Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Two New Adenosine Derivatives and their Antiproliferative Properties: An In Vitro Evaluation

Author(s): Francisco Valdés, Bárbara Arévalo, Margarita Gutiérrez, Verónica García-Castillo, Rebeca Salgado-García, Carlos Pérez-Plasencia*, Claudio Valenzuela, Ángel Cayo, Alexandra Olate-Briones and Nelson Brown *

Volume 22, Issue 7, 2022

Published on: 11 August, 2021

Page: [1414 - 1425] Pages: 12

DOI: 10.2174/1871520621666210528151818

Price: $65

Abstract

Background: Adenosine is a natural nucleoside present in a variety of organs and tissues, where it acts as a modulator of diverse physiological and pathophysiological processes. These actions are mediated by at least four G protein-coupled receptors, which are widely and differentially expressed in tissues. Interestingly, high concentrations of adenosine have been reported in a variety of tumors. In this context, the final output of adenosine in tumorigenesis will likely depend on the constellation of adenosine receptors expressed by tumor and stromal cells. Notably, activation of the A3 receptor can reduce the proliferative capacity of various cancer cells.

Objective: This study aimed to describe the anti-proliferative effects of two previously synthesized adenosine derivatives with A3 agonist action (compounds 2b and 2f) through in vitro assays.

Methods: We used gastric and breast cancer cell lines expressing the A3 receptor as in vitro models and theoretical experiments for molecular dynamics and determination of ADME properties.

Results: The antiproliferative effects of adenosine derivatives (after determining IC50 values) were comparable or even higher than those described for IB-MECA, a commercially available A3 agonist. Among possible mechanisms involved, apoptosis was found to be induced in MCF-7 cells but not in AGS or MDA-MB-231 cells. Surprisingly, we were unable to observe cellular senescence induction upon treatment with compounds 2b and 2f in any of the cell lines studied, although we cannot rule out other forms of cell cycles exit at this point.

Conclusion: Both adenosine derivatives showed antiproliferative effects on gastric and breast cancer cell lines, and were able to induce apoptosis, at least in the MCF-7 cell line. Further studies will be necessary to unveil receptor specificity and mechanisms accounting for the antiproliferative properties of these novel semi-synthetic compounds.

Keywords: Adenosine, A3 receptor, adenosine derivatives, apoptosis, molecular dynamics, ADME profiles, cancer cells.

Graphical Abstract

[1]
Fernandez-Gallardo, M.; González-Ramírez, R.; Sandoval, A.; Felix, R.; Monjaraz, E. Adenosine stimulate proliferation and migration in triple negative breast cancer cells. PLoS One, 2016, 11(12), e0167445.
[http://dx.doi.org/10.1371/journal.pone.0167445] [PMID: 27911956]
[2]
Ajit, S.N. Anticancer drug development-unique aspects of pharmaceutical development; Pharmaceutical Perspectives of Cancer Therapeutics, 2009, pp. 49-92.
[3]
Pearson, M.A.; Fabbro, D. Targeting protein kinases in cancer therapy: A success? Expert Rev. Anticancer Ther., 2004, 4(6), 1113-1124.
[http://dx.doi.org/10.1586/14737140.4.6.1113] [PMID: 15606337]
[4]
Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol. Cancer, 2018, 17(1), 48.
[http://dx.doi.org/10.1186/s12943-018-0804-2] [PMID: 29455673]
[5]
Cicenas, J.; Zalyte, E.; Bairoch, A.; Gaudet, P. Kinases and Cancer. Cancers (Basel), 2018, 10(3), 1-7.
[http://dx.doi.org/10.3390/cancers10030063] [PMID: 29494549]
[6]
Fredholm, B.B. Physiological and pathophysiological roles of adenosine. Sleep Biol. Rhythms, 2011, 9(1), 24-28.
[http://dx.doi.org/10.1111/j.1479-8425.2010.00460.x]
[7]
Fredholm, B.B. Adenosine--a physiological or pathophysiological agent? J. Mol. Med. (Berl.), 2014, 92(3), 201-206.
[http://dx.doi.org/10.1007/s00109-013-1101-6] [PMID: 24362516]
[8]
Cristalli, G.; Cacciari, B.; Dal Ben, D.; Lambertucci, C.; Moro, S.; Spalluto, G.; Volpini, R. Highlights on the development of A(2A) adenosine receptor agonists and antagonists. ChemMedChem, 2007, 2(3), 260-281.
[http://dx.doi.org/10.1002/cmdc.200600193] [PMID: 17177231]
[9]
Borea, P.A.; Gessi, S.; Merighi, S.; Varani, K. Adenosine as a multisignalling guardian angel in human diseases: When, where and how does it exert its protective effects? Trends Pharmacol. Sci., 2016, 37(6), 419-434.
[http://dx.doi.org/10.1016/j.tips.2016.02.006] [PMID: 26944097]
[10]
Fredholm, B.B.; Arslan, G.; Halldner, L.; Kull, B.; Schulte, G.; Wasserman, W. Structure and function of adenosine receptors and their genes. Naunyn Schmiedebergs Arch. Pharmacol., 2000, 362(4-5), 364-374.
[http://dx.doi.org/10.1007/s002100000313] [PMID: 11111830]
[11]
Sachdeva, S.; Gupta, M. Adenosine and its receptors as therapeutic targets: An overview. Saudi Pharm. J., 2013, 21(3), 245-253.
[http://dx.doi.org/10.1016/j.jsps.2012.05.011] [PMID: 23960840]
[12]
Jacobson, K.A.; Merighi, S.; Varani, K.; Borea, P.A.; Baraldi, S.; Aghazadeh Tabrizi, M.; Romagnoli, R.; Baraldi, P.G.; Ciancetta, A.; Tosh, D.K.; Gao, Z.G.; Gessi, S. Merighi, S. Varani, K. Borea, P. Baraldi, S. Aghazadeh Tabrizi, M. Gao, Z. G. (2018). A3 adenosine receptors as modulators of inflammation: from medicinal chemistry to therapy. Med. Res. Rev., 2018, 38(4), 1031-1072.
[http://dx.doi.org/10.1002/med.21456] [PMID: 28682469]
[13]
Gessi, S.; Merighi, S.; Sacchetto, V.; Simioni, C.; Borea, P. Adenosine receptors and cancer. Biochimica et Biophysica Acta (BBA)-. Biomembranes, 2011, 1808(5), 1400-1412.
[http://dx.doi.org/10.1016/j.bbamem.2010.09.020]
[14]
Mustafa, S.; Morrison, R.; Teng, B.; Pelleg, A. Adenosine receptors and the heart: Role in regulation of coronary blood flow and cardiac electrophysiology. Adenosine Receptors in Health and Disease, 2009, 193, 161-188.
[http://dx.doi.org/10.1007/978-3-540-89615-9_6]
[15]
Simard, T.; Jung, R.; Labinaz, A.; Faraz, M.A.; Ramirez, F.D.; Di Santo, P.; Perry-Nguyen, D.; Pitcher, I.; Motazedian, P.; Gaudet, C.; Rochman, R.; Marbach, J.; Boland, P.; Sarathy, K.; Alghofaili, S.; Russo, J.J.; Couture, E.; Promislow, S.; Beanlands, R.S.; Hibbert, B.; Rochman, R. Evaluation of plasma adenosine as a marker of cardiovascular risk: Analytical and biological considerations. J. Am. Heart Assoc., 2019, 8(15), e012228.
[http://dx.doi.org/10.1161/JAHA.119.012228] [PMID: 31379241]
[16]
Layland, J.; Carrick, D.; Lee, M.; Oldroyd, K.; Berry, C. Adenosine: physiology, pharmacology, and clinical applications. JACC Cardiovasc. Interv., 2014, 7(6), 581-591.
[http://dx.doi.org/10.1016/j.jcin.2014.02.009] [PMID: 24835328]
[17]
da Silva, V.J.; Gnecchi-Ruscone, T.; Bellina, V.; Oliveira, M.; Maciel, L.; de Carvalho, A.C.; Salgado, H.C.; Bergamaschi, C.M.; Tobaldini, E.; Porta, A.; Montano, N. Acute adenosine increases cardiac vagal and reduces sympathetic efferent nerve activities in rats. Exp. Physiol., 2012, 97(6), 719-729.
[http://dx.doi.org/10.1113/expphysiol.2011.063925] [PMID: 22366563]
[18]
Valdés, F.Z.; Luna, V.Z.; Arévalo, B.R.; Brown, N.V.; Gutiérrez, M.C. Adenosine: Synthetic Methods of Its Derivatives and Antitumor Activity. Mini Rev. Med. Chem., 2018-a, 18(20), 1684-1701.
[http://dx.doi.org/10.2174/1389557518666180516163539] [PMID: 29769005]
[19]
Kumar, V. Adenosine as an endogenous immunoregulator in cancer pathogenesis: where to go? Purinergic Signal., 2013, 9(2), 145-165.
[http://dx.doi.org/10.1007/s11302-012-9349-9] [PMID: 23271562]
[20]
Fishman, P.; Bar-Yehuda, S.; Synowitz, M.; Powell, J.; Klotz, K.; Gessi, S.; Borea, P. Adenosine receptors and cancer. Adenosine Receptors in Health and Disease, 2009, 193, 399-441.
[http://dx.doi.org/10.1007/978-3-540-89615-9_14]
[21]
Gao, Z.G.; Jacobson, K.A. A2B Adenosine Receptor and Cancer. Int. J. Mol. Sci., 2019, 20(20), 5139.
[http://dx.doi.org/10.3390/ijms20205139] [PMID: 31627281]
[22]
Allard, B.; Beavis, P.A.; Darcy, P.K.; Stagg, J. Immunosuppressive activities of adenosine in cancer. Curr. Opin. Pharmacol., 2016, 29, 7-16.
[http://dx.doi.org/10.1016/j.coph.2016.04.001] [PMID: 27209048]
[23]
Vijayan, D.; Young, A.; Teng, M.W.L.; Smyth, M.J. Targeting immunosuppressive adenosine in cancer. Nat. Rev. Cancer, 2017, 17(12), 709-724.
[http://dx.doi.org/10.1038/nrc.2017.86] [PMID: 29059149]
[24]
Jin, D.; Fan, J.; Wang, L.; Thompson, L.F.; Liu, A.; Daniel, B.J.; Shin, T.; Curiel, T.J.; Zhang, B. CD73 on tumor cells impairs antitumor T-cell responses: a novel mechanism of tumor-induced immune suppression. Cancer Res., 2010, 70(6), 2245-2255.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3109] [PMID: 20179192]
[25]
Ryzhov, S.; McCaleb, J.L.; Goldstein, A.E.; Biaggioni, I.; Feoktistov, I. Role of adenosine receptors in the regulation of angiogenic factors and neovascularization in hypoxia. J. Pharmacol. Exp. Ther., 2007, 320(2), 565-572.
[http://dx.doi.org/10.1124/jpet.106.114850] [PMID: 17132813]
[26]
Antonioli, L.; Blandizzi, C.; Pacher, P.; Haskó, G. Immunity, inflammation and cancer: a leading role for adenosine. Nat. Rev. Cancer, 2013, 13(12), 842-857.
[http://dx.doi.org/10.1038/nrc3613] [PMID: 24226193]
[27]
St Hilaire, C.; Carroll, S.H.; Chen, H.; Ravid, K. Mechanisms of induction of adenosine receptor genes and its functional significance. J. Cell. Physiol., 2009, 218(1), 35-44.
[http://dx.doi.org/10.1002/jcp.21579] [PMID: 18767039]
[28]
Sheth, S.; Brito, R.; Mukherjea, D.; Rybak, L.P.; Ramkumar, V. Adenosine receptors: expression, function and regulation. Int. J. Mol. Sci., 2014, 15(2), 2024-2052.
[http://dx.doi.org/10.3390/ijms15022024] [PMID: 24477263]
[29]
Lin, Z.; Yin, P.; Reierstad, S.; O’Halloran, M.; Coon, V.J.; Pearson, E.K.; Mutlu, G.M.; Bulun, S.E. Adenosine A1 receptor, a target and regulator of estrogen receptoralpha action, mediates the proliferative effects of estradiol in breast cancer. Oncogene, 2010, 29(8), 1114-1122.
[http://dx.doi.org/10.1038/onc.2009.409] [PMID: 19935720]
[30]
Wei, Q.; Costanzi, S.; Balasubramanian, R.; Gao, Z.G.; Jacobson, K.A. A2B adenosine receptor blockade inhibits growth of prostate cancer cells. Purinergic Signal., 2013, 9(2), 271-280.
[http://dx.doi.org/10.1007/s11302-012-9350-3] [PMID: 23315335]
[31]
Vincenzi, F.; Targa, M.; Corciulo, C.; Gessi, S.; Merighi, S.; Setti, S.; Cadossi, R.; Borea, P.A.; Varani, K. The anti-tumor effect of A3 adenosine receptors is potentiated by pulsed electromagnetic fields in cultured neural cancer cells. PLoS One, 2012, 7(6), e39317.
[http://dx.doi.org/10.1371/journal.pone.0039317] [PMID: 22761760]
[32]
Madi, L.; Ochaion, A.; Rath-Wolfson, L.; Bar-Yehuda, S.; Erlanger, A.; Ohana, G.; Harish, A.; Merimski, O.; Barer, F.; Fishman, P. The A3 adenosine receptor is highly expressed in tumor versus normal cells: Potential target for tumor growth inhibition. Clin. Cancer Res., 2004, 10(13), 4472-4479.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0651] [PMID: 15240539]
[33]
Gallo-Rodriguez, C.; Ji, X.D.; Melman, N.; Siegman, B.D.; Sanders, L.H.; Orlina, J.; Fischer, B.; Pu, Q.; Olah, M.E.; van Galen, P.J. Structure-activity relationships of N6-benzyladenosine-5′-uronamides as A3-selective adenosine agonists. J. Med. Chem., 1994, 37(5), 636-646.
[http://dx.doi.org/10.1021/jm00031a014] [PMID: 8126704]
[34]
Kohno, Y.; Sei, Y.; Koshiba, M.; Kim, H.O.; Jacobson, K.A. Induction of apoptosis in HL-60 human promyelocytic leukemia cells by adenosine A(3) receptor agonists. Biochem. Biophys. Res. Commun., 1996, 219(3), 904-910.
[http://dx.doi.org/10.1006/bbrc.1996.0331] [PMID: 8645277]
[35]
Trincavelli, M.L.; Tuscano, D.; Marroni, M.; Falleni, A.; Gremigni, V.; Ceruti, S.; Abbracchio, M.P.; Jacobson, K.A.; Cattabeni, F.; Martini, C. A3 adenosine receptors in human astrocytoma cells: agonist-mediated desensitization, internalization, and down-regulation. Mol. Pharmacol., 2002, 62(6), 1373-1384.
[http://dx.doi.org/10.1124/mol.62.6.1373] [PMID: 12435805]
[36]
Gessi, S.; Cattabriga, E.; Avitabile, A.; Gafa’, R.; Lanza, G.; Cavazzini, L.; Bianchi, N.; Gambari, R.; Feo, C.; Liboni, A.; Gullini, S.; Leung, E.; Mac-Lennan, S.; Borea, P.A. Elevated expression of A3 adenosine receptors in human colorectal cancer is reflected in peripheral blood cells. Clin. Cancer Res., 2004, 10(17), 5895-5901.
[http://dx.doi.org/10.1158/1078-0432.CCR-1134-03] [PMID: 15355922]
[37]
Panjehpour, M.; Hemati, S.; Forghani, M.A. Expression of A1 and A3 adenosine receptors in human breast tumors. Tumori, 2012, 98(1), 137-141.
[http://dx.doi.org/10.1177/030089161209800119] [PMID: 22495714]
[38]
Borea, P.A.; Varani, K.; Vincenzi, F.; Baraldi, P.G.; Tabrizi, M.A.; Merighi, S.; Gessi, S. The A3 adenosine receptor: history and perspectives. Pharmacol. Rev., 2015, 67(1), 74-102.
[http://dx.doi.org/10.1124/pr.113.008540] [PMID: 25387804]
[39]
Samsel, M.; Dzierzbicka, K. Therapeutic potential of adenosine analogues and conjugates. Pharmacol. Rep., 2011, 63(3), 601-617.
[http://dx.doi.org/10.1016/S1734-1140(11)70573-4] [PMID: 21857072]
[40]
Catarzi, D.; Varano, F.; Varani, K.; Vincenzi, F.; Pasquini, S.; Dal Ben, D.; Volpini, R.; Colotta, V. Amino-3,5-Dicyanopyridines Targeting the Adenosine Receptors Ranging from Pan Ligands to Combined A1/A2B Partial Agonists. Pharmaceuticals (Basel), 2019, 12(4), 159.
[http://dx.doi.org/10.3390/ph12040159] [PMID: 31652622]
[41]
Chen, J.F.; Eltzschig, H.K.; Fredholm, B.B. Adenosine receptors as drug targets--what are the challenges? Nat. Rev. Drug Discov., 2013, 12(4), 265-286.
[http://dx.doi.org/10.1038/nrd3955] [PMID: 23535933]
[42]
Jacobson, K.A.; Ravi, R.G.; Nandanan, E.; Kim, H.S.; Moro, S.; Kim, Y.C.; Lee, K.; Barak, D.; Marquez, V.E.; Ji, X.D. Ribose modified nucleosides and nucleotides as ligands for purine receptors. Nucleosides Nucleotides Nucleic Acids, 2001, 20(4-7), 333-341.
[http://dx.doi.org/10.1081/NCN-100002305] [PMID: 11563046]
[43]
Valdés Zurita, F.; Brown Vega, N.; Gutiérrez Cabrera, M. Semisynthesis, Characterization and Evaluation of New Adenosine Derivatives as Antiproliferative Agents. Molecules, 2018-b, 23(5), 1111.
[http://dx.doi.org/10.3390/molecules23051111] [PMID: 29738449]
[44]
Ottria, R.; Casati, S.; Baldoli, E.; Maier, J.A.; Ciuffreda, P.N. 6-Alkyladenosines: Synthesis and evaluation of in vitro anticancer activity. Bioorg. Med. Chem., 2010, 18(23), 8396-8402.
[http://dx.doi.org/10.1016/j.bmc.2010.09.030] [PMID: 21035348]
[45]
Gessi, S.; Varani, K.; Merighi, S.; Morelli, A.; Ferrari, D.; Leung, E.; Baraldi, P.G.; Spalluto, G.; Borea, P.A. Pharmacological and biochemical characterization of A3 adenosine receptors in Jurkat T cells. Br. J. Pharmacol., 2001, 134(1), 116-126.
[http://dx.doi.org/10.1038/sj.bjp.0704254] [PMID: 11522603]
[46]
Cosyn, L. Synthesis and Biological Evaluation of Purine and Pyrimidine Ligands for the A3 and P2Y2 Purinergic Receptors. Doctoral Thesis, Ghent University, , 2008.
[47]
Stemmer, S.M.; Benjaminov, O.; Medalia, G.; Ciuraru, N.B.; Silverman, M.H.; Bar-Yehuda, S.; Fishman, S.; Harpaz, Z.; Farbstein, M.; Cohen, S.; Patoka, R.; Singer, B.; Kerns, W.D.; Fishman, P. CF102 for the treatment of hepatocellular carcinoma: a phase I/II, open-label, dose-escalation study. Oncologist, 2013, 18(1), 25-26.
[http://dx.doi.org/10.1634/theoncologist.2012-0211] [PMID: 23299770]
[48]
Llovet, J.M.; Zucman-Rossi, J.; Pikarsky, E.; Sangro, B.; Schwartz, M.; Sherman, M.; Gores, G. Hepatocellular carcinoma. Nat. Rev. Dis. Primers, 2016, 2, 16018. [serial online].
[http://dx.doi.org/10.1038/nrdp.2016.18] [PMID: 27158749]
[49]
Fishman, P.; Bar-Yehuda, S.; Ohana, G.; Pathak, S.; Wasserman, L.; Barer, F.; Multani, A.S. Adenosine acts as an inhibitor of lymphoma cell growth: a major role for the A3 adenosine receptor. Eur. J. Cancer, 2000, 36(11), 1452-1458.
[http://dx.doi.org/10.1016/S0959-8049(00)00130-1] [PMID: 10899660]
[50]
Blackburn, M.R.; Vance, C.O.; Morschl, E.; Wilson, C.N. Adenosine Receptors and Inflammation. Adenosine Receptors in Health and Disease, 2009, 193, 215-269.
[http://dx.doi.org/10.1007/978-3-540-89615-9_8]
[51]
Valdés, F.; Luna, V.; Arévalo, B.; Brown, N.; Gutiérrez, M. Docking’s study of 6-substituted adenosine-5′-N-ethyluronamide analogs as selective agonists at A3 adenosine receptor and selection of compounds for to be synthesized later. Pharma Chem., 2015, 61, 212-225.
[52]
Gao, Z.G.; Kim, S.K.; Biadatti, T.; Chen, W.; Lee, K.; Barak, D.; Kim, S.G.; Johnson, C.R.; Jacobson, K.A. Structural determinants of A(3) adenosine receptor activation: nucleoside ligands at the agonist/antagonist boundary. J. Med. Chem., 2002, 45(20), 4471-4484.
[http://dx.doi.org/10.1021/jm020211+] [PMID: 12238926]
[53]
Costanzi, S.; Lambertucci, C.; Vittori, S.; Volpini, R.; Cristalli, G. 2- and 8-alkynyladenosines: conformational studies and docking to human adenosine A3 receptor can explain their different biological behavior. J. Mol. Graph. Model., 2003, 21(4), 253-262.
[http://dx.doi.org/10.1016/S1093-3263(02)00161-4] [PMID: 12479925]
[54]
Van der Wenden, E.M.; Künzel, J.K.; Mathôt, R.A.; Ijzeman, A.P.; Danhof, M.; Soudijn, W. FC20 ribose modified adenosine analogues as potential partial agonists for the adenosine receptor. Eur. J. Pharm. Sci., 1994, 2(1-2), 105.
[http://dx.doi.org/10.1016/0928-0987(94)90129-5]
[55]
Ohana, G.; Bar-Yehuda, S.; Barer, F.; Fishman, P. Differential effect of adenosine on tumor and normal cell growth: focus on the A3 adenosine receptor. J. Cell. Physiol., 2001, 186(1), 19-23.
[http://dx.doi.org/10.1002/1097-4652(200101)186:1<19:AID-JCP1011>3.0.CO;2-3] [PMID: 11147810]
[56]
Kaminski, G.; Friesner, R.; Tirado-Rives, J.; Jorgensen, W. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B, 2001, 105(28), 6474-6487.
[http://dx.doi.org/10.1021/jp003919d]
[57]
Berendsen, H.; Postma, J.; Van Gunsteren, W.; Hermans, J. Interaction Models for Water in Relation to Protein Hydration; Intermolecular Forces, 1981, pp. 331-342.
[http://dx.doi.org/10.1007/978-94-015-7658-1_21]
[58]
Rodríguez, D.; Piñeiro, Á.; Gutiérrez-de-Terán, H. Molecular dynamics simulations reveal insights into key structural elements of adenosine receptors. Biochemistry, 2011, 50(19), 4194-4208.
[http://dx.doi.org/10.1021/bi200100t] [PMID: 21480628]
[59]
Berendsen, H.; Postma, J.; Van Gunsteren, W.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 1984(81), 3684-3690.
[http://dx.doi.org/10.1063/1.448118]
[60]
Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res., 2001, 29(9), e45.
[http://dx.doi.org/10.1093/nar/29.9.e45] [PMID: 11328886]
[61]
Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 1990, 82(13), 1107-1112.
[http://dx.doi.org/10.1093/jnci/82.13.1107] [PMID: 2359136]
[62]
Voigt, W. Sulforhodamine B assay and chemosensitivity. Chemosensitivity, 2005, 110, 39-48.
[http://dx.doi.org/10.1385/1-59259-869-2:039]
[63]
Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc., 2006, 1(3), 1112-1116.
[http://dx.doi.org/10.1038/nprot.2006.179] [PMID: 17406391]
[64]
García-Castillo, V.; López-Urrutia, E.; Villanueva-Sánchez, O.; Ávila-Rodríguez, M.Á.; Zentella-Dehesa, A.; Cortés-González, C.; López-Camarillo, C.; Jacobo-Herrera, N.J.; Pérez-Plasencia, C. López-Urrutia, E. Villanueva-Sánchez, O. Ávila-Rodríguez, M. Zentella-Dehesa, A. Cortés-González, C. López-Camarillo, C. Jacobo-Herrera, N. Pérez-Plasencia, C. Targeting metabolic remodeling in triple negative breast cancer in a murine model. J. Cancer, 2017, 8(2), 178-189.
[PMID: 28243322]
[65]
Vermes, I.; Haanen, C.; Steffens-Nakken, H.; Reutelingsperger, C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immunol. Methods, 1995, 184(1), 39-51.
[http://dx.doi.org/10.1016/0022-1759(95)00072-I] [PMID: 7622868]
[66]
Jardine, L.J. Identification of senescence in cancer cells. Methods Mol. Med., 2004, 88, 231-238.
[PMID: 14634234]
[67]
Release, S. QikProp; Maestro-Desmond Interoperability Tools; Schrödinger: New York, NY, USA, 2018.
[68]
Release, S. LigPrep, Version 3.3; Maestro-Desmond Interoperability Tools; Schrödinger: New York, NY, USA, 2015.
[69]
Mandlik, V.; Bejugam, P.; Singh, S. Application of artificial neural networks in modern drug discovery.Artificial Neural Network for Drug Design, Delivery and Disposition; Academic Press, 2016, pp. 123-139.
[http://dx.doi.org/10.1016/B978-0-12-801559-9.00006-5]
[70]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[71]
Prism, G. GraphPad Software, version 6.0 e 2014.
[72]
Foundation, F.S. GNU PSPP, 0.8.5.GNU Project; Boston, MA, , 2015.
[73]
Panjehpour, M.; Karami-Tehrani, F. An adenosine analog (IB-MECA) inhibits anchorage-dependent cell growth of various human breast cancer cell lines. Int. J. Biochem. Cell Biol., 2004-a, 36(8), 1502-1509.
[http://dx.doi.org/10.1016/j.biocel.2003.12.001] [PMID: 15147729]
[74]
Panjehpour, M.; Karami-Tehrani, F.; Karami, M. The role of adenosine A3 receptors in cytotoxicity of the breast cancer cell lines. Physiology and Pharmacology, 2004-b, 7(2), 115-122.
[75]
Lu, J.; Pierron, A.; Ravid, K. An adenosine analogue, IB-MECA, down-regulates estrogen receptor α and suppresses human breast cancer cell proliferation. Cancer Res., 2003, 63(19), 6413-6423.
[PMID: 14559831]
[76]
Brown, N.E.; Jeselsohn, R.; Bihani, T.; Hu, M.G.; Foltopoulou, P.; Kuperwasser, C.; Hinds, P.W. Cyclin D1 activity regulates autophagy and senescence in the mammary epithelium. Cancer Res., 2012, 72(24), 6477-6489.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-4139] [PMID: 23041550]
[77]
Kurz, D.J.; Decary, S.; Hong, Y.; Erusalimsky, J.D. Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J. Cell Sci., 2000, 113(Pt 20), 3613-3622.
[PMID: 11017877]
[78]
Severino, J.; Allen, R.G.; Balin, S.; Balin, A.; Cristofalo, V.J. Is β-galactosidase staining a marker of senescence in vitro and in vivo? Exp. Cell Res., 2000, 257(1), 162-171.
[http://dx.doi.org/10.1006/excr.2000.4875] [PMID: 10854064]
[79]
Valdés, F.; Brown, N.; Morales-Bayuelo, A.; Prent-Peñaloza, L.; Gutierrez, M. Adenosine Derivates as Antioxidant Agents: Synthesis, Characterization, in Vitro Activity, and Theoretical Insights. Antioxidants, 2019, 8(10), 468.
[http://dx.doi.org/10.3390/antiox8100468] [PMID: 31600955]
[80]
van der Wenden, E.M.; von Frijtag Drabbe Künzel, J.K.; Mathôt, R.A.; Danhof, M.; IJzerman, A.P.; Soudijn, W. Ribose-modified adenosine analogues as potential partial agonists for the adenosine receptor. J. Med. Chem., 1995, 38(20), 4000-4006.
[http://dx.doi.org/10.1021/jm00020a014] [PMID: 7562934]
[81]
Petrelli, R.; Torquati, I.; Kachler, S.; Luongo, L.; Maione, S.; Franchetti, P.; Grifantini, M.; Novellino, E.; Lavecchia, A.; Klotz, K.N.; Cappellacci, L. 5′-C-Ethyl-tetrazolyl-N(6)-substituted adenosine and 2-chloro-adenosine derivatives as highly potent dual acting A1 adenosine receptor agonists and A3 adenosine receptor antagonists. J. Med. Chem., 2015, 58(5), 2560-2566.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00074] [PMID: 25699637]
[82]
Panda, A.; Satpati, S.; Dixit, A.; Pal, S. Novel homologated-apio adenosine derivatives as A3 adenosine receptor agonists: design, synthesis and molecular docking studies. RSC Advances, 2016, 6(14), 11233-11239.
[http://dx.doi.org/10.1039/C5RA26416B]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy