Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

MPEG-PCL Nanomicelles Platform for Synergistic Metformin and Chrysin Delivery to Breast Cancer in Mice

Author(s): Daiqin Luo*, Xinjun Wang*, Xiaomei Zhong, Jianying Chang, Mingyuan He, Heran Wang, Yongxia Li, Chaofen Zhao, Yan Luo and Li Ran*

Volume 22, Issue 2, 2022

Published on: 23 June, 2021

Page: [280 - 293] Pages: 14

DOI: 10.2174/1871520621666210623092725

Price: $65

Abstract

Background: Metformin (MET) is a well-known anti-diabetic drug that also has anti-cancer effects. However, high therapeutic doses of MET on cancer cells and the low efficacy of combinatory therapeutic approaches limit its clinical application. Recent studies have shown that chrysin (CHR) can improve the pharmaceutical efficacy of MET by suppressing human telomerase reverse transcriptase (hTERT) and cyclin D1 gene expression.

Objective: This study aimed to develop different ratios of methoxy poly(ethylene glycol)-b-poly(e-caprolactone) (MPEG-PCL) micelles for breast cancer to co-deliver a synergistic CHR/MET combination.

Methods: CHR/MET drug-loaded micelles were prepared by modified thin-film hydration.Fourier infrared spectrum, gel permeation chromatography, transmission electron microscopy, and high-performance liquid chromatography were used to evaluate the physicochemical properties of nanostructures. Cell proliferation and cell apoptosis were assessed by MTT and Annexin V-FITC/PI double staining method. The gene expression of hTERT and cyclin D1 was measured by real-time PCR assay. A subcutaneous mouse T47D xenograft model was established to evaluate the in vivo efficiency.

Results: When the ratio of MPEG-PCL was 1:1.7, the highest drug loading rate and encapsulation efficiency of CHR (11.31±0.37) and MET (12.22±0.44) were observed. Uniform MPEG-PCL micelles of 51.70±1.91 nm allowed MET to incorporate with CHR, which were co-delivered to breast cancer cells. We demonstrated that CHR/MET co-delivery micelles showed a good synergistic effect on inhibiting proliferation in T47D cells (combination index=0.87) by suppressing hTERT and cyclin D1 gene expression. Compared to the free CHR/MET group, the apoptosis rate on T47D cells by CHR/MET nano-micelles significantly improved from 71.33% to 79.25%. The tumour volume and tumour weight of the CHR/MET group increased more slowly than that of the single-drug treatment group (P<0.05). Compared to the CHR/MET group, the tumour volume and tumour weight of the CHR/MET nano-micelle group decreased by 42% and 59%, respectively.

Conclusion: We demonstrated that ratiometric CHR/MET micelles could provide an effective technique for the treatment of breast cancer.

Keywords: Breast cancer, chrysin, metformin, micelle, synergistic effect, hTERT.

Graphical Abstract

[1]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in globocan 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[2]
Fan, L.; Strasser-Weippl, K.; Li, J.J.; St Louis, J.; Finkelstein, D.M.; Yu, K.D.; Chen, W.Q.; Shao, Z.M.; Goss, P.E. Breast cancer in China. Lancet Oncol., 2014, 15(7), e279-e289.
[http://dx.doi.org/10.1016/S1470-2045(13)70567-9] [PMID: 24872111]
[3]
Genç, F.; Tan, M. The effect of acupressure application on chemotherapy-induced nausea, vomiting, and anxiety in patients with breast cancer. Palliat. Support. Care, 2015, 13(2), 275-284.
[http://dx.doi.org/10.1017/S1478951514000248] [PMID: 24787745]
[4]
Naserian, M.; Ramazani, E.; Iranshahi, M.; Tayarani-Najaran, Z. The role of SAPK/JNK pathway in the synergistic effects of metformin and dacarbazine on apoptosis in Raji and Ramos lymphoma cells. Curr. Mol. Pharmacol., 2018, 11(4), 336-342.
[http://dx.doi.org/10.2174/1874467211666180830150546] [PMID: 30173657]
[5]
Tarantini, L.; Cioffi, G.; Gori, S.; Tuccia, F.; Boccardi, L.; Bovelli, D.; Lestuzzi, C.; Maurea, N.; Oliva, S.; Russo, G.; Faggiano, P. Trastuzumab adjuvant chemotherapy and cardiotoxicity in real-world women with breast cancer. J. Card. Fail., 2012, 18(2), 113-119.
[http://dx.doi.org/10.1016/j.cardfail.2011.10.015] [PMID: 22300778]
[6]
Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature, 2019, 575(7782), 299-309.
[http://dx.doi.org/10.1038/s41586-019-1730-1] [PMID: 31723286]
[7]
Tannapfel, A.; Reinacher-Schick, A. Chemotherapie-assoziierte Hepatotoxizität in der Behandlung des kolorektalen Karzinoms (KRK). Z. Gastroenterol., 2008, 46(5), 435-440.
[http://dx.doi.org/10.1055/s-2008-1027151] [PMID: 18461519]
[8]
Wang, F.; Cao, G.; Yi, W.; Li, L.; Cao, X. Effect of metformin on a preeclampsia-like mouse model induced by high-fat diet. BioMed Res. Int., 2019, 20196547019
[http://dx.doi.org/10.1155/2019/6547019] [PMID: 31886236]
[9]
Eurich, D.T.; Weir, D.L.; Majumdar, S.R.; Tsuyuki, R.T.; Johnson, J.A.; Tjosvold, L.; Vanderloo, S.E.; McAlister, F.A. Comparative safety and effectiveness of metformin in patients with diabetes mellitus and heart failure: Systematic review of observational studies involving 34,000 patients. Circ Heart Fail, 2013, 6(3), 395-402.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.112.000162] [PMID: 23508758]
[10]
Nath, N.; Khan, M.; Paintlia, M.K.; Singh, I.; Hoda, M.N.; Giri, S. Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J. Immunol., 2009, 182(12), 8005-8014.
[http://dx.doi.org/10.4049/jimmunol.0803563] [PMID: 19494326]
[11]
Romero, R.; Erez, O.; Hüttemann, M.; Maymon, E.; Panaitescu, B.; Conde-Agudelo, A.; Pacora, P.; Yoon, B.H.; Grossman, L.I. Metformin, the aspirin of the 21st century: Its role in gestational diabetes mellitus, prevention of preeclampsia and cancer, and the promotion of longevity. Am. J. Obstet. Gynecol., 2017, 217(3), 282-302.
[http://dx.doi.org/10.1016/j.ajog.2017.06.003] [PMID: 28619690]
[12]
Padwal, R.; Majumdar, S.R.; Johnson, J.A.; Varney, J.; McAlister, F.A. A systematic review of drug therapy to delay or prevent type 2 diabetes. Diabetes Care, 2005, 28(3), 736-744.
[http://dx.doi.org/10.2337/diacare.28.3.736] [PMID: 15735219]
[13]
Libby, G.; Donnelly, L.A.; Donnan, P.T.; Alessi, D.R.; Morris, A.D.; Evans, J.M. New users of metformin are at low risk of incident cancer: A cohort study among people with type 2 diabetes. Diabetes Care, 2009, 32(9), 1620-1625.
[http://dx.doi.org/10.2337/dc08-2175] [PMID: 19564453]
[14]
Rena, G.; Hardie, D.G.; Pearson, E.R. The mechanisms of action of metformin. Diabetologia, 2017, 60(9), 1577-1585.
[http://dx.doi.org/10.1007/s00125-017-4342-z] [PMID: 28776086]
[15]
Roshan, M.H.; Shing, Y.K.; Pace, N.P. Metformin as an adjuvant in breast cancer treatment. SAGE Open Med., 2019, 72050312119865114
[http://dx.doi.org/10.1177/2050312119865114] [PMID: 31360518]
[16]
He, L.; Wondisford, F.E. Metformin action: Concentrations matter. Cell Metab., 2015, 21(2), 159-162.
[http://dx.doi.org/10.1016/j.cmet.2015.01.003] [PMID: 25651170]
[17]
Farkhondeh, T.; Samarghandian, S.; Bafandeh, F. The cardiovascular protective effects of chrysin: A narrative review on experimental researches. Cardiovasc. Hematol. Agents Med. Chem., 2019, 17(1), 17-27.
[http://dx.doi.org/10.2174/1871525717666190114145137] [PMID: 30648526]
[18]
Lee, S.H.; Lee, Y.S.; Song, J.G.; Han, H.K. Improved in vivo effect of chrysin as an absorption enhancer via the preparation of ternary solid dispersion with Brij® L4 and aminoclay. Curr. Drug Deliv., 2019, 16(1), 86-92.
[http://dx.doi.org/10.2174/1567201815666180924151458] [PMID: 30246640]
[19]
Xiong, K.; Liu, H.; Kefei, J.I.; Min, G.; Si, G.; Mengmeng, Z. Research of radiosensitizing effect of flavonoids under hypoxia. China Pharmacist, 2016, 19(4), 624-630.
[20]
Gao, A.M.; Ke, Z.P.; Shi, F.; Sun, G.C.; Chen, H. Chrysin enhances sensitivity of BEL-7402/ADM cells to doxorubicin by suppressing PI3K/Akt/Nrf2 and ERK/Nrf2 pathway. Chem. Biol. Interact., 2013, 206(1), 100-108.
[http://dx.doi.org/10.1016/j.cbi.2013.08.008] [PMID: 23994249]
[21]
Chatran, M.; Pilehvar-Soltanahmadi, Y.; Dadashpour, M.; Faramarzi, L.; Rasouli, S.; Jafari-Gharabaghlou, D.; Asbaghi, N.; Zarghami, N. Synergistic Anti-proliferative effects of metformin and silibinin combination on T47D breast cancer cells via Htert and Cyclin D1 inhibition. Drug Res. (Stuttg.), 2018, 68(12), 710-716.
[http://dx.doi.org/10.1055/a-0631-8046] [PMID: 29920623]
[22]
Deldar, Y.; Zarghami, F.; Pilehvar-Soltanahmadi, Y.; Dadashpour, M.; Zarghami, N. Antioxidant effects of chrysin-loaded electrospun nanofibrous mats on proliferation and stemness preservation of human adipose-derived stem cells. Cell Tissue Bank., 2017, 18(4), 475-487.
[http://dx.doi.org/10.1007/s10561-017-9654-1] [PMID: 28808812]
[23]
Moghadam, E.R.; Ang, H.L.; Asnaf, S.E.; Zabolian, A.; Saleki, H.; Yavari, M.; Esmaeili, H.; Zarrabi, A.; Ashrafizadeh, M.; Kumar, A.P. Broad-spectrum preclinical antitumor activity of chrysin: Current trends and future perspectives. Biomolecules, 2020, 10(10), 1374.
[http://dx.doi.org/10.3390/biom10101374] [PMID: 32992587]
[24]
Chen, Y.; Chen, H.; Feng, M.; Dong, Y. Amphiphilic gradient copolymers: Synthesis, self-assembly, and applications. Eur. Polym. J., 2016, 85, 489-498.
[http://dx.doi.org/10.1016/j.eurpolymj.2016.11.009]
[25]
Alqaraghuli, H.G.J.; Kashanian, S.; Rafipour, R. A review on targeting nanoparticles for breast cancer. Curr. Pharm. Biotechnol., 2019, 20(13), 1087-1107.
[http://dx.doi.org/10.2174/1389201020666190731130001] [PMID: 31364513]
[26]
Janas, C.; Mostaphaoui, Z.; Schmiederer, L.; Bauer, J.; Wacker, M.G. Novel polymeric micelles for drug delivery: Material characterization and formulation screening. Int. J. Pharm., 2016, 509(1-2), 197-207.
[http://dx.doi.org/10.1016/j.ijpharm.2016.05.029] [PMID: 27234698]
[27]
Kumar, L.; Baldi, A.; Verma, S.; Utreja, P. Exploring therapeutic potential of nanocarrier systems against breast cancer. Pharm. Nanotechnol., 2018, 6(2), 94-110.
[http://dx.doi.org/10.2174/2211738506666180604101920] [PMID: 29866028]
[28]
Kazemi, M.; Emami, J.; Hasanzadeh, F.; Minaiyan, M.; Mirian, M.; Lavasanifar, A.; Mokhtari, M. In vitro and in vivo evaluation of novel DTX-Loaded multifunctional heparin-based polymeric micelles targetingfolate receptors and endosomes. Recent Patents Anticancer Drug Discov., 2020, 15(4), 341-359.
[http://dx.doi.org/10.2174/1574892815666201006124604] [PMID: 33023456]
[29]
Kedar, U.; Phutane, P.; Shidhaye, S.; Kadam, V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine (Lond.), 2010, 6(6), 714-729.
[http://dx.doi.org/10.1016/j.nano.2010.05.005] [PMID: 20542144]
[30]
Takahashi, K.; Masuda, T.; Harada, M.; Inoue, T.; Nakamura, S.; Naito, K.; Hara, H.; Shimazawa, M. Anti-VEGFR2 antibody-modified micelle for triggered drug delivery and effective therapy of choroidal neovascularization. Curr. Neurovasc. Res., 2019, 16(3), 258-265.
[http://dx.doi.org/10.2174/1567202616666190619150956] [PMID: 31258081]
[31]
Onat, B.; Bütün, V.; Banerjee, S.; Erel-Goktepe, I. Bacterial anti-adhesive and pH-induced antibacterial agent releasing ultra-thin films of zwitterionic copolymer micelles. Acta Biomater., 2016, 40, 293-309.
[http://dx.doi.org/10.1016/j.actbio.2016.04.033] [PMID: 27107517]
[32]
Chavoshy, F.; Zadeh, B.S.M.; Tamaddon, A.M.; Anbardar, M.H. Delivery and anti-psoriatic effect of silibinin-loaded polymeric micelles: An experimental study in the psoriatic skin model. Curr. Drug Deliv., 2020, 17(9), 787-798.
[http://dx.doi.org/10.2174/1567201817666200722141807] [PMID: 32703129]
[33]
Zhu, W.; Song, Z.; Wei, P.; Meng, N.; Teng, F.; Yang, F.; Liu, N.; Feng, R. Y-shaped biotin-conjugated poly (ethylene glycol)-poly (epsilon-caprolactone) copolymer for the targeted delivery of curcumin. J. Colloid Interface Sci., 2015, 443, 1-7.
[http://dx.doi.org/10.1016/j.jcis.2014.11.073] [PMID: 25526295]
[34]
Haider, N.; Fatima, S.; Taha, M.; Rizwanullah, M.; Firdous, J.; Ahmad, R.; Mazhar, F.; Khan, M.A. Nanomedicines in diagnosis and treatment of cancer: An update. Curr. Pharm. Des., 2020, 26(11), 1216-1231.
[http://dx.doi.org/10.2174/1381612826666200318170716] [PMID: 32188379]
[35]
Halevas, E.; Mavroidi, B.; Antonoglou, O.; Hatzidimitriou, A.; Sagnou, M.; Pantazaki, A.A.; Litsardakis, G.; Pelecanou, M. Structurally characterized gallium-chrysin complexes with anticancer potential. Dalton Trans., 2020, 49(8), 2734-2746.
[http://dx.doi.org/10.1039/C9DT04540F] [PMID: 32064490]
[36]
Ciftci, O.; Ozdemir, I.; Aydin, M.; Beytur, A. Beneficial effects of chrysin on the reproductive system of adult male rats. Andrologia, 2012, 44(3), 181-186.
[http://dx.doi.org/10.1111/j.1439-0272.2010.01127.x] [PMID: 21486424]
[37]
Samadzadeh, S.; Mousazadeh, H.; Ghareghomi, S.; Dadashpour, M.; Babazadeh, M.; Zarghami, N. In vitro anticancer efficacy of metformin-loaded plga nanofibers towards the post-surgical therapy of lung cancer. J. Drug Deliv. Sci. Technol., 2021, 61102318
[http://dx.doi.org/10.1016/j.jddst.2020.102318]
[38]
Song, Y.; Cai, H.; Yin, T.; Huo, M.; Ma, P.; Zhou, J.; Lai, W. Paclitaxel-loaded redox-sensitive nanoparticles based on hyaluronic acid-vitamin E succinate conjugates for improved lung cancer treatment. Int. J. Nanomedicine, 2018, 13, 1585-1600.
[http://dx.doi.org/10.2147/IJN.S155383] [PMID: 29588586]
[39]
Zhou, J.; Chang, M.; Li, J.; Fang, T.; Hu, J.; Bai, C. Knockdown of annexin A5 restores gefitinib sensitivity by promoting G2/M cell cycle arrest. Respir. Res., 2018, 19(1), 96.
[http://dx.doi.org/10.1186/s12931-018-0804-1] [PMID: 29784046]
[40]
Babu, A.; Amreddy, N.; Muralidharan, R.; Pathuri, G.; Gali, H.; Chen, A.; Zhao, Y.D.; Munshi, A.; Ramesh, R. Chemodrug delivery using integrin-targeted PLGA-Chitosan nanoparticle for lung cancer therapy. Sci. Rep., 2017, 7(1), 14674.
[http://dx.doi.org/10.1038/s41598-017-15012-5] [PMID: 29116098]
[41]
Kim, S.M.; Jung, J.I.; Chai, C.; Imm, J.Y. Characteristics and glucose uptake promoting effect of chrysin-loaded phytosomes prepared with different phospholipid matrices. Nutrients, 2019, 11(10), 2549.
[http://dx.doi.org/10.3390/nu11102549] [PMID: 31652637]
[42]
Wang, M.; Yang, Y.; Liao, Z. Diabetes and cancer: Epidemiological and biological links. World J. Diabetes, 2020, 11(6), 227-238.
[http://dx.doi.org/10.4239/wjd.v11.i6.227] [PMID: 32547697]
[43]
Shikata, K.; Ninomiya, T.; Kiyohara, Y. Diabetes mellitus and cancer risk: Review of the epidemiological evidence. Cancer Sci., 2013, 104(1), 9-14.
[http://dx.doi.org/10.1111/cas.12043] [PMID: 23066889]
[44]
Suissa, S.; Azoulay, L.; Dell’Aniello, S.; Evans, M.; Vora, J.; Pollak, M. Long-term effects of insulin glargine on the risk of breast cancer. Diabetologia, 2011, 54(9), 2254-2262.
[http://dx.doi.org/10.1007/s00125-011-2190-9] [PMID: 21614572]
[45]
Kostev, K.; Kalder, M. Long-term use of basal insulin and the risk of breast cancer. Breast Cancer Res. Treat., 2018, 168(3), 763-764.
[http://dx.doi.org/10.1007/s10549-017-4631-8] [PMID: 29280042]
[46]
Ozturk, S. Safe and effective prescription of metformin in elderly patients with Type 2 Diabetes (T2DM). Endocrinol. Metab. Int. J., 2018, 6(3), 246-247.
[47]
Deng, J.; Peng, M.; Wang, Z.; Zhou, S.; Xiao, D.; Deng, J.; Yang, X.; Peng, J.; Yang, X. Novel application of metformin combined with targeted drugs on anticancer treatment. Cancer Sci., 2019, 110(1), 23-30.
[http://dx.doi.org/10.1111/cas.13849] [PMID: 30358009]
[48]
Monteagudo, S.; Pérez-Martínez, F.C.; Pérez-Carrión, M.D.; Guerra, J.; Merino, S.; Sánchez-Verdú, M.P.; Ceña, V. Inhibition of p42 MAPK using a nonviral vector-delivered siRNA potentiates the anti-tumor effect of metformin in prostate cancer cells. Nanomedicine (Lond.), 2012, 7(4), 493-506.
[http://dx.doi.org/10.2217/nnm.11.61] [PMID: 21995500]
[49]
Hu, J.W.; Chen, B.; Zhang, J.; Qi, Y.P.; Liang, J.H.; Zhong, J.H.; Xiang, B.D. Novel combination of celecoxib and metformin improves the antitumor effect by inhibiting the growth of Hepatocellular Carcinoma. J. Cancer, 2020, 11(21), 6437-6444.
[http://dx.doi.org/10.7150/jca.47532] [PMID: 33033527]
[50]
Thomas, A.; Ranadive, N.; Nayak, H.; Surendran, S.; Nampoothiri, M.; Mudgal, J.; Nayak, Y. In vitro cytotoxicity activity of chrysin, morin and resveratrol against MCF-7 breast cancer cell lines. Biotechnol Res Asia, 2016, 13, 1633-1637.
[http://dx.doi.org/10.13005/bbra/2310]
[51]
Omene, C.; Kalac, M.; Wu, J.; Marchi, E.; Frenkel, K.; O’Connor, O.A. Propolis and its active component, caffeic acid phenethyl ester (CAPE), modulate breast cancer therapeutic targets via an epigenetically mediated mechanism of action. J. Cancer Sci. Ther., 2013, 5(10), 334-342.
[52]
Zhang, Y.; Ren, T.; Gou, J.; Zhang, L.; Tao, X.; Tian, B.; Tian, P.; Yu, D.; Song, J.; Liu, X.; Chao, Y.; Xiao, W.; Tang, X. Strategies for improving the payload of small molecular drugs in polymeric micelles. J. Control. Release, 2017, 261, 352-366.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.047] [PMID: 28163211]
[53]
Ashjari, M.; Panahandeh, F.; Niazi, Z.; Abolhasani, M. Synthesis of PLGA–mPEG star-like block copolymer to form micelle loaded magnetite as a nanocarrier for hydrophobic anticancer drug. J. Drug Deliv. Sci. Technol., 2020, 56101563
[http://dx.doi.org/10.1016/j.jddst.2020.101563]
[54]
Yang, C.; Huang, S.; Wang, X.; Wang, M. Theranostic unimolecular micelles of highly fluorescent conjugated polymer bottlebrushes for far red/near infrared bioimaging and efficient anticancer drug delivery. Polym. Chem., 2016, 7(48), 7455-7468.
[http://dx.doi.org/10.1039/C6PY01838F]
[55]
Haider, M.S.; Lübtow, M.M.; Endres, S.; Forster, S.; Flegler, V.J.; Böttcher, B.; Aseyev, V.; Pöppler, A.C.; Luxenhofer, R. Think beyond the core: Impact of the hydrophilic corona on drug solubilization using polymer micelles. ACS Appl. Mater. Interfaces, 2020, 12(22), 24531-24543.
[http://dx.doi.org/10.1021/acsami.9b22495] [PMID: 32378873]
[56]
Wang, W.; Yang, H.; Kong, X.; Ye, Z.; Yin, Y.; Zhang, X.; He, G.; Xu, P.; Zheng, H. Hydrogen-bonding strategy for constructing pH-sensitive core–shell micelles with hydrophilic polymer as the shell and hydrophobic drug as the core. RSC Advances, 2014, 4(54), 28499-28503.
[http://dx.doi.org/10.1039/C4RA03716B]
[57]
Etienne-Selloum, N.; Dandache, I.; Sharif, T.; Auger, C.; Schini-Kerth, V. B. Polyphenolic compounds targeting p53-family tumor suppressors: Current progress and challenges. Futur asp tumor suppressor gene, 2013, 129-167.
[58]
Vaishya, R.D.; Khurana, V.; Patel, S.; Mitra, A.K. Controlled ocular drug delivery with nanomicelles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2014, 6(5), 422-437.
[http://dx.doi.org/10.1002/wnan.1272] [PMID: 24888969]
[59]
Noori, S.; Rajabi, S.; Tavirani, M.; Shokri, B.; Zarghi, A. Anti-Breast cancer activities of Ketoprofen-RGD conjugate by targeting breast cancer stem-Like cells and parental cells. Anticancer. Agents Med. Chem., 2020, 21(8), 1027-1036.
[PMID: 32900351]
[60]
Duval, A.; Lawoko, M. A review on lignin-based polymeric, micro-and nano-structured materials. React. Funct. Polym., 2014, 85, 78-96.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2014.09.017]
[61]
Su, X.; Dong, C.; Zhang, J.; Su, L.; Wang, X.; Cui, H.; Chen, Z. Combination therapy of anti-cancer bioactive peptide with Cisplatin decreases chemotherapy dosing and toxicity to improve the quality of life in xenograft nude mice bearing human gastric cancer. Cell Biosci., 2014, 4(1), 7.
[http://dx.doi.org/10.1186/2045-3701-4-7] [PMID: 24507386]
[62]
Li, K.; Liu, B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem. Soc. Rev., 2014, 43(18), 6570-6597.
[http://dx.doi.org/10.1039/C4CS00014E] [PMID: 24792930]
[63]
Ribeiro, A.A.L.; da Silva, F.H.; de Melo Cotrim, A.C.; Deluque, A.L.; de Marchi, P.G.F.; Fagundes, D.L.G.; de Sousa Pereira, C.; Franca, E.L.; Honorio-Franca, A.C. Herbal mixture adsorbed to polyethylene glycol microspheres induces apoptotic effects on breast cancer cells. Curr. Drug Deliv., 2018, 15(2), 227-234.
[http://dx.doi.org/10.2174/1567201814666171002141430] [PMID: 28969566]
[64]
Zhuo, X.; Lei, T.; Miao, L.; Chu, W.; Li, X.; Luo, L.; Gou, J.; Zhang, Y.; Yin, T.; He, H.; Tang, X. Disulfiram-loaded mixed nanoparticles with high drug-loading and plasma stability by reducing the core crystallinity for intravenous delivery. J. Colloid Interface Sci., 2018, 529, 34-43.
[http://dx.doi.org/10.1016/j.jcis.2018.05.057] [PMID: 29883928]
[65]
Khandker, S.S.; Shakil, M.S.; Hossen, M.S. Gold nanoparticles; potential nanotheranostic agent in breast cancer: A comprehensive review with systematic search strategy. Curr. Drug Metab., 2020, 21(8), 579-598.
[http://dx.doi.org/10.2174/1389200221666200610173724] [PMID: 32520684]
[66]
He, Y.; Liu, P.; Shi, C.; Liu, Y.; Liu, S.; Feng, X.; Fu, D. The influence of hydrophilic mPEG segment on formation, morphology, and properties of PCL‐mPEG microspheres. Adv. Polym. Technol., 2017, 37, 2281-2287.
[http://dx.doi.org/10.1002/adv.21887]
[67]
Hassanzadeh, F.; Mehdifar, M.; Varshosaz, J.; Khodarahmi, G.A.; Rostami, M. Folic acid targeted polymeric micelles based on tocopherol succinate-pulluan as an effective carrier for epirubicin: Preparation, characterization and in-vitro cytotoxicity assessment. Curr. Drug Deliv., 2018, 15(2), 235-246.
[http://dx.doi.org/10.2174/1567201814666170602074149] [PMID: 28571542]
[68]
Amjad, M.; Kesharwani, P.; Mohd Amin, M.; Iyer, A. Recent advances in the design, development, and targeting mechanisms of polymeric micelles for delivery of siRNA in cancer therapy. Prog. Polym. Sci., 2017, 64, 154-181.
[http://dx.doi.org/10.1016/j.progpolymsci.2016.09.008]
[69]
Fan, W.; Zhang, L.; Li, Y.; Wu, H. Recent progress of crosslinking strategies for polymeric micelles with enhanced drug delivery in cancer therapy. Curr. Med. Chem., 2019, 26(13), 2356-2376.
[http://dx.doi.org/10.2174/0929867324666171121102255] [PMID: 29165062]
[70]
Sarisozen, C.; Vural, I.; Levchenko, T.; Hincal, A.A.; Torchilin, V.P. PEG-PE-based micelles co-loaded with paclitaxel and cyclosporine A or loaded with paclitaxel and targeted by anticancer antibody overcome drug resistance in cancer cells. Drug Deliv., 2012, 19(4), 169-176.
[http://dx.doi.org/10.3109/10717544.2012.674163] [PMID: 22506922]
[71]
Chen, Y.C.; Lo, C.L.; Hsiue, G.H. Multifunctional nanomicellar systems for delivering anticancer drugs. J. Biomed. Mater. Res. A, 2014, 102(6), 2024-2038.
[http://dx.doi.org/10.1002/jbm.a.34850] [PMID: 23828850]
[72]
Mathur, N.; Manna, B.; Sharma, A. Relationship between viscosity and micellization of fused chelates of thiazine drugs in different chemical compositions. Curr. Phys. Chem, 2019, 9, 232-246.
[http://dx.doi.org/10.2174/1877946809666190424145506]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy