Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Recent Advances in Efficacy of using Doxorubicin Gold Nanoparticles for Chemo-, Radio-, Photothermal, and Photodynamic Therapy

Author(s): Niloufar Choubdar*, Sara Avizheh and Seyed Ali Karimifard

Volume 19, Issue 7, 2022

Published on: 20 January, 2022

Page: [745 - 762] Pages: 18

DOI: 10.2174/1567201818666210707110742

Price: $65

Abstract

Nanoparticles (NPs) have been widely used in drug delivery systems specifically for chemo-, radio-, photothermal, and photodynamic therapy. Due to the lack of selectivity toward tumor cells, the main target in therapies is to deliver drugs to cancer cells to reduce side effects. Gold nanoparticles (AuNPs) have been described as “promising nanocarriers for therapeutics” due to many properties such as low inherent toxicity, high water solubility, and biocompatibility. Many research groups have focused on taking advantage of two or more therapies simultaneously to have increased efficacy using a lower dosage of the therapeutic drug and reduced multi-drug resistance (MDR). Alternatively, doxorubicin (Dox) modification has been used as a strategy for increased selectivity toward target cells. Over the years, many studies have been performed on NPs to eliminate side effects using polymers, peptides, proteins, DNA, metallic NPs, microgels, and hydrogels on drug carriers. In this review, recent advances of using Dox-AuNPs for chemo-, radio-, photothermal, photodynamic, and combination therapy are briefly discussed, and we also highlight recent progress in the application of Dox-AuNPs for effective cancer therapy.

Keywords: Doxorubicin, gold nanoparticle, chemotherapy, photothermal therapy, photodynamic therapy, radiotherapy.

Graphical Abstract

[1]
Cai, W.; Gao, T.; Hong, H.; Sun, J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol. Sci. Appl., 2008, 1, 17-32.
[http://dx.doi.org/10.2147/NSA.S3788] [PMID: 24198458]
[2]
Zhao, C-Y.; Cheng, R.; Yang, Z.; Tian, Z-M. Nanotechnology for cancer therapy based on chemotherapy. Molecules, 2018, 23(4), 826.
[http://dx.doi.org/10.3390/molecules23040826] [PMID: 29617302]
[3]
Choubdar, N.; Avizheh, S. Nanotechnology based delivery systems of drugs currently used to treat alzheimer’s disease. Nanosci. Nanotechnol. Asia, 2020, 10(3), 228-247.
[http://dx.doi.org/10.2174/2210681209666190228143636]
[4]
Kanwal, U.; Irfan Bukhari, N.; Ovais, M.; Abass, N.; Hussain, K.; Raza, A. Advances in nano-delivery systems for doxorubicin: An updated insight. J. Drug Target., 2018, 26(4), 296-310.
[http://dx.doi.org/10.1080/1061186X.2017.1380655] [PMID: 28906159]
[5]
Nealon, G.L.; Donnio, B.; Greget, R.; Kappler, J-P.; Terazzi, E.; Gallani, J-L. Magnetism in gold nanoparticles. Nanoscale, 2012, 4(17), 5244-5258.
[http://dx.doi.org/10.1039/c2nr30640a] [PMID: 22814797]
[6]
Patra, C.R.; Bhattacharya, R.; Mukhopadhyay, D.; Mukherjee, P. Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv. Drug Deliv. Rev., 2010, 62(3), 346-361.
[http://dx.doi.org/10.1016/j.addr.2009.11.007] [PMID: 19914317]
[7]
Duncan, B.; Kim, C.; Rotello, V.M. Gold nanoparticle platforms as drug and biomacromolecule delivery systems. J. Control. Release, 2010, 148(1), 122-127.
[http://dx.doi.org/10.1016/j.jconrel.2010.06.004] [PMID: 20547192]
[8]
Kumar, A.; Zhang, X.; Liang, X-J. Gold nanoparticles: Emerging paradigm for targeted drug delivery system. Biotechnol. Adv., 2013, 31(5), 593-606.
[http://dx.doi.org/10.1016/j.biotechadv.2012.10.002] [PMID: 23111203]
[9]
Marinakos, S.M.; Novak, J.P.; Brousseau, L.C.; House, A.B.; Edeki, E.M.; Feldhaus, J.C.; Feldheim, D.L. Gold particles as templates for the synthesis of hollow polymer capsules. Control of capsule dimensions and guest encapsulation. J. Am. Chem. Soc., 1999, 121(37), 8518-8522.
[http://dx.doi.org/10.1021/ja990945k]
[10]
Sershen, S.R.; Westcott, S.L.; Halas, N.J.; West, J.L. Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res., 2000, 51(3), 293-298.
[http://dx.doi.org/10.1002/1097-4636(20000905)51:3<293::AID-JBM1>3.0.CO;2-T] [PMID: 10880069]
[11]
McIntosh, C.M.; Esposito, E.A., III; Boal, A.K.; Simard, J.M.; Martin, C.T.; Rotello, V.M. Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters. J. Am. Chem. Soc., 2001, 123(31), 7626-7629.
[http://dx.doi.org/10.1021/ja015556g] [PMID: 11480984]
[12]
Pinto-Alphandary, H.; Aboubakar, M.; Jaillard, D.; Couvreur, P.; Vauthier, C. Visualization of insulin-loaded nanocapsules: In vitro and in vivo studies after oral administration to rats. Pharm. Res., 2003, 20(7), 1071-1084.
[http://dx.doi.org/10.1023/A:1024470508758] [PMID: 12880294]
[13]
Schellenberger, E.A.; Reynolds, F.; Weissleder, R.; Josephson, L. Surface-functionalized nanoparticle library yields probes for apoptotic cells. Chem BioChem, 2004, 5(3), 275-279.
[http://dx.doi.org/10.1002/cbic.200300713] [PMID: 14997519]
[14]
Paciotti, G.F.; Myer, L.; Weinreich, D.; Goia, D.; Pavel, N.; McLaughlin, R.E.; Tamarkin, L. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv., 2004, 11(3), 169-183.
[http://dx.doi.org/10.1080/10717540490433895] [PMID: 15204636]
[15]
Bodelon, G.; Costas, C.; Perez-Juste, J.; Pastoriza-Santos, I.; Liz- Marzan, L.M. Gold nanoparticles for regulation of cell function and behavior. Nano Today, 2017, 13, 40-60.
[http://dx.doi.org/10.1016/j.nantod.2016.12.014]
[16]
Mao, W.; Son, Y.J.; Yoo, H.S. Gold nanospheres and nanorods for anti-cancer therapy: comparative studies of fabrication, surface-decoration, and anti-cancer treatments. Nanoscale, 2020, 12(28), 14996-15020.
[http://dx.doi.org/10.1039/D0NR01690J] [PMID: 32666990]
[17]
Lee, J.; Chatterjee, D.K.; Lee, M.H.; Krishnan, S. Gold nanoparticles in breast cancer treatment: promise and potential pitfalls. Cancer Lett., 2014, 347(1), 46-53.
[http://dx.doi.org/10.1016/j.canlet.2014.02.006] [PMID: 24556077]
[18]
Sau, T.K.; Murphy, C.J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc., 2004, 126(28), 8648-8649.
[http://dx.doi.org/10.1021/ja047846d] [PMID: 15250706]
[19]
Khlebtsov, N.G.; Dykman, L.A. Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transf., 2010, 111(1), 1-35.
[http://dx.doi.org/10.1016/j.jqsrt.2009.07.012]
[20]
Howes, P.D.; Chandrawati, R.; Stevens, M.M. Bionanotechnology. Colloidal nanoparticles as advanced biological sensors. Science, 2014, 346(6205), 1247390.
[http://dx.doi.org/10.1126/science.1247390] [PMID: 25278614]
[21]
Austin, L.A.; Kang, B.; El-Sayed, M.A. Probing molecular cell event dynamics at the single-cell level with targeted plasmonic gold nanoparticles: a review. Nano Today, 2015, 10(5), 542-558.
[http://dx.doi.org/10.1016/j.nantod.2015.07.005]
[22]
Kim, E.Y.; Kumar, D.; Khang, G.; Lim, D-K. Recent advances in gold nanoparticle-based bioengineering applications. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(43), 8433-8444.
[http://dx.doi.org/10.1039/C5TB01292A] [PMID: 32262682]
[23]
Dykman, L.; Khlebtsov, N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev., 2012, 41(6), 2256-2282.
[http://dx.doi.org/10.1039/C1CS15166E] [PMID: 22130549]
[24]
Giljohann, D.A.; Seferos, D.S.; Daniel, W.L.; Massich, M.D.; Patel, P.C.; Mirkin, C.A. Gold nanoparticles for biology and medicine. Angew. Chem. Int. Ed. Engl., 2010, 49(19), 3280-3294.
[http://dx.doi.org/10.1002/anie.200904359] [PMID: 20401880]
[25]
Dreaden, E.C.; Alkilany, A.M.; Huang, X.; Murphy, C.J.; El-Sayed, M.A. The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev., 2012, 41(7), 2740-2779.
[http://dx.doi.org/10.1039/C1CS15237H] [PMID: 22109657]
[26]
Lin, M.; Pei, H.; Yang, F.; Fan, C.; Zuo, X. Applications of gold nanoparticles in the detection and identification of infectious diseases and biothreats; Wiley Online Library, 2013.
[http://dx.doi.org/10.1002/adma.201301333]
[27]
Zhang, X. Gold nanoparticles: recent advances in the biomedical applications. Cell Biochem. Biophys., 2015, 72(3), 771-775.
[http://dx.doi.org/10.1007/s12013-015-0529-4] [PMID: 25663504]
[28]
Tiwari, P.M.; Vig, K.; Dennis, V.A.; Singh, S.R. Functionalized gold nanoparticles and their biomedical applications. Nanomaterials (Basel), 2011, 1(1), 31-63.
[http://dx.doi.org/10.3390/nano1010031] [PMID: 28348279]
[29]
Bao, Q-Y.; Geng, D-D.; Xue, J-W.; Zhou, G.; Gu, S-Y.; Ding, Y.; Zhang, C. Glutathione-mediated drug release from Tiopronin-conjugated gold nanoparticles for acute liver injury therapy. Int. J. Pharm., 2013, 446(1-2), 112-118.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.073] [PMID: 23416166]
[30]
Paciotti, G.F.; Kingston, D.G.; Tamarkin, L. Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Dev. Res., 2006, 67(1), 47-54.
[http://dx.doi.org/10.1002/ddr.20066]
[31]
Aryal, S.; Grailer, J.J.; Pilla, S.; Steeber, D.A.; Gong, S. Doxorubicin conjugated gold nanoparticles as water-soluble and pH-responsive anticancer drug nanocarriers. J. Mater. Chem., 2009, 19(42), 7879-7884.
[http://dx.doi.org/10.1039/b914071a]
[32]
Vaupel, P. In Tumor microenvironmental physiology and its implications for radiation oncology, Seminars in radiation oncology; Elsevier, 2004, pp. 198-206.
[33]
Murphy, R.F.; Powers, S.; Cantor, C.R. Endosome pH measured in single cells by dual fluorescence flow cytometry: rapid acidification of insulin to pH 6. J. Cell Biol., 1984, 98(5), 1757-1762.
[http://dx.doi.org/10.1083/jcb.98.5.1757] [PMID: 6144684]
[34]
Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect., 2005, 113(7), 823-839.
[http://dx.doi.org/10.1289/ehp.7339] [PMID: 16002369]
[35]
Lasagna-Reeves, C.; Gonzalez-Romero, D.; Barria, M.A.; Olmedo, I.; Clos, A.; Sadagopa Ramanujam, V.M.; Urayama, A.; Vergara, L.; Kogan, M.J.; Soto, C. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem. Biophys. Res. Commun., 2010, 393(4), 649-655.
[http://dx.doi.org/10.1016/j.bbrc.2010.02.046] [PMID: 20153731]
[36]
Love, S.A.; Thompson, J.W.; Haynes, C.L. Development of screening assays for nanoparticle toxicity assessment in human blood: preliminary studies with charged Au nanoparticles. Nanomedicine (Lond.), 2012, 7(9), 1355-1364.
[http://dx.doi.org/10.2217/nnm.12.17] [PMID: 22583573]
[37]
Agasti, S.S.; Chompoosor, A.; You, C-C.; Ghosh, P.; Kim, C.K.; Rotello, V.M. Photoregulated release of caged anticancer drugs from gold nanoparticles. J. Am. Chem. Soc., 2009, 131(16), 5728-5729.
[http://dx.doi.org/10.1021/ja900591t] [PMID: 19351115]
[38]
Deol, S.; Weerasuriya, N.; Shon, Y-S. Stability, cytotoxicity and cell uptake of water-soluble dendron-conjugated gold nanoparticles with 3, 12 and 17 nm cores. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(29), 6071-6080.
[http://dx.doi.org/10.1039/C5TB00608B] [PMID: 26366289]
[39]
Yu, Q.; Li, J.; Zhang, Y.; Wang, Y.; Liu, L.; Li, M. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells. Sci. Rep., 2016, 6(1), 26667.
[http://dx.doi.org/10.1038/srep26667] [PMID: 27220400]
[40]
Gillet, J-P.; Gottesman, M.M. Mechanisms of multidrug resistance in cancer.Multi-drug resistance in cancer; Springer, 2010, pp. 47-76.
[http://dx.doi.org/10.1007/978-1-60761-416-6_4]
[41]
Garg, A.; Tisdale, A.W.; Haidari, E.; Kokkoli, E. Targeting colon cancer cells using PEGylated liposomes modified with a fibronectin-mimetic peptide. Int. J. Pharm., 2009, 366(1-2), 201-210.
[http://dx.doi.org/10.1016/j.ijpharm.2008.09.016] [PMID: 18835580]
[42]
Ruoslahti, E.; Bhatia, S.N.; Sailor, M.J. Targeting of drugs and nanoparticles to tumors. J. Cell Biol., 2010, 188(6), 759-768.
[http://dx.doi.org/10.1083/jcb.200910104] [PMID: 20231381]
[43]
Gindy, M.E.; Prud’homme, R.K. Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy. Expert Opin. Drug Deliv., 2009, 6(8), 865-878.
[http://dx.doi.org/10.1517/17425240902932908] [PMID: 19637974]
[44]
Johannsen, M.; Thiesen, B.; Wust, P.; Jordan, A. Magnetic nanoparticle hyperthermia for prostate cancer. Int. J. Hyperthermia, 2010, 26(8), 790-795.
[http://dx.doi.org/10.3109/02656731003745740] [PMID: 20653418]
[45]
Salloum, M.; Ma, R.H.; Weeks, D.; Zhu, L. Controlling nanoparticle delivery in magnetic nanoparticle hyperthermia for cancer treatment: experimental study in agarose gel. Int. J. Hyperthermia, 2008, 24(4), 337-345.
[http://dx.doi.org/10.1080/02656730801907937] [PMID: 18465418]
[46]
Herold, D.M.; Das, I.J.; Stobbe, C.C.; Iyer, R.V.; Chapman, J.D. Gold microspheres: a selective technique for producing biologically effective dose enhancement. Int. J. Radiat. Biol., 2000, 76(10), 1357-1364.
[http://dx.doi.org/10.1080/09553000050151637] [PMID: 11057744]
[47]
Park, Y-S.; Liz-Marzán, L.M.; Kasuya, A.; Kobayashi, Y.; Nagao, D.; Konno, M.; Mamykin, S.; Dmytruk, A.; Takeda, M.; Ohuchi, N. X-ray absorption of gold nanoparticles with thin silica shell. J. Nanosci. Nanotechnol., 2006, 6(11), 3503-3506.
[http://dx.doi.org/10.1166/jnn.2006.17970] [PMID: 17252799]
[48]
Carter, J.D.; Cheng, N.N.; Qu, Y.; Suarez, G.D.; Guo, T. Nanoscale energy deposition by X-ray absorbing nanostructures. J. Phys. Chem. B, 2007, 111(40), 11622-11625.
[http://dx.doi.org/10.1021/jp075253u] [PMID: 17854220]
[49]
Fenn, J.E.; Udelsman, R. First use of intravenous chemotherapy cancer treatment: rectifying the record. J. Am. Coll. Surg., 2011, 212(3), 413-417.
[http://dx.doi.org/10.1016/j.jamcollsurg.2010.10.018] [PMID: 21247779]
[50]
Hilmer, S.N.; Cogger, V.C.; Muller, M.; Le Couteur, D.G. The hepatic pharmacokinetics of doxorubicin and liposomal doxorubicin. Drug Metab. Dispos., 2004, 32(8), 794-799.
[http://dx.doi.org/10.1124/dmd.32.8.794] [PMID: 15258103]
[51]
Buchholz, T.A.; Stivers, D.N.; Stec, J.; Ayers, M.; Clark, E.; Bolt, A.; Sahin, A.A.; Symmans, W.F.; Hess, K.R.; Kuerer, H.M.; Valero, V.; Hortobagyi, G.N.; Pusztai, L. Global gene expression changes during neoadjuvant chemotherapy for human breast cancer. Cancer J., 2002, 8(6), 461-468.
[http://dx.doi.org/10.1097/00130404-200211000-00010] [PMID: 12500855]
[52]
Shaw, R.J.; Kosmatka, M.; Bardeesy, N.; Hurley, R.L.; Witters, L.A.; DePinho, R.A.; Cantley, L.C. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl. Acad. Sci. USA, 2004, 101(10), 3329-3335.
[http://dx.doi.org/10.1073/pnas.0308061100] [PMID: 14985505]
[53]
Kim, Y.M.; Hwang, J.T.; Kwak, D.W.; Lee, Y.K.; Park, O.J. Involvement of AMPK signaling cascade in capsaicin-induced apoptosis of HT-29 colon cancer cells. Ann. N. Y. Acad. Sci., 2007, 1095(1), 496-503.
[http://dx.doi.org/10.1196/annals.1397.053] [PMID: 17404062]
[54]
Jones, R.G.; Plas, D.R.; Kubek, S.; Buzzai, M.; Mu, J.; Xu, Y.; Birnbaum, M.J.; Thompson, C.B. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell, 2005, 18(3), 283-293.
[http://dx.doi.org/10.1016/j.molcel.2005.03.027] [PMID: 15866171]
[55]
Xiang, X.; Saha, A.K.; Wen, R.; Ruderman, N.B.; Luo, Z. AMP-activated protein kinase activators can inhibit the growth of prostate cancer cells by multiple mechanisms. Biochem. Biophys. Res. Commun., 2004, 321(1), 161-167.
[http://dx.doi.org/10.1016/j.bbrc.2004.06.133] [PMID: 15358229]
[56]
Pan, W.; Yang, H.; Cao, C.; Song, X.; Wallin, B.; Kivlin, R.; Lu, S.; Hu, G.; Di, W.; Wan, Y. AMPK mediates curcumin-induced cell death in CaOV3 ovarian cancer cells. Oncol. Rep., 2008, 20(6), 1553-1559.
[PMID: 19020741]
[57]
Leung, L.K.; Wang, T.T. Differential effects of chemotherapeutic agents on the Bcl-2/Bax apoptosis pathway in human breast cancer cell line MCF-7. Breast Cancer Res. Treat., 1999, 55(1), 73-83.
[http://dx.doi.org/10.1023/A:1006190802590] [PMID: 10472781]
[58]
Reed, J.C. Bcl-2 and the regulation of programmed cell death. J. Cell Biol., 1994, 124(1-2), 1-6.
[http://dx.doi.org/10.1083/jcb.124.1.1] [PMID: 8294493]
[59]
Oltval, Z. N.; Milliman, C. L.; Korsmeyer, S. J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death. cell., 1993, 74(4), 609-619.
[60]
Zheng, Z.; Pavlidis, P.; Chua, S.; D’Agati, V.D.; Gharavi, A.G. An ancestral haplotype defines susceptibility to doxorubicin nephropathy in the laboratory mouse. J. Am. Soc. Nephrol., 2006, 17(7), 1796-1800.
[http://dx.doi.org/10.1681/ASN.2005121373] [PMID: 16775033]
[61]
Wang, Y.; Wang, Y.P.; Tay, Y-C.; Harris, D.C. Progressive adriamycin nephropathy in mice: sequence of histologic and immunohistochemical events. Kidney Int., 2000, 58(4), 1797-1804.
[http://dx.doi.org/10.1046/j.1523-1755.2000.00342.x] [PMID: 11012915]
[62]
Rook, M.; Lely, A.T.; Kramer, A.B.; van Goor, H.; Navis, G. Individual differences in renal ACE activity in healthy rats predict susceptibility to adriamycin-induced renal damage. Nephrol. Dial. Transplant., 2005, 20(1), 59-64.
[http://dx.doi.org/10.1093/ndt/gfh579] [PMID: 15572383]
[63]
Pippa, L.F.; Oliveira, M.L.; Rocha, A.; de Andrade, J.M.; Lanchote, V.L. Total, renal and hepatic clearances of doxorubicin and formation clearance of doxorubicinol in patients with breast cancer: estimation of doxorubicin hepatic extraction ratio. J. Pharm. Biomed. Anal., 2020, 185, 113231.
[http://dx.doi.org/10.1016/j.jpba.2020.113231] [PMID: 32163849]
[64]
Gibaud, S.; Andreux, J.P.; Weingarten, C.; Renard, M.; Couvreur, P. Increased bone marrow toxicity of doxorubicin bound to nanoparticles. Eur. J. Cancer, 1994, 30A(6), 820-826.
[http://dx.doi.org/10.1016/0959-8049(94)90299-2] [PMID: 7917543]
[65]
Rousselle, C.; Clair, P.; Lefauconnier, J-M.; Kaczorek, M.; Scherrmann, J-M.; Temsamani, J. New advances in the transport of doxorubicin through the blood-brain barrier by a peptide vector-mediated strategy. Mol. Pharmacol., 2000, 57(4), 679-686.
[http://dx.doi.org/10.1124/mol.57.4.679] [PMID: 10727512]
[66]
Wattanapitayakul, S.K.; Chularojmontri, L.; Herunsalee, A.; Charuchongkolwongse, S.; Niumsakul, S.; Bauer, J.A. Screening of antioxidants from medicinal plants for cardioprotective effect against doxorubicin toxicity. Basic Clin. Pharmacol. Toxicol., 2005, 96(1), 80-87.
[http://dx.doi.org/10.1111/j.1742-7843.2005.pto960112.x] [PMID: 15667600]
[67]
Lim, Z-Z.J.; Li, J-E.J.; Ng, C-T.; Yung, L-Y.L.; Bay, B-H. Gold nanoparticles in cancer therapy. Acta Pharmacol. Sin., 2011, 32(8), 983-990.
[http://dx.doi.org/10.1038/aps.2011.82] [PMID: 21743485]
[68]
Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[69]
Jabir, N.R.; Tabrez, S.; Ashraf, G.M.; Shakil, S.; Damanhouri, G.A.; Kamal, M.A. Nanotechnology-based approaches in anticancer research. Int. J. Nanomedicine, 2012, 7, 4391-4408.
[PMID: 22927757]
[70]
Weir, H.K.; Thompson, T.D.; Soman, A.; Møller, B.; Leadbetter, S.; White, M.C. Peer reviewed: meeting the healthy people 2020 objectives to reduce cancer mortality. Prev. Chronic Dis., 2015, 12.
[71]
Wagstaff, K.M.; Jans, D.A. Nuclear drug delivery to target tumour cells. Eur. J. Pharmacol., 2009, 625(1-3), 174-180.
[http://dx.doi.org/10.1016/j.ejphar.2009.06.069] [PMID: 19836384]
[72]
Jin, C.; Bai, L.; Wu, H.; Liu, J.; Guo, G.; Chen, J. Paclitaxel-loaded poly(D,L-lactide-co-glycolide) nanoparticles for radiotherapy in hypoxic human tumor cells in vitro. Cancer Biol. Ther., 2008, 7(6), 911-916.
[http://dx.doi.org/10.4161/cbt.7.6.5912] [PMID: 18367873]
[73]
Torchilin, V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev., 2011, 63(3), 131-135.
[http://dx.doi.org/10.1016/j.addr.2010.03.011] [PMID: 20304019]
[74]
Choi, C.H.J.; Alabi, C.A.; Webster, P.; Davis, M.E. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc. Natl. Acad. Sci. USA, 2010, 107(3), 1235-1240.
[http://dx.doi.org/10.1073/pnas.0914140107] [PMID: 20080552]
[75]
Chidambaram, M.; Manavalan, R.; Kathiresan, K. Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J. Pharm. Pharm. Sci., 2011, 14(1), 67-77.
[http://dx.doi.org/10.18433/J30C7D] [PMID: 21501554]
[76]
Chen, A.M.; Zhang, M.; Wei, D.; Stueber, D.; Taratula, O.; Minko, T.; He, H. Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small, 2009, 5(23), 2673-2677.
[http://dx.doi.org/10.1002/smll.200900621] [PMID: 19780069]
[77]
Song, X.R.; Cai, Z.; Zheng, Y.; He, G.; Cui, F.Y.; Gong, D.Q.; Hou, S.X.; Xiong, S.J.; Lei, X.J.; Wei, Y.Q. Reversion of multidrug resistance by co-encapsulation of vincristine and verapamil in PLGA nanoparticles. Eur. J. Pharm. Sci., 2009, 37(3-4), 300-305.
[http://dx.doi.org/10.1016/j.ejps.2009.02.018] [PMID: 19491019]
[78]
Miele, E.; Spinelli, G.P.; Miele, E.; Tomao, F.; Tomao, S. Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int. J. Nanomedicine, 2009, 4, 99-105.
[PMID: 19516888]
[79]
Zhao, D.; Zhao, X.; Zu, Y.; Li, J.; Zhang, Y.; Jiang, R.; Zhang, Z. Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles. Int. J. Nanomedicine, 2010, 5, 669-677.
[PMID: 20957218]
[80]
Hung, W-H.; Zheng, J-H.; Lee, K-C.; Cho, E-C. Doxorubicin conjugated AuNP/biopolymer composites facilitate cell cycle regulation and exhibit superior tumor suppression potential in KRAS mutant colorectal cancer. J. Biotechnol., 2019, 306, 149-158.
[http://dx.doi.org/10.1016/j.jbiotec.2019.09.015] [PMID: 31568802]
[81]
Alle, M.; G, B.R.; Kim, T.H.; Park, S.H.; Lee, S.H.; Kim, J.C. Doxorubicin-carboxymethyl xanthan gum capped gold nanoparticles: microwave synthesis, characterization, and anti-cancer activity. Carbohydr. Polym., 2020, 229, 115511.
[http://dx.doi.org/10.1016/j.carbpol.2019.115511] [PMID: 31826400]
[82]
Komeri, R.; Unnikrishnan, B.; Sreekutty, J.; GU, P.; Maiti, K.K.; Sreelekha, T.T. Galactoxyloglucan-modified gold nanocarrier of doxorubicin for treating drug-resistant brain tumors. ACS Applied Nano Materials, 2019, 2(10), 6287-6299.
[http://dx.doi.org/10.1021/acsanm.9b01277]
[83]
Sun, G-Y.; Du, Y-C.; Cui, Y-X.; Wang, J.; Li, X-Y.; Tang, A-N.; Kong, D-M. Terminal deoxynucleotidyl transferase-catalyzed preparation of pH-responsive DNA nanocarriers for tumor-targeted drug delivery and therapy. ACS Appl. Mater. Interfaces, 2019, 11(16), 14684-14692.
[http://dx.doi.org/10.1021/acsami.9b05358] [PMID: 30942569]
[84]
Lee, C-S.; Kim, T.W.; Oh, D.E.; Bae, S.O.; Ryu, J.; Kong, H.; Jeon, H.; Seo, H.K.; Jeon, S.; Kim, T.H. in vivo and in vitro anticancer activity of doxorubicin-loaded DNA-AuNP nanocarrier for the ovarian cancer treatment. Cancers (Basel), 2020, 12(3), 634.
[http://dx.doi.org/10.3390/cancers12030634] [PMID: 32182954]
[85]
Kumar, K.; Moitra, P.; Bashir, M.; Kondaiah, P.; Bhattacharya, S. Natural tripeptide capped pH-sensitive gold nanoparticles for efficacious doxorubicin delivery both in vitro and in vivo. Nanoscale, 2020, 12(2), 1067-1074.
[http://dx.doi.org/10.1039/C9NR08475D] [PMID: 31845927]
[86]
Zhang, Z.; Niu, N.; Gao, X.; Han, F.; Chen, Z.; Li, S.; Li, J. A new drug carrier with oxygen generation function for modulating tumor hypoxia microenvironment in cancer chemotherapy. Colloids Surf. B Biointerfaces, 2019, 173, 335-345.
[http://dx.doi.org/10.1016/j.colsurfb.2018.10.008] [PMID: 30316080]
[87]
Coelho, S.C.; Reis, D.P.; Pereira, M.C.; Coelho, M.A.N. Doxorubicin and varlitinib delivery by functionalized gold nanoparticles against human pancreatic adenocarcinoma. Pharmaceutics, 2019, 11(11), 551.
[http://dx.doi.org/10.3390/pharmaceutics11110551] [PMID: 31652942]
[88]
Preet, S.; Pandey, S.K.; Kaur, K.; Chauhan, S.; Saini, A. Gold nanoparticles assisted co-delivery of nisin and doxorubicin against murine skin cancer. J. Drug Deliv. Sci. Technol., 2019, 53, 101147.
[http://dx.doi.org/10.1016/j.jddst.2019.101147]
[89]
Latorre, A.; Latorre, A.; Castellanos, M.; Rodriguez Diaz, C.; Lazaro-Carrillo, A.; Aguado, T.; Lecea, M.; Romero-Pérez, S.; Calero, M.; Sanchez-Puelles, J.M.; Villanueva, Á.; Somoza, Á. Multifunctional albumin-stabilized gold nanoclusters for the reduction of cancer stem cells. Cancers (Basel), 2019, 11(7), 969.
[http://dx.doi.org/10.3390/cancers11070969] [PMID: 31295963]
[90]
Steckiewicz, K.P.; Barcinska, E.; Sobczak, K.; Tomczyk, E.; Wojcik, M.; Inkielewicz-Stepniak, I. Assessment of anti-tumor potential and safety of application of glutathione stabilized gold nanoparticles conjugated with chemotherapeutics. Int. J. Med. Sci., 2020, 17(6), 824-833.
[http://dx.doi.org/10.7150/ijms.40827] [PMID: 32218704]
[91]
Feng, Y.; Cheng, Y.; Chang, Y.; Jian, H.; Zheng, R.; Wu, X.; Xu, K.; Wang, L.; Ma, X.; Li, X.; Zhang, H. Time-staggered delivery of erlotinib and doxorubicin by gold nanocages with two smart polymers for reprogrammable release and synergistic with photothermal therapy. Biomaterials, 2019, 217, 119327.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119327] [PMID: 31299626]
[92]
Lapotko, D. Therapy with gold nanoparticles and lasers: what really kills the cells? 2009.
[http://dx.doi.org/10.2217/nnm.09.2]
[93]
Tu, T-Y.; Yang, S-J.; Tsai, M-H.; Wang, C-H.; Lee, S-Y.; Young, T-H.; Shieh, M-J. Dual-triggered drug-release vehicles for synergistic cancer therapy. Colloids Surf. B Biointerfaces, 2019, 173, 788-797.
[http://dx.doi.org/10.1016/j.colsurfb.2018.10.043] [PMID: 30384276]
[94]
Poursalehi, Z.; Salehi, R.; Samadi, N.; Rasta, S.H.; Mansoori, B.; Majdi, H. A simple strategy for chemo-photothermal ablation of breast cancer cells by novel smart gold nanoparticles. Photodiagn. Photodyn. Ther., 2019, 28, 25-37.
[http://dx.doi.org/10.1016/j.pdpdt.2019.08.019] [PMID: 31454714]
[95]
Li, H.; Li, H.; Yu, W.; Huang, S.; Liu, Y.; Zhang, N.; Yuan, J.; Xu, X.; Duan, S.; Hu, Y. PEGylated hyaluronidase/NIR induced drug controlled release system for synergetic chemo-photothermal therapy of hepatocellular carcinoma. Eur. J. Pharm. Sci., 2019, 133, 127-136.
[http://dx.doi.org/10.1016/j.ejps.2019.02.022] [PMID: 30779981]
[96]
Chuang, C-C.; Cheng, C-C.; Chen, P-Y.; Lo, C.; Chen, Y-N.; Shih, M-H.; Chang, C-W. Gold nanorod-encapsulated biodegradable polymeric matrix for combined photothermal and chemo-cancer therapy. Int. J. Nanomedicine, 2018, 14, 181-193.
[http://dx.doi.org/10.2147/IJN.S177851] [PMID: 30613145]
[97]
Zhang, Y.; Zhou, L.; Tan, J.; Liu, J.; Shan, X.; Ma, Y. Laser-triggered collaborative chemophotothermal effect of gold nanoparticles for targeted colon cancer therapy. Biomed. Pharmacother., 2020, 130, 110492.
[http://dx.doi.org/10.1016/j.biopha.2020.110492] [PMID: 32682110]
[98]
Liu, J.; Ma, W.; Kou, W.; Shang, L.; Huang, R.; Zhao, J. Poly-amino acids coated gold nanorod and doxorubicin for synergistic photodynamic therapy and chemotherapy in ovarian cancer cells. Biosci. Rep., 2019, 39(12), BSR20192521.
[http://dx.doi.org/10.1042/BSR20192521] [PMID: 31742323]
[99]
Li, M.; Wu, D.; Chen, Y.; Shan, G.; Liu, Y. Apoferritin nanocages with Au nanoshell coating as drug carrier for multistimuli-responsive drug release. Mater. Sci. Eng. C, 2019, 95, 11-18.
[http://dx.doi.org/10.1016/j.msec.2018.10.060] [PMID: 30573231]
[100]
Emami, F.; Banstola, A.; Vatanara, A.; Lee, S.; Kim, J.O.; Jeong, J-H.; Yook, S. Doxorubicin and anti-PD-L1 antibody conjugated gold nanoparticles for colorectal cancer photochemotherapy. Mol. Pharm., 2019, 16(3), 1184-1199.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01157] [PMID: 30698975]
[101]
Baneshi, M.; Dadfarnia, S.; Shabani, A.M.H.; Sabbagh, S.K.; Haghgoo, S.; Bardania, H. A novel theranostic system of AS1411 aptamer-functionalized albumin nanoparticles loaded on iron oxide and gold nanoparticles for doxorubicin delivery. Int. J. Pharm., 2019, 564, 145-152.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.025] [PMID: 30978484]
[102]
Dong, Q.; Wan, C.; Yang, H.; Zheng, D.; Xu, L.; Zhou, Z.; Xie, S.; Du, J.; Li, F. Targeted gold nanoshelled hybrid nanocapsules encapsulating doxorubicin for bimodal imaging and near-infrared triggered synergistic therapy of Her2-positve breast cancer. J. Biomater. Appl., 2020, 35(3), 430-445.
[http://dx.doi.org/10.1177/0885328220929616] [PMID: 32515640]
[103]
Elbialy, N.S.; Fathy, M.M.; Al-Wafi, R.; Darwesh, R.; Abdel-Dayem, U.A.; Aldhahri, M.; Noorwali, A.; Al-Ghamdi, A.A. Multifunctional magnetic-gold nanoparticles for efficient combined targeted drug delivery and interstitial photothermal therapy. Int. J. Pharm., 2019, 554, 256-263.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.021] [PMID: 30423414]
[104]
Zhang, H.; Zhang, Q.; Liu, C.; Han, B. Preparation of a one-dimensional nanorod/metal organic framework Janus nanoplatform via side-specific growth for synergistic cancer therapy. Biomater. Sci., 2019, 7(4), 1696-1704.
[http://dx.doi.org/10.1039/C8BM01591K] [PMID: 30747179]
[105]
Deng, X.; Liang, S.; Cai, X.; Huang, S.; Cheng, Z.; Shi, Y.; Pang, M.; Ma, P.; Lin, J. Yolk–shell structured Au nanostar@ metal–organic framework for synergistic chemo-photothermal therapy in the second near-infrared window. Nano Lett., 2019, 19(10), 6772-6780.
[http://dx.doi.org/10.1021/acs.nanolett.9b01716] [PMID: 31496257]
[106]
Wu, X.; Liu, J.; Yang, L.; Wang, F. Photothermally controlled drug release system with high dose loading for synergistic chemo-photothermal therapy of multidrug resistance cancer. Colloids Surf. B Biointerfaces, 2019, 175, 239-247.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.088] [PMID: 30540971]
[107]
S, R.; M, P. Multi-functional FITC-silica@gold nanoparticles conjugated with guar gum succinate, folic acid and doxorubicin for CT/fluorescence dual imaging and combined chemo/PTT of cancer. Colloids Surf. B Biointerfaces, 2020, 186, 110701.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110701] [PMID: 31812803]
[108]
Wang, Y.; Wang, L.; Guo, L.; Yan, M.; Feng, L.; Dong, S.; Hao, J. Photo-responsive magnetic mesoporous silica nanocomposites for magnetic targeted cancer therapy. New J. Chem., 2019, 43(12), 4908-4918.
[http://dx.doi.org/10.1039/C8NJ06105J]
[109]
Wang, Y.; Wang, L.; Yan, M.; Cai, A.; Dong, S.; Hao, J. Plasmonic microgels of Au nanorods: self-assembly and applications in chemophotothermo-synergistic cancer therapy. J. Colloid Interface Sci., 2019, 536, 728-736.
[http://dx.doi.org/10.1016/j.jcis.2018.10.107] [PMID: 30414559]
[110]
Jin, R.; Yang, J.; Zhao, D.; Hou, X.; Li, C.; Chen, W.; Zhao, Y.; Yin, Z.; Liu, B. Hollow gold nanoshells-incorporated injectable genetically engineered hydrogel for sustained chemo-photothermal therapy of tumor. J. Nanobiotechnology, 2019, 17(1), 99.
[http://dx.doi.org/10.1186/s12951-019-0532-9] [PMID: 31530285]
[111]
Mohammadi, S.; Zakeri-Milani, P.; Golkar, N.; Farkhani, S.M.; Shirani, A.; Shahbazi Mojarrad, J.; Nokhodchi, A.; Valizadeh, H. Synthesis and cellular characterization of various nano-assemblies of cell penetrating peptide-epirubicin-polyglutamate conjugates for the enhancement of antitumor activity. Artif. Cells Nanomed. Biotechnol., 2018, 46(8), 1572-1585.
[PMID: 28933182]
[112]
Mozafari, M.R.; Pardakhty, A.; Azarmi, S.; Jazayeri, J.A.; Nokhodchi, A.; Omri, A. Role of nanocarrier systems in cancer nanotherapy. J. Liposome Res., 2009, 19(4), 310-321.
[http://dx.doi.org/10.3109/08982100902913204] [PMID: 19863166]
[113]
Taghe, S.; Mirzaeei, S.; Alany, R.G.; Nokhodchi, A. Polymeric inserts containing Eudragit® L100 nanoparticle for improved ocular delivery of azithromycin. Biomedicines, 2020, 8(11), 466.
[http://dx.doi.org/10.3390/biomedicines8110466] [PMID: 33142768]
[114]
Colas, J-C.; Shi, W.; Rao, V.S.; Omri, A.; Mozafari, M.R.; Singh, H. Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting. Micron, 2007, 38(8), 841-847.
[http://dx.doi.org/10.1016/j.micron.2007.06.013] [PMID: 17689087]
[115]
Chen, J.; Fan, T.; Xie, Z.; Zeng, Q.; Xue, P.; Zheng, T.; Chen, Y.; Luo, X.; Zhang, H. Advances in nanomaterials for photodynamic therapy applications: status and challenges. Biomaterials, 2020, 237, 119827.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119827] [PMID: 32036302]
[116]
Lan, M.; Zhao, S.; Liu, W.; Lee, C.S.; Zhang, W.; Wang, P. Photosensitizers for photodynamic therapy. Adv. Healthc. Mater., 2019, 8(13), e1900132.
[http://dx.doi.org/10.1002/adhm.201900132] [PMID: 31067008]
[117]
Master, A.; Livingston, M.; Sen Gupta, A. Photodynamic nanomedicine in the treatment of solid tumors: perspectives and challenges. J. Control. Release, 2013, 168(1), 88-102.
[http://dx.doi.org/10.1016/j.jconrel.2013.02.020] [PMID: 23474028]
[118]
Allison, R.R. Photodynamic therapy: oncologic horizons. Future Oncol., 2014, 10(1), 123-124.
[http://dx.doi.org/10.2217/fon.13.176] [PMID: 24328413]
[119]
Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release, 2000, 65(1-2), 271-284.
[http://dx.doi.org/10.1016/S0168-3659(99)00248-5] [PMID: 10699287]
[120]
Bechet, D.; Couleaud, P.; Frochot, C.; Viriot, M-L.; Guillemin, F.; Barberi-Heyob, M. Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol., 2008, 26(11), 612-621.
[http://dx.doi.org/10.1016/j.tibtech.2008.07.007] [PMID: 18804298]
[121]
Akram, M.W.; Raziq, F.; Fakhar-e-Alam, M.; Aziz, M.H.; Alimgeer, K.; Atif, M.; Amir, M.; Hanif, A.; Farooq, W.A. Tailoring of Au-TiO2 nanoparticles conjugated with doxorubicin for their synergistic response and photodynamic therapy applications. J. Photochem. Photobiol. Chem., 2019, 384, 112040.
[http://dx.doi.org/10.1016/j.jphotochem.2019.112040]
[122]
Praetorius, N.P.; Mandal, T.K. Engineered nanoparticles in cancer therapy. Recent Pat. Drug Deliv. Formul., 2007, 1(1), 37-51.
[http://dx.doi.org/10.2174/187221107779814104] [PMID: 19075873]
[123]
El-Ghareb, W.I.; Swidan, M.M.; Ibrahim, I.T.; Abd El-Bary, A.; Tadros, M.I.; Sakr, T.M. 99mTc-doxorubicin-loaded gallic acid- gold nanoparticles (99mTc-DOX-loaded GA-Au NPs) as a multifunctional theranostic agent. Int. J. Pharm., 2020, 586, 119514.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119514] [PMID: 32565281]
[124]
Bayat Mokhtari, R.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer. Oncotarget, 2017, 8(23), 38022-38043.
[http://dx.doi.org/10.18632/oncotarget.16723] [PMID: 28410237]
[125]
Sheth, R.A.; Wen, X.; Li, J.; Melancon, M.P.; Ji, X.; Wang, Y.A.; Hsiao, C-H.; Chow, D.S-L.; Whitley, E.M.; Li, C. Doxorubicin-loaded hollow gold nanospheres for dual photothermal ablation and chemoembolization therapy. Cancer Nanotechnol., 2020, 11(1), 1-16.
[http://dx.doi.org/10.1186/s12645-020-00062-8]
[126]
Kao, F-H.; Akhtar, N.; Chen, C-C.; Chen, H.Y.; Thakur, M.K.; Chen, Y-Y.; Chen, C-L.; Chattopadhyay, S. In vivo and in vitro demonstration of gold nanorod aided photothermal presoftening of B16F10 melanoma for efficient chemotherapy using doxorubicin loaded graphene oxide. ACS Applied Bio Materials, 2018, 2(1), 533-543.
[http://dx.doi.org/10.1021/acsabm.8b00701]
[127]
Yang, K.; Liu, Y.; Wang, Y.; Ren, Q.; Guo, H.; Matson, J.B.; Chen, X.; Nie, Z. Enzyme-induced in vivo assembly of gold nanoparticles for imaging-guided synergistic chemo-photothermal therapy of tumor. Biomaterials, 2019, 223, 119460.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119460] [PMID: 31513993]
[128]
Xu, W.; Wang, J.; Qian, J.; Hou, G.; Wang, Y.; Ji, L.; Suo, A. NIR/pH dual-responsive polysaccharide-encapsulated gold nanorods for enhanced chemo-photothermal therapy of breast cancer. Mater. Sci. Eng. C, 2019, 103, 109854.
[http://dx.doi.org/10.1016/j.msec.2019.109854] [PMID: 31349407]
[129]
Wang, C.; Xue, R.; Gulzar, A.; Kuang, Y.; Shao, H.; Gai, S.; Yang, D.; He, F.; Yang, P. Targeted and imaging-guided chemo-photothermal ablation achieved by combining upconversion nanoparticles and protein-capped gold nanodots. Chem. Eng. J., 2019, 370, 1239-1250.
[http://dx.doi.org/10.1016/j.cej.2019.03.219]
[130]
Sun, M.; Duan, Y.; Ma, Y.; Zhang, Q. Cancer cell-erythrocyte hybrid membrane coated gold nanocages for near infrared light-activated photothermal/radio/chemotherapy of breast cancer. Int. J. Nanomedicine, 2020, 15, 6749-6760.
[http://dx.doi.org/10.2147/IJN.S266405] [PMID: 32982231]
[131]
Chang, Y.; Cheng, Y.; Feng, Y.; Jian, H.; Wang, L.; Ma, X.; Li, X.; Zhang, H. Resonance energy transfer-promoted photothermal and photodynamic performance of gold–copper sulfide yolk–shell nanoparticles for chemophototherapy of cancer. Nano Lett., 2018, 18(2), 886-897.
[http://dx.doi.org/10.1021/acs.nanolett.7b04162] [PMID: 29323915]
[132]
An, N.; Lin, H.; Qu, F. Synthesis of a GNRs@ mSiO2-ICG- DOX@ Se-Se-FA nanocomposite for controlled chemo-/photothermal/photodynamic therapy. Eur. J. Inorg. Chem., 2018, 2018(39), 4375-4384.
[http://dx.doi.org/10.1002/ejic.201800572]
[133]
Zheng, T.; Wang, W.; Wu, F.; Zhang, M.; Shen, J.; Sun, Y. Zwitterionic polymer-gated Au@ TiO2 core-shell nanoparticles for imaging-guided combined cancer therapy. Theranostics, 2019, 9(17), 5035-5048.
[http://dx.doi.org/10.7150/thno.35418] [PMID: 31410200]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy