(5930), 1029-1033.
[http://dx.doi.org/10.1126/science.1160809] [PMID: 19460998]
[14]
Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci., 2016, 41(3), 211-218.
[http://dx.doi.org/10.1016/j.tibs.2015.12.001] [PMID: 26778478]
[15]
Schwartz, L.; Seyfried, T.; Alfarouk, K.O.; Da Veiga Moreira, J.; Fais, S. Out of Warburg effect: An effective cancer treatment targeting the tumor specific metabolism and dysregulated pH. Semin. Cancer Biol., 2017, 43, 134-138.
[http://dx.doi.org/10.1016/j.semcancer.2017.01.005] [PMID: 28122260]
[16]
Reckzeh, E.S.; Karageorgis, G.; Schwalfenberg, M.; Ceballos, J.; Nowacki, J.; Stroet, M.C.M.; Binici, A.; Knauer, L.; Brand, S.; Choidas, A.; Strohmann, C.; Ziegler, S.; Waldmann, H. Inhibition of glucose transporters and glutaminase synergistically impairs tumor cell growth. Cell Chem. Biol., 2019, 26(9), 1214-1228.e25.
[http://dx.doi.org/10.1016/j.chembiol.2019.06.005] [PMID: 31303578]
[17]
Zhang, Z.; Zi, Z.; Lee, E.E.; Zhao, J.; Contreras, D.C.; South, A.P.; Abel, E.D.; Chong, B.F.; Vandergriff, T.; Hosler, G.A.; Scherer, P.E.; Mettlen, M.; Rathmell, J.C.; DeBerardinis, R.J.; Wang, R.C. Differential glucose requirement in skin homeostasis and injury identifies a therapeutic target for psoriasis. Nat. Med., 2018, 24(5), 617-627.
[http://dx.doi.org/10.1038/s41591-018-0003-0] [PMID: 29662201]
[18]
Sawayama, H.; Ishimoto, T.; Watanabe, M.; Yoshida, N.; Baba, Y.; Sugihara, H.; Izumi, D.; Kurashige, J.; Baba, H. High expression of glucose transporter 1 on primary lesions of esophageal squamous cell carcinoma is associated with hematogenous recurrence. Ann. Surg. Oncol., 2014, 21(5), 1756-1762.
[http://dx.doi.org/10.1245/s10434-013-3371-1] [PMID: 24242681]
[19]
Tan, Z.; Yang, C.; Zhang, X.; Zheng, P.; Shen, W. Expression of glucose transporter 1 and prognosis in non-small cell lung cancer: A pooled analysis of 1665 patients. Oncotarget, 2017, 8(37), 60954-60961.
[http://dx.doi.org/10.18632/oncotarget.17604] [PMID: 28977837]
[20]
Goos, J.A.; de Cuba, E.M.; Coupé, V.M.; Diosdado, B.; Delis-Van Diemen, P.M.; Karga, C.; Beliën, J.A.; Menke-Van der Houven van Oordt, C.W.; Geldof, A.A.; Meijer, G.A.; Hoekstra, O.S.; Fijneman, R.J. Glucose transporter 1 (SLC2A1) and vascular endothelial growth factor A (VEGFA) predict survival after resection of colorectal cancer liver metastasis. Ann. Surg., 2016, 263(1), 138-145.
[http://dx.doi.org/10.1097/SLA.0000000000001109] [PMID: 25563886]
[21]
Do, S.K.; Choi, S.H.; Lee, S.Y.; Choi, J.E.; Hong, M.J.; Kang, H.G.; Lee, W.K.; Lee, E.B.; Shin, K.M.; Jeong, J.Y.; Lee, Y.H.; Seo, H.; Yoo, S.S.; Lee, J.; Cha, S.I.; Kim, C.H.; Seok, Y.; Cho, S.; Jheon, S.; Park, J.Y. Glucose transporter 3 gene variant is associated with survival outcome of patients with non-small cell lung cancer after surgical resection. Gene, 2019, 703, 58-64.
[http://dx.doi.org/10.1016/j.gene.2019.04.013] [PMID: 30954677]
[22]
Zhang, B.; Xie, Z.; Li, B. The clinicopathologic impacts and prognostic significance of GLUT1 expression in patients with lung cancer: A meta-analysis. Gene, 2019, 689, 76-83.
[http://dx.doi.org/10.1016/j.gene.2018.12.006] [PMID: 30552981]
[23]
Taira, N.; Atsumi, E.; Nakachi, S.; Takamatsu, R.; Yohena, T.; Kawasaki, H.; Kawabata, T.; Yoshimi, N. Comparison of GLUT-1, SGLT-1, and SGLT-2 expression in false-negative and true-positive lymph nodes during the 18F-FDG PET/CT mediastinal nodal staging of non-small cell lung cancer. Lung Cancer, 2018, 123, 30-35.
[http://dx.doi.org/10.1016/j.lungcan.2018.06.004] [PMID: 30089592]
[24]
Jiang, J.; Geng, G.; Yu, X.; Liu, H.; Gao, J.; An, H.; Cai, C.; Li, N.; Shen, D.; Wu, X.; Zheng, L.; Mi, Y.; Yang, S. Repurposing the anti-malarial drug dihydroartemisinin suppresses metastasis of non-small-cell lung cancer via inhibiting NF-κB/GLUT1 axis. Oncotarget, 2016, 7(52), 87271-87283.
[http://dx.doi.org/10.18632/oncotarget.13536] [PMID: 27895313]
[25]
Na, K.J.; Choi, H.; Oh, H.R.; Kim, Y.H.; Lee, S.B.; Jung, Y.J.; Koh, J.; Park, S.; Lee, H.J.; Jeon, Y.K.; Chung, D.H.; Paeng, J.C.; Park, I.K.; Kang, C.H.; Cheon, G.J.; Kang, K.W.; Lee, D.S.; Kim, Y.T. Reciprocal change in glucose metabolism of cancer and immune cells mediated by different glucose transporters predicts immunotherapy response. Theranostics, 2020, 10(21), 9579-9590.
[http://dx.doi.org/10.7150/thno.48954] [PMID: 32863946]
[26]
Vieira, T.; Antoine, M.; Hamard, C.; Fallet, V.; Duruisseaux, M.; Rabbe, N.; Rodenas, A.; Cadranel, J.; Wislez, M. Sarcomatoid lung carcinomas show high levels of programmed death ligand-1 (PD-L1) and strong immune-cell infiltration by TCD3 cells and macrophages. Lung Cancer, 2016, 98, 51-58.
[http://dx.doi.org/10.1016/j.lungcan.2016.05.013] [PMID: 27393506]
[27]
Wei, B.; Kong, W.; Mou, X.; Wang, S. Comprehensive analysis of tumor immune infiltration associated with endogenous competitive RNA networks in lung adenocarcinoma. Pathol. Res. Pract., 2019, 215(1), 159-170.
[http://dx.doi.org/10.1016/j.prp.2018.10.032] [PMID: 30466766]
[28]
Tu, L.; Guan, R.; Yang, H.; Zhou, Y.; Hong, W.; Ma, L.; Zhao, G.; Yu, M. Assessment of the expression of the immune checkpoint molecules PD-1, CTLA4, TIM-3 and LAG-3 across different cancers in relation to treatment response, tumor-infiltrating immune cells and survival. Int. J. Cancer, 2020, 147(2), 423-439.
[http://dx.doi.org/10.1002/ijc.32785] [PMID: 31721169]
[29]
Welters, M.J.P.; Ma, W.; Santegoets, S.J.A.M.; Goedemans, R.; Ehsan, I.; Jordanova, E.S.; van Ham, V.J.; van Unen, V.; Koning, F.; van Egmond, S.I.; Charoentong, P.; Trajanoski, Z.; van der Velden, L.A.; van der Burg, S.H. Intratumoral HPV16-specific T cells constitute a type I–oriented tumor microenvironment to improve survival in HPV16-driven oropharyngeal cancer. Clin. Cancer Res., 2018, 24(3), 634-647.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-2140] [PMID: 29018052]
[30]
Sun, J.; Zhang, Z.; Bao, S.; Yan, C.; Hou, P.; Wu, N.; Su, J.; Xu, L.; Zhou, M. Identification of tumor immune infiltration-associated lncRNAs for improving prognosis and immunotherapy response of patients with non-small cell lung cancer. J. Immunother. Cancer, 2020, 8(1)e000110
[http://dx.doi.org/10.1136/jitc-2019-000110] [PMID: 32041817]
[31]
Siemers, N.O.; Holloway, J.L.; Chang, H.; Chasalow, S.D.; Ross-MacDonald, P.B.; Voliva, C.F.; Szustakowski, J.D. Genome-wide association analysis identifies genetic correlates of immune infiltrates in solid tumors. PLoS One, 2017, 12(7)e0179726
[http://dx.doi.org/10.1371/journal.pone.0179726] [PMID: 28749946]
[32]
Banat, G.A.; Tretyn, A.; Pullamsetti, S.S.; Wilhelm, J.; Weigert, A.; Olesch, C.; Ebel, K.; Stiewe, T.; Grimminger, F.; Seeger, W.; Fink, L.; Savai, R. Immune and inflammatory cell composition of human lung cancer stroma. PLoS One, 2015, 10(9)e0139073
[http://dx.doi.org/10.1371/journal.pone.0139073] [PMID: 26413839]
[33]
Chen, F.; Yang, Y.; Zhao, Y.; Pei, L.; Yan, H. Immune infiltration profiling in nonsmall cell lung cancer and their clinical significance: Study based on gene expression measurements. DNA Cell Biol., 2019, 38(11), 1387-1401.
[http://dx.doi.org/10.1089/dna.2019.4899] [PMID: 31549881]
[34]
Singer, K.; Kastenberger, M.; Gottfried, E.; Hammerschmied, C.G.; Büttner, M.; Aigner, M.; Seliger, B.; Walter, B.; Schlösser, H.; Hartmann, A.; Andreesen, R.; Mackensen, A.; Kreutz, M. Warburg phenotype in renal cell carcinoma: High expression of glucose-transporter 1 (GLUT-1) correlates with low CD8(+) T-cell infiltration in the tumor. Int. J. Cancer, 2011, 128(9), 2085-2095.
[http://dx.doi.org/10.1002/ijc.25543] [PMID: 20607826]
[35]
Aida, S.; Aida, J.; Naoi, M.; Kato, M.; Tsuura, Y.; Natsume, I.; Takubo, K. Measurement of telomere length in cells from pleural effusion: Asbestos exposure causes telomere shortening in pleural mesothelial cells. Pathol. Int., 2018, 68(9), 503-508.
[http://dx.doi.org/10.1111/pin.12710] [PMID: 30098092]
[36]
Airley, R.; Evans, A.; Mobasheri, A.; Hewitt, S.M. Glucose transporter Glut-1 is detectable in peri-necrotic regions in many human tumor types but not normal tissues: Study using tissue microarrays. Ann. Anat., 2010, 192(3), 133-138.
[http://dx.doi.org/10.1016/j.aanat.2010.03.001] [PMID: 20395120]
[37]
Andersen, S.; Eilertsen, M.; Donnem, T.; Al-Shibli, K.; Al-Saad, S.; Busund, L.T.; Bremnes, R.M. Diverging prognostic impacts of hypoxic markers according to NSCLC histology. Lung Cancer, 2011, 72(3), 294-302.
[http://dx.doi.org/10.1016/j.lungcan.2010.10.006] [PMID: 21075472]
[38]
Koh, Y.W.; Lee, S.J.; Park, S.Y. Differential expression and prognostic significance of GLUT1 according to histologic type of non-small-cell lung cancer and its association with volume-dependent parameters. Lung Cancer, 2017, 104, 31-37.
[http://dx.doi.org/10.1016/j.lungcan.2016.12.003] [PMID: 28212997]
[39]
Chiu, C.H.; Yeh, Y.C.; Lin, K.H.; Wu, Y.C.; Lee, Y.C.; Chou, T.Y.; Tsai, C.M. Histological subtypes of lung adenocarcinoma have differential fluorodeoxyglucose uptakes on the positron emission tomography/computed tomography scan. J. Thorac. Oncol., 2011, 6(10), 1697-1703.
[http://dx.doi.org/10.1097/JTO.0b013e318226b677] [PMID: 21869716]
[40]
Choi, W.H.; Yoo, IeR. O, J.H.; Kim, T.J.; Lee, K.Y.; Kim, Y.K. Is the Glut expression related to FDG uptake in PET/CT of non-small cell lung cancer patients? Technol. Health Care, 2015, 23(Suppl. 2), S311-S318.
[http://dx.doi.org/10.3233/THC-150967] [PMID: 26410497]
[41]
Fan, R.; Hou, W.J.; Zhao, Y.J.; Liu, S.L.; Qiu, X.S.; Wang, E.H.; Wu, G.P. Overexpression of HPV16 E6/E7 mediated HIF-1α upregulation of GLUT1 expression in lung cancer cells. Tumour Biol., 2016, 37(4), 4655-4663.
[http://dx.doi.org/10.1007/s13277-015-4221-5] [PMID: 26508030]
[42]
Giatromanolaki, A.; Sivridis, E.; Arelaki, S.; Koukourakis, M.I. Expression of enzymes related to glucose metabolism in non-small cell lung cancer and prognosis. Exp. Lung Res., 2017, 43(4-5), 167-174.
[http://dx.doi.org/10.1080/01902148.2017.1328714] [PMID: 28644754]
[43]
Hu, M.; Xing, L.; Mu, D.; Yang, W.; Yang, G.; Kong, L.; Yu, J. Hypoxia imaging with 18F-fluoroerythronitroimidazole integrated PET/CT and immunohistochemical studies in non-small cell lung cancer. Clin. Nucl. Med., 2013, 38(8), 591-596.
[http://dx.doi.org/10.1097/RLU.0b013e318279fd3d] [PMID: 23797219]
[44]
Kaida, H.; Kawahara, A.; Hayakawa, M.; Hattori, S.; Kurata, S.; Fujimoto, K.; Azuma, K.; Hirose, Y.; Takamori, S.; Hiromatsu, Y.; Nakashima, T.; Fujita, H.; Kage, M.; Hayabuchi, N.; Ishibashi, M. The difference in relationship between 18F-FDG uptake and clinicopathological factors on thyroid, esophageal, and lung cancers. Nucl. Med. Commun., 2014, 35(1), 36-43.
[http://dx.doi.org/10.1097/MNM.0000000000000019] [PMID: 24169686]
[45]
Kaira, K.; Ohde, Y.; Nakagawa, K.; Okumura, T.; Murakami, H.; Takahashi, T.; Kondo, H.; Nakajima, T.; Endo, M.; Yamamoto, N. Thymidylate synthase expression is closely associated with outcome in patients with pulmonary adenocarcinoma. Med. Oncol., 2012, 29(3), 1663-1672.
[http://dx.doi.org/10.1007/s12032-011-0069-8] [PMID: 21948461]
[46]
Kaira, K.; Okumura, T.; Nakagawa, K.; Ohde, Y.; Takahashi, T.; Murakami, H.; Naito, T.; Endo, M.; Kondo, H.; Nakajima, T.; Yamamoto, N. MUC1 expression in pulmonary metastatic tumors: A comparison of primary lung cancer. Pathol. Oncol. Res., 2012, 18(2), 439-447.
[http://dx.doi.org/10.1007/s12253-011-9465-9] [PMID: 21964914]
[47]
Kaira, K.; Nakagawa, K.; Ohde, Y.; Okumura, T.; Takahashi, T.; Murakami, H.; Endo, M.; Kondo, H.; Nakajima, T.; Yamamoto, N. Depolarized MUC1 expression is closely associated with hypoxic markers and poor outcome in resected non-small cell lung cancer. Int. J. Surg. Pathol., 2012, 20(3), 223-232.
[http://dx.doi.org/10.1177/1066896911429296] [PMID: 22108499]
[48]
Kaira, K.; Oriuchi, N.; Takahashi, T.; Nakagawa, K.; Ohde, Y.; Okumura, T.; Murakami, H.; Shukuya, T.; Kenmotsu, H.; Naito, T.; Kanai, Y.; Endo, M.; Kondo, H.; Nakajima, T.; Yamamoto, N. LAT1 expression is closely associated with hypoxic markers and mTOR in resected non-small cell lung cancer. Am. J. Transl. Res., 2011, 3(5), 468-478.
[PMID: 22046488]
[49]
Kaira, K.; Serizawa, M.; Koh, Y.; Takahashi, T.; Yamaguchi, A.; Hanaoka, H.; Oriuchi, N.; Endo, M.; Ohde, Y.; Nakajima, T.; Yamamoto, N. Biological significance of 18F-FDG uptake on PET in patients with non-small-cell lung cancer. Lung Cancer, 2014, 83(2), 197-204.
[http://dx.doi.org/10.1016/j.lungcan.2013.11.025] [PMID: 24365102]
[50]
Kaira, K.; Shimizu, K.; Kitahara, S.; Yajima, T.; Atsumi, J.; Kosaka, T.; Ohtaki, Y.; Higuchi, T.; Oyama, T.; Asao, T.; Mogi, A. 2-Deoxy-2-[fluorine-18] fluoro-d-glucose uptake on positron emission tomography is associated with programmed death ligand-1 expression in patients with pulmonary adenocarcinoma. Eur. J. Cancer, 2018, 101, 181-190.
[http://dx.doi.org/10.1016/j.ejca.2018.06.022] [PMID: 30077123]
[51]
Kang, D.Y.; Lee, H.W.; Choi, P.J.; Lee, K.E.; Roh, M.S. Sodium/iodide symporter expression in primary lung cancer and comparison with glucose transporter 1 expression. Pathol. Int., 2009, 59(2), 73-79.
[http://dx.doi.org/10.1111/j.1440-1827.2008.02331.x] [PMID: 19154259]
[52]
Karpathiou, G.; Sivridis, E.; Koukourakis, M.; Mikroulis, D.; Bouros, D.; Froudarakis, M.; Bougioukas, G.; Maltezos, E.; Giatromanolaki, A. Autophagy and Bcl-2/BNIP3 death regulatory pathway in non-small cell lung carcinomas. APMIS, 2013, 121(7), 592-604.
[http://dx.doi.org/10.1111/apm.12026] [PMID: 23216071]
[53]
Kasahara, N.; Kaira, K.; Bao, P.; Higuchi, T.; Arisaka, Y.; Erkhem-Ochir, B.; Sunaga, N.; Ohtaki, Y.; Yajima, T.; Kosaka, T.; Oyama, T.; Yokobori, T.; Asao, T.; Nishiyama, M.; Tsushima, Y.; Kuwano, H.; Shimizu, K.; Mogi, A. Correlation of tumor-related immunity with 18F-FDG-PET in pulmonary squamous-cell carcinoma. Lung Cancer, 2018, 119, 71-77.
[http://dx.doi.org/10.1016/j.lungcan.2018.03.001] [PMID: 29656756]
[54]
Liu, L.; Lei, B.; Wang, L.; Chang, C.; Yang, H.; Liu, J.; Huang, G.; Xie, W. Protein kinase C-iota-mediated glycolysis promotes non-small-cell lung cancer progression. OncoTargets Ther., 2019, 12, 5835-5848.
[http://dx.doi.org/10.2147/OTT.S207211] [PMID: 31410027]
[55]
Maki, Y.; Soh, J.; Ichimura, K.; Shien, K.; Furukawa, M.; Muraoka, T.; Tanaka, N.; Ueno, T.; Yamamoto, H.; Asano, H.; Tsukuda, K.; Toyooka, S.; Miyoshi, S. Impact of GLUT1 and Ki-67 expression on early stage lung adenocarcinoma diagnosed according to a new international multidisciplinary classification. Oncol. Rep., 2013, 29(1), 133-140.
[http://dx.doi.org/10.3892/or.2012.2087] [PMID: 23076555]
[56]
Meijer, T.W.; Schuurbiers, O.C.; Kaanders, J.H.; Looijen-Salamon, M.G.; de Geus-Oei, L.F.; Verhagen, A.F.; Lok, J.; van der Heijden, H.F.; Rademakers, S.E.; Span, P.N.; Bussink, J. Differences in metabolism between adeno- and squamous cell non-small cell lung carcinomas: Spatial distribution and prognostic value of GLUT1 and MCT4. Lung Cancer, 2012, 76(3), 316-323.
[http://dx.doi.org/10.1016/j.lungcan.2011.11.006] [PMID: 22153830]
[57]
Minami, K.; Saito, Y.; Imamura, H.; Okamura, A. Prognostic significance of p53, Ki-67, VEGF and Glut-1 in resected stage I adenocarcinoma of the lung. Lung Cancer, 2002, 38(1), 51-57.
[http://dx.doi.org/10.1016/S0169-5002(02)00108-3] [PMID: 12367793]
[58]
Suzawa, N.; Ito, M.; Qiao, S.; Uchida, K.; Takao, M.; Yamada, T.; Takeda, K.; Murashima, S. Assessment of factors influencing FDG uptake in non-small cell lung cancer on PET/CT by investigating histological differences in expression of glucose transporters 1 and 3 and tumour size. Lung Cancer, 2011, 72(2), 191-198.
[http://dx.doi.org/10.1016/j.lungcan.2010.08.017] [PMID: 20884076]
[59]
Osugi, J.; Yamaura, T.; Muto, S.; Okabe, N.; Matsumura, Y.; Hoshino, M.; Higuchi, M.; Suzuki, H.; Gotoh, M. Prognostic impact of the combination of glucose transporter 1 and ATP citrate lyase in node-negative patients with non-small lung cancer. Lung Cancer, 2015, 88(3), 310-318.
[http://dx.doi.org/10.1016/j.lungcan.2015.03.004] [PMID: 25837797]
[60]
Sasaki, H.; Shitara, M.; Yokota, K.; Hikosaka, Y.; Moriyama, S.; Yano, M.; Fujii, Y. Overexpression of GLUT1 correlates with Kras mutations in lung carcinomas. Mol. Med. Rep., 2012, 5(3), 599-602.
[PMID: 22200795]
[61]
Üçer, Ö.; Dağli, A.F.; Kiliçarslan, A.; Artaş, G. Value of Glut-1 and Koc markers in the differential diagnosis of reactive mesothelial hyperplasia, malignant mesothelioma and pulmonary adenocarcinoma. Turk Patoloji Derg., 2013, 29(2), 94-100.
[http://dx.doi.org/10.5146/tjpath.2013.01158] [PMID: 23661345]
[62]
Younes, M.; Brown, R.W.; Stephenson, M.; Gondo, M.; Cagle, P.T. Overexpression of Glut1 and Glut3 in stage I nonsmall cell lung carcinoma is associated with poor survival. Cancer, 1997, 80(6), 1046-1051.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19970915)80:6<1046:AID-CNCR6>3.0.CO;2-7] [PMID: 9305704]
[63]
Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia, 2017, 19(8), 649-658.
[http://dx.doi.org/10.1016/j.neo.2017.05.002] [PMID: 28732212]
[64]
Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; Antipin, Y.; Reva, B.; Goldberg, A.P.; Sander, C.; Schultz, N. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov., 2012, 2(5), 401-404.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0095] [PMID: 22588877]
[65]
Li, T.; Fan, J.; Wang, B.; Traugh, N.; Chen, Q.; Liu, J.S.; Li, B.; Liu, X.S. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res., 2017, 77(21), e108-e110.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0307] [PMID: 29092952]
[66]
Lim, S.M.; Hong, M.H.; Kim, H.R. Immunotherapy for Non-small Cell Lung Cancer: Current Landscape and Future Perspectives. Immune Netw., 2020, 20(1)e10
[http://dx.doi.org/10.4110/in.2020.20.e10] [PMID: 32158598]
[67]
Luo, Y.; Li, B.; Zhang, G.; He, Y.; Bae, J.H.; Hu, F.; Cui, R.; Liu, R.; Wang, Z.; Wang, L. Integrated oncogenomic profiling of copy numbers and gene expression in lung adenocarcinomas without EGFR mutations or ALK fusion. J. Cancer, 2018, 9(6), 1096-1105.
[http://dx.doi.org/10.7150/jca.23909] [PMID: 29581789]
[68]
Codony-Servat, J.; Codony-Servat, C.; Cardona, A.F.; Giménez-Capitán, A.; Drozdowskyj, A.; Berenguer, J.; Bracht, J.W.P.; Ito, M.; Karachaliou, N.; Rosell, R. Cancer stem cell biomarkers in EGFR-mutation-positive non-small-cell lung cancer. Clin. Lung Cancer, 2019, 20(3), 167-177.
[http://dx.doi.org/10.1016/j.cllc.2019.02.005] [PMID: 30885551]
[69]
Planchard, D.; Smit, E.F.; Groen, H.J.M.; Mazieres, J.; Besse, B.; Helland, Å.; Giannone, V.; D’Amelio, A.M., Jr; Zhang, P.; Mookerjee, B.; Johnson, B.E. Dabrafenib plus trametinib in patients with previously untreated BRAFV600E-mutant metastatic non-small-cell lung cancer: An open-label, phase 2 trial. Lancet Oncol., 2017, 18(10), 1307-1316.
[http://dx.doi.org/10.1016/S1470-2045(17)30679-4] [PMID: 28919011]
[70]
Subbiah, V.; Yang, D.; Velcheti, V.; Drilon, A.; Meric-Bernstam, F. State-of-the-Art Strategies for Targeting RET-Dependent Cancers. J. Clin. Oncol., 2020, 38(11), 1209-1221.
[http://dx.doi.org/10.1200/JCO.19.02551] [PMID: 32083997]
[71]
Jorge, S.E.; Schulman, S.; Freed, J.A.; VanderLaan, P.A.; Rangachari, D.; Kobayashi, S.S.; Huberman, M.S.; Costa, D.B. Responses to the multitargeted MET/ALK/ROS1 inhibitor crizotinib and co-occurring mutations in lung adenocarcinomas with MET amplification or MET exon 14 skipping mutation. Lung Cancer, 2015, 90(3), 369-374.
[http://dx.doi.org/10.1016/j.lungcan.2015.10.028] [PMID: 26791794]
[72]
Caparica, R.; Yen, C.T.; Coudry, R.; Ou, S.I.; Varella-Garcia, M.; Camidge, D.R.; de Castro, G. Jr Responses to Crizotinib Can Occur in High-Level MET-Amplified Non-Small Cell Lung Cancer Independent of MET Exon 14 Alterations. J. Thorac. Oncol., 2017, 12(1), 141-144.
[http://dx.doi.org/10.1016/j.jtho.2016.09.116] [PMID: 27664533]
[73]
Schildhaus, H.U.; Schultheis, A.M.; Rüschoff, J.; Binot, E.; Merkelbach-Bruse, S.; Fassunke, J.; Schulte, W.; Ko, Y.D.; Schlesinger, A.; Bos, M.; Gardizi, M.; Engel-Riedel, W.; Brockmann, M.; Serke, M.; Gerigk, U.; Hekmat, K.; Frank, K.F.; Reiser, M.; Schulz, H.; Krüger, S.; Stoelben, E.; Zander, T.; Wolf, J.; Buettner, R. MET amplification status in therapy-naïve adeno- and squamous cell carcinomas of the lung. Clin. Cancer Res., 2015, 21(4), 907-915.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0450] [PMID: 25492085]
[74]
Li, B.T.; Ross, D.S.; Aisner, D.L.; Chaft, J.E.; Hsu, M.; Kako, S.L.; Kris, M.G.; Varella-Garcia, M.; Arcila, M.E. HER2 amplification and HER2 mutation are distinct molecular targets in lung cancers. J. Thorac. Oncol., 2016, 11(3), 414-419.
[http://dx.doi.org/10.1016/j.jtho.2015.10.025] [PMID: 26723242]
[75]
Bodor, J.N.; Boumber, Y.; Borghaei, H. Biomarkers for immune checkpoint inhibition in non-small cell lung cancer (NSCLC). Cancer, 2020, 126(2), 260-270.
[http://dx.doi.org/10.1002/cncr.32468] [PMID: 31691957]
[76]
Arbour, K.C.; Riely, G.J. Systemic therapy for locally advanced and metastatic non-small cell lung cancer: A review. JAMA, 2019, 322(8), 764-774.
[http://dx.doi.org/10.1001/jama.2019.11058] [PMID: 31454018]
[77]
Selvan, S.R.; Dowling, J.P.; Kelly, W.K.; Lin, J. Indoleamine 2,3-dioxygenase (IDO): Biology and target in cancer immunotherapies. Curr. Cancer Drug Targets, 2016, 16(9), 755-764.
[http://dx.doi.org/10.2174/1568009615666151030102250] [PMID: 26517538]
[78]
Sholl, L.M. Biomarkers in lung adenocarcinoma: A decade of progress. Arch. Pathol. Lab. Med., 2015, 139(4), 469-480.
[http://dx.doi.org/10.5858/arpa.2014-0128-RA] [PMID: 25255293]
[79]
Dong, Z.Y.; Zhong, W.Z.; Zhang, X.C.; Su, J.; Xie, Z.; Liu, S.Y.; Tu, H.Y.; Chen, H.J.; Sun, Y.L.; Zhou, Q.; Yang, J.J.; Yang, X.N.; Lin, J.X.; Yan, H.H.; Zhai, H.R.; Yan, L.X.; Liao, R.Q.; Wu, S.P.; Wu, Y.L. Potential predictive value of TP53 and KRAS mutation status for response to pd-1 blockade immunotherapy in lung adenocarcinoma. Clin. Cancer Res., 2017, 23(12), 3012-3024.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2554] [PMID: 28039262]
[80]
Nokin, M.J.; Darbo, E.; Travert, C.; Drogat, B.; Lacouture, A.; San José, S.; Cabrera, N.; Turcq, B.; Prouzet-Mauleon, V.; Falcone, M.; Villanueva, A.; Wang, H.; Herfs, M.; Mosteiro, M.; Jänne, P.A.; Pujol, J.L.; Maraver, A.; Barbacid, M.; Nadal, E.; Santamaría, D.; Ambrogio, C. Inhibition of DDR1 enhances in vivo chemosensitivity in KRAS-mutant lung adenocarcinoma. JCI Insight, 2020, 5(15)e137869
[http://dx.doi.org/10.1172/jci.insight.137869] [PMID: 32759499]
[81]
Skoulidis, F.; Goldberg, M.E.; Greenawalt, D.M.; Hellmann, M.D.; Awad, M.M.; Gainor, J.F.; Schrock, A.B.; Hartmaier, R.J.; Trabucco, S.E.; Gay, L.; Ali, S.M.; Elvin, J.A.; Singal, G.; Ross, J.S.; Fabrizio, D.; Szabo, P.M.; Chang, H.; Sasson, A.; Srinivasan, S.; Kirov, S.; Szustakowski, J.; Vitazka, P.; Edwards, R.; Bufill, J.A.; Sharma, N.; Ou, S.I.; Peled, N.; Spigel, D.R.; Rizvi, H.; Aguilar, E.J.; Carter, B.W.; Erasmus, J.; Halpenny, D.F.; Plodkowski, A.J.; Long, N.M.; Nishino, M.; Denning, W.L.; Galan-Cobo, A.; Hamdi, H.; Hirz, T.; Tong, P.; Wang, J.; Rodriguez-Canales, J.; Villalobos, P.A.; Parra, E.R.; Kalhor, N.; Sholl, L.M.; Sauter, J.L.; Jungbluth, A.A.; Mino-Kenudson, M.; Azimi, R.; Elamin, Y.Y.; Zhang, J.; Leonardi, G.C.; Jiang, F.; Wong, K.K.; Lee, J.J.; Papadimitrakopoulou, V.A.; Wistuba, I.I.; Miller, V.A.; Frampton, G.M.; Wolchok, J.D.; Shaw, A.T.; Jänne, P.A.; Stephens, P.J.; Rudin, C.M.; Geese, W.J.; Albacker, L.A.; Heymach, J.V. STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma. Cancer Discov., 2018, 8(7), 822-835.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0099] [PMID: 29773717]
[82]
Chen, H.; Carrot-Zhang, J.; Zhao, Y.; Hu, H.; Freeman, S.S.; Yu, S.; Ha, G.; Taylor, A.M.; Berger, A.C.; Westlake, L.; Zheng, Y.; Zhang, J.; Ramachandran, A.; Zheng, Q.; Pan, Y.; Zheng, D.; Zheng, S.; Cheng, C.; Kuang, M.; Zhou, X.; Zhang, Y.; Li, H.; Ye, T.; Ma, Y.; Gao, Z.; Tao, X.; Han, H.; Shang, J.; Yu, Y.; Bao, D.; Huang, Y.; Li, X.; Zhang, Y.; Xiang, J.; Sun, Y.; Li, Y.; Cherniack, A.D.; Campbell, J.D.; Shi, L.; Meyerson, M. Genomic and immune profiling of pre-invasive lung adenocarcinoma. Nat. Commun., 2019, 10(1), 5472.
[http://dx.doi.org/10.1038/s41467-019-13460-3] [PMID: 31784532]
[83]
Liu, W.J.; Du, Y.; Wen, R.; Yang, M.; Xu, J. Drug resistance to targeted therapeutic strategies in non-small cell lung cancer. Pharmacol. Ther., 2020, 206107438
[http://dx.doi.org/10.1016/j.pharmthera.2019.107438] [PMID: 31715289]
[84]
Shaurova, T.; Dy, G.K.; Battaglia, S.; Hutson, A.; Zhang, L.; Zhang, Y.; Lovly, C.M.; Seshadri, M.; Goodrich, D.W.; Johnson, C.S.; Hershberger, P.A. Vitamin D3 Metabolites Demonstrate Prognostic Value in EGFR-Mutant Lung Adenocarcinoma and Can be Deployed to Oppose Acquired Therapeutic Resistance. Cancers (Basel), 2020, 12(3), 675.
[http://dx.doi.org/10.3390/cancers12030675] [PMID: 32183160]
[85]
Stewart, P.A.; Parapatics, K.; Welsh, E.A.; Müller, A.C.; Cao, H.; Fang, B.; Koomen, J.M.; Eschrich, S.A.; Bennett, K.L.; Haura, E.B. A pilot proteogenomic study with data integration identifies MCT1 and GLUT1 as prognostic markers in lung adenocarcinoma. PLoS One, 2015, 10(11)e0142162
[http://dx.doi.org/10.1371/journal.pone.0142162] [PMID: 26539827]
[86]
Laudański, P.; Swiatecka, J.; Kovalchuk, O.; Wołczyński, S. Expression of GLUT1 gene in breast cancer cell lines MCF-7 and MDA-MB-231. Ginekol. Pol., 2003, 74(9), 782-785.
[PMID: 14674124]
[87]
Kraus, D.; Reckenbeil, J.; Wenghoefer, M.; Stark, H.; Frentzen, M.; Allam, J.P.; Novak, N.; Frede, S.; Götz, W.; Probstmeier, R.; Meyer, R.; Winter, J. Ghrelin promotes oral tumor cell proliferation by modifying GLUT1 expression. Cell. Mol. Life Sci., 2016, 73(6), 1287-1299.
[http://dx.doi.org/10.1007/s00018-015-2048-2] [PMID: 26407611]
[88]
Ma, J.; Liu, W.; Guo, H.; Li, S.; Cao, W.; Du, X.; Lei, S.; Hou, W.; Xiong, L.; Yao, L.; Li, N.; Li, Y. N-myc downstream-regulated gene 2 expression is associated with glucose transport and correlated with prognosis in breast carcinoma. Breast Cancer Res., 2014, 16(2), R27.
[http://dx.doi.org/10.1186/bcr3628] [PMID: 24636131]
[89]
Cifuentes, M.; García, M.A.; Arrabal, P.M.; Martínez, F.; Yañez, M.J.; Jara, N.; Weil, B.; Domínguez, D.; Medina, R.A.; Nualart, F. Insulin regulates GLUT1-mediated glucose transport in MG-63 human osteosarcoma cells. J. Cell. Physiol., 2011, 226(6), 1425-1432.
[http://dx.doi.org/10.1002/jcp.22668] [PMID: 21321933]
[90]
Xu, Y.Y.; Bao, Y.Y.; Zhou, S.H.; Fan, J. Effect on the expression of MMP-2, MT-MMP in laryngeal carcinoma Hep-2 cell line by antisense glucose transporter-1. Arch. Med. Res., 2012, 43(5), 395-401.
[http://dx.doi.org/10.1016/j.arcmed.2012.07.003] [PMID: 22835601]
[91]
Meijer, T.W.H.; Looijen-Salamon, M.G.; Lok, J.; van den Heuvel, M.; Tops, B.; Kaanders, J.H.A.M.; Span, P.N.; Bussink, J. Glucose and glutamine metabolism in relation to mutational status in NSCLC histological subtypes. Thorac. Cancer, 2019, 10(12), 2289-2299.
[http://dx.doi.org/10.1111/1759-7714.13226] [PMID: 31668020]
[92]
Liu, J.; Lu, F.; Gong, Y.; Zhao, C.; Pan, Q.; Ballantyne, S.; Zhao, X.; Tian, S.; Chen, H. High expression of synthesis of cytochrome c oxidase 2 and TP53-induced glycolysis and apoptosis regulator can predict poor prognosis in human lung adenocarcinoma. Hum. Pathol., 2018, 77, 54-62.
[http://dx.doi.org/10.1016/j.humpath.2017.12.029] [PMID: 29634976]
[93]
Stankovic, B.; Bjørhovde, H.A.K.; Skarshaug, R.; Aamodt, H.; Frafjord, A.; Müller, E.; Hammarström, C.; Beraki, K.; Bækkevold, E.S.; Woldbæk, P.R.; Helland, Å.; Brustugun, O.T.; Øynebråten, I.; Corthay, A. Immune cell composition in human non-small cell lung cancer. Front. Immunol., 2019, 9, 3101.
[http://dx.doi.org/10.3389/fimmu.2018.03101] [PMID: 30774636]
[94]
Santarpia, M.; Giovannetti, E.; Rolfo, C.; Karachaliou, N.; González-Cao, M.; Altavilla, G.; Rosell, R. Recent developments in the use of immunotherapy in non-small cell lung cancer. Expert Rev. Respir. Med., 2016, 10(7), 781-798.
[http://dx.doi.org/10.1080/17476348.2016.1182866] [PMID: 27148808]
[95]
Liao, X.; Bu, Y.; Xu, Z.; Jia, F.; Chang, F.; Liang, J.; Jia, Q.; Lv, Y. WISP1 predicts clinical prognosis and is associated with tumor purity, immunocyte infiltration, and macrophage M2 polarization in pan-cancer. Front. Genet., 2020, 11, 502.
[http://dx.doi.org/10.3389/fgene.2020.00502] [PMID: 32523603]
[96]
Zawacka-Pankau, J.; Grinkevich, V.V.; Hünten, S.; Nikulenkov, F.; Gluch, A.; Li, H.; Enge, M.; Kel, A.; Selivanova, G. Inhibition of glycolytic enzymes mediated by pharmacologically activated p53: Targeting Warburg effect to fight cancer. J. Biol. Chem., 2011, 286(48), 41600-41615.
[http://dx.doi.org/10.1074/jbc.M111.240812] [PMID: 21862591]
[97]
Barron, C.C.; Bilan, P.J.; Tsakiridis, T.; Tsiani, E. Facilitative glucose transporters: Implications for cancer detection, prognosis and treatment. Metabolism, 2016, 65(2), 124-139.
[http://dx.doi.org/10.1016/j.metabol.2015.10.007] [PMID: 26773935]
[98]
Grdisa, M.; White, M.K. Molecular and biochemical events during differentiation of the HD3 chicken erythroblastic cell line. Int. J. Biochem. Cell Biol., 2003, 35(4), 422-431.
[http://dx.doi.org/10.1016/S1357-2725(02)00281-9] [PMID: 12565704]
[99]
Tonack, S.; Kind, K.; Thompson, J.G.; Wobus, A.M.; Fischer, B.; Santos, A.N. Dioxin affects glucose transport via the arylhydrocarbon receptor signal cascade in pluripotent embryonic carcinoma cells. Endocrinology, 2007, 148(12), 5902-5912.
[http://dx.doi.org/10.1210/en.2007-0254] [PMID: 17872374]
[100]
Aerni-Flessner, L.; Abi-Jaoude, M.; Koenig, A.; Payne, M.; Hruz, P.W. GLUT4, GLUT1, and GLUT8 are the dominant GLUT transcripts expressed in the murine left ventricle. Cardiovasc. Diabetol., 2012, 11, 63.
[http://dx.doi.org/10.1186/1475-2840-11-63] [PMID: 22681646]
[101]
Liu, Y.; Qiao, Y.; Hu, C.; Liu, L.; Zhou, L.; Liu, B.; Chen, H.; Jiang, X. VEGFR2 inhibition by RNA interference affects cell proliferation, migration, invasion, and response to radiation in Calu-1 cells. Clin. Transl. Oncol., 2016, 18(2), 212-219.
[http://dx.doi.org/10.1007/s12094-015-1358-z] [PMID: 26459253]
[102]
Wan, J.; Chai, H.; Yu, Z.; Ge, W.; Kang, N.; Xia, W.; Che, Y. HIF-1α effects on angiogenic potential in human small cell lung carcinoma. J. Exp. Clin. Cancer Res., 2011, 30(1), 77.
[http://dx.doi.org/10.1186/1756-9966-30-77] [PMID: 21843314]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy