Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

sFRP1 Expression Regulates Wnt Signaling in Chronic Myeloid Leukemia K562 Cells

Author(s): Melek Pehlivan*, Ceyda Caliskan, Zeynep Yuce and Hakki O. Sercan

Volume 22, Issue 7, 2022

Published on: 24 May, 2021

Page: [1354 - 1362] Pages: 9

DOI: 10.2174/1871520621666210524162145

Price: $65

Abstract

Background: Wnt signaling cascades play important roles in cell fate decisions and their deregulation has been documented in many diseases, including malignant tumors and leukemia. One mechanism of aberrant Wnt signaling is the silencing of Wnt inhibitors through epigenetic mechanisms. The sFRPs are one of the most studied Wnt inhibitors; and the sFRP1 loss is known in many hematological malignancies. Therefore, we aimed to compare the expression of Wnt related genes in the presence and absence of sFRP1 in a chronic myeloid leukemia (CML) cell line.

Objective: It is important to understand how sFRP1 and sFRP1 perform their effects on CML to design new agents and strategies for resistant and advanced forms of CML.

Materials and Methods: We used K562 cells, which normally do not express sFRP1 and its sFRP1 expressing subclone K562s. Total RNA was isolated from K562 and K562s cell lines and converted to cDNA. PCR Array experiments were performed using Human Wnt Signaling Pathway Plus RT2 Profiler™ kit. Wnt signaling pathway activation was studied by western blot for downstream signaling targets.

Results: The WNT3, LRP6, PRICKLE1 and BTRC expressions were significantly decreased in the presence of sFRP1; while WNT5B increased. The sFRP1 expression inhibited stabilization of total β-catenin protein and downstream effector phosphorylation of noncanonical Wnt/PCP signaling; whereas Ca2+/PKC signaling remained active.

Conclusion: The results suggest that sFRP1 could be a promising therapeutic anticancer agent. Defining these pathway interactions is crucial for designing new agents resistant and advanced forms of CML.

Keywords: Wnt signaling, chronic myeloid leukemia, sFRP1, epigenetics, gene expression, anticancer agents.

Graphical Abstract

[1]
Shao, Y.C.; Wei, Y.; Liu, J.F.; Xu, X.Y. The role of Dickkopf family in cancers: From Bench to Bedside. Am. J. Cancer Res., 2017, 7(9), 1754-1768.
[PMID: 28979801]
[2]
Tortelote, G.G.; Reis, R.R.; de Almeida Mendes, F.; Abreu, J.G. Complexity of the Wnt/β catenin pathway: Searching for an activation model. Cell. Signal., 2017, 40, 30-43.
[http://dx.doi.org/10.1016/j.cellsig.2017.08.008] [PMID: 28844868]
[3]
Shen, P.; Pichler, M.; Chen, M.; Calin, G.A.; Ling, H. To Wnt or Lose: The Missing Non-Coding Linc in Colorectal Cancer. Int. J. Mol. Sci., 2017, 18(9), 2003.
[http://dx.doi.org/10.3390/ijms18092003] [PMID: 28930145]
[4]
Liu, L.J.; Xie, S.X.; Chen, Y.T.; Xue, J.L.; Zhang, C.J.; Zhu, F. Aberrant regulation of Wnt signaling in hepatocellular carcinoma. World J. Gastroenterol., 2016, 22(33), 7486-7499.
[http://dx.doi.org/10.3748/wjg.v22.i33.7486] [PMID: 27672271]
[5]
Miller, J.R.; Hocking, A.M.; Brown, J.D.; Moon, R.T. Mechanism and function of signal transduction by the Wnt/β-catenin and Wnt/Ca2+ pathways. Oncogene, 1999, 18(55), 7860-7872.
[http://dx.doi.org/10.1038/sj.onc.1203245] [PMID: 10630639]
[6]
Mikels, A.J.; Nusse, R. Purified Wnt5a protein activates or inhibits β-catenin-TCF signaling depending on receptor context. PLoS Biol., 2006, 4(4), e115.
[http://dx.doi.org/10.1371/journal.pbio.0040115] [PMID: 16602827]
[7]
Kanazawa, A.; Tsukada, S.; Kamiyama, M.; Yanagimoto, T.; Nakajima, M.; Maeda, S. Wnt5b partially inhibits canonical Wnt/β-catenin signaling pathway and promotes adipogenesis in 3T3-L1 preadipocytes. Biochem. Biophys. Res. Commun., 2005, 330(2), 505-510.
[http://dx.doi.org/10.1016/j.bbrc.2005.03.007] [PMID: 15796911]
[8]
Cruciat, C.M.; Niehrs, C. Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb. Perspect. Biol., 2013, 5(3), a015081.
[http://dx.doi.org/10.1101/cshperspect.a015081] [PMID: 23085770]
[9]
Bafico, A.; Gazit, A.; Pramila, T.; Finch, P.W.; Yaniv, A.; Aaronson, S.A. Interaction of frizzled related protein (FRP) with Wnt ligands and the frizzled receptor suggests alternative mechanisms for FRP inhibition of Wnt signaling. J. Biol. Chem., 1999, 274(23), 16180-16187.
[http://dx.doi.org/10.1074/jbc.274.23.16180] [PMID: 10347172]
[10]
Liang, C.J.; Wang, Z.W.; Chang, Y.W.; Lee, K.C.; Lin, W.H.; Lee, J.L. SFRPs Are Biphasic Modulators of Wnt-Signaling-Elicited Cancer Stem Cell Properties beyond Extracellular Control. Cell Rep., 2019, 28(6), 1511-1525.e5.
[http://dx.doi.org/10.1016/j.celrep.2019.07.023] [PMID: 31390565]
[11]
Warrier, S.; Marimuthu, R.; Sekhar, S.; Bhuvanalakshmi, G.; Arfuso, F.; Das, A.K.; Bhonde, R.; Martins, R.; Dharmarajan, A. sFRP-mediated Wnt sequestration as a potential therapeutic target for Alzheimer’s disease. Int. J. Biochem. Cell Biol., 2016, 75, 104-111.
[http://dx.doi.org/10.1016/j.biocel.2016.04.002] [PMID: 27063405]
[12]
Frenquelli, M.; Tonon, G. WNT Signaling in Hematological Malignancies. Front. Oncol., 2020, 10, 615190.
[http://dx.doi.org/10.3389/fonc.2020.615190] [PMID: 33409156]
[13]
Ghasemi, A.; Rostami, S.; Chahardouli, B.; Alizad Ghandforosh, N.; Ghotaslou, A.; Nadali, F. Study of SFRP1 and SFRP2 methylation status in patients with de novo Acute Myeloblastic Leukemia. Int. J. Hematol. Oncol. Stem Cell Res., 2015, 9(1), 15-21.
[PMID: 25802696]
[14]
Cain, C.J.; Manilay, J.O. Hematopoietic stem cell fate decisions are regulated by Wnt antagonists: Comparisons and current controversies. Exp. Hematol., 2013, 41(1), 3-16.
[http://dx.doi.org/10.1016/j.exphem.2012.09.006] [PMID: 23022129]
[15]
Reins, J.; Mossner, M.; Neumann, M.; Platzbecker, U.; Schumann, C.; Thiel, E.; Hofmann, W.K. Transcriptional down-regulation of the Wnt antagonist SFRP1 in haematopoietic cells of patients with different risk types of MDS. Leuk. Res., 2010, 34(12), 1610-1616.
[http://dx.doi.org/10.1016/j.leukres.2010.04.013] [PMID: 20471677]
[16]
Jamieson, C.H.M.; Ailles, L.E.; Dylla, S.J.; Muijtjens, M.; Jones, C.; Zehnder, J.L.; Gotlib, J.; Li, K.; Manz, M.G.; Keating, A.; Sawyers, C.L.; Weissman, I.L. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med., 2004, 351(7), 657-667.
[http://dx.doi.org/10.1056/NEJMoa040258] [PMID: 15306667]
[17]
Pehlivan, M.; Sercan, Z.; Sercan, H.O. sFRP1 promoter methylation is associated with persistent Philadelphia chromosome in chronic myeloid leukemia. Leuk. Res., 2009, 33(8), 1062-1067.
[http://dx.doi.org/10.1016/j.leukres.2008.11.013] [PMID: 19118898]
[18]
Pehlivan, M.; Caliskan, C.; Yuce, Z.; Sercan, H.O. Forced expression of Wnt antagonists sFRP1 and WIF1 sensitizes chronic myeloid leukemia cells to tyrosine kinase inhibitors. Tumour Biol., 2017, 39(5), 1010428317701654.
[http://dx.doi.org/10.1177/1010428317701654] [PMID: 28468589]
[19]
Derakhshanfar, E.; Alizadeh, S.; Rafiemehr, H.; Nadali, F.; Qasemi, A.; Karimi, M.; Shabab, N. Determination of SFRP1 and SFRP2 Genes Promoter Methylation Status in Patients with Chronic Myelogenous Leukemia. J. Payavard Salamat, 2017, 10(6), 514-522.
[20]
Voloshanenko, O.; Schwartz, U.; Kranz, D.; Rauscher, B.; Linnebacher, M.; Augustin, I.; Boutros, M. β-catenin-independent regulation of Wnt target genes by RoR2 and ATF2/ATF4 in colon cancer cells. Sci. Rep., 2018, 8(1), 3178.
[http://dx.doi.org/10.1038/s41598-018-20641-5] [PMID: 29453334]
[21]
Staal, F.J.T.; Famili, F.; Garcia Perez, L.; Pike-Overzet, K. Aberrant Wnt signaling in leukemia. Cancers (Basel), 2016, 8(9), 78.
[http://dx.doi.org/10.3390/cancers8090078] [PMID: 27571104]
[22]
An, C.; Guo, H.; Wen, X.M.; Tang, C.Y.; Yang, J.; Zhu, X.W.; Yin, J.Y.; Liu, Q.; Ma, J.C.; Deng, Z.Q.; Lin, J.; Qian, J. Clinical significance of reduced SFRP1 expression in acute myeloid leukemia. Leuk. Lymphoma, 2015, 56(7), 2056-2060.
[http://dx.doi.org/10.3109/10428194.2014.977883] [PMID: 25347432]
[23]
Kaucká, M.; Plevová, K.; Pavlová, S.; Janovská, P.; Mishra, A.; Verner, J.; Procházková, J.; Krejcí, P.; Kotasková, J.; Ovesná, P.; Tichy, B.; Brychtová, Y.; Doubek, M.; Kozubík, A.; Mayer, J.; Pospísilová, S.; Bryja, V. The planar cell polarity pathway drives pathogenesis of chronic lymphocytic leukemia by the regulation of B-lymphocyte migration. Cancer Res., 2013, 73(5), 1491-1501.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1752] [PMID: 23338609]
[24]
Bengochea, A.; de Souza, M.M.; Lefrançois, L.; Le Roux, E.; Galy, O.; Chemin, I.; Kim, M.; Wands, J.R.; Trepo, C.; Hainaut, P.; Scoazec, J.Y.; Vitvitski, L.; Merle, P. Common dysregulation of Wnt/Frizzled receptor elements in human hepatocellular carcinoma. Br. J. Cancer, 2008, 99(1), 143-150.
[http://dx.doi.org/10.1038/sj.bjc.6604422] [PMID: 18577996]
[25]
Kobune, M.; Chiba, H.; Kato, J.; Kato, K.; Nakamura, K.; Kawano, Y.; Takada, K.; Takimoto, R.; Takayama, T.; Hamada, H.; Niitsu, Y. Wnt3/RhoA/ROCK signaling pathway is involved in adhesion-mediated drug resistance of multiple myeloma in an autocrine mechanism. Mol. Cancer Ther., 2007, 6(6), 1774-1784.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0684] [PMID: 17575106]
[26]
Elzi, D.J.; Song, M.; Hakala, K.; Weintraub, S.T.; Shiio, Y. Wnt antagonist SFRP1 functions as a secreted mediator of senescence. Mol. Cell. Biol., 2012, 32(21), 4388-4399.
[http://dx.doi.org/10.1128/MCB.06023-11] [PMID: 22927647]
[27]
Lu, D.; Zhao, Y.; Tawatao, R.; Cottam, H.B.; Sen, M.; Leoni, L.M.; Kipps, T.J.; Corr, M.; Carson, D.A. Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA, 2004, 101(9), 3118-3123.
[http://dx.doi.org/10.1073/pnas.0308648100] [PMID: 14973184]
[28]
Zhan, T.; Rindtorff, N.; Boutros, M. Wnt signaling in cancer. Oncogene, 2017, 36(11), 1461-1473.
[http://dx.doi.org/10.1038/onc.2016.304] [PMID: 27617575]
[29]
Chen, C.; Zhu, D.; Zhang, H.; Han, C.; Xue, G.; Zhu, T.; Luo, J.; Kong, L. YAP-dependent ubiquitination and degradation of β-catenin mediates inhibition of Wnt signalling induced by Physalin F in colorectal cancer. Cell Death Dis., 2018, 9(6), 591.
[http://dx.doi.org/10.1038/s41419-018-0645-3] [PMID: 29789528]
[30]
Wagener, C.; Stocking, C.; Müller, O. Cancer Signaling:From Molecular Biology to Targeted Therapy, First ed; Wiley-VCH Verlag GmbH & Co. KGaA, 2017, p. 237. ISBN: 978-3-527-33658-6.
[31]
VanderVorst, K.; Hatakeyama, J.; Berg, A.; Lee, H.; Carraway, K.L., III Cellular and molecular mechanisms underlying planar cell polarity pathway contributions to cancer malignancy. Semin. Cell Dev. Biol., 2018, 81, 78-87.
[http://dx.doi.org/10.1016/j.semcdb.2017.09.026] [PMID: 29107170]
[32]
Mangioni, S.; Viganò, P.; Lattuada, D.; Abbiati, A.; Vignali, M.; Di Blasio, A.M. Overexpression of the Wnt5b gene in leiomyoma cells: Implications for a role of the Wnt signaling pathway in the uterine benign tumor. J. Clin. Endocrinol. Metab., 2005, 90(9), 5349-5355.
[http://dx.doi.org/10.1210/jc.2005-0272] [PMID: 15972578]
[33]
Iwatani, S.; Shono, A.; Yoshida, M.; Yamana, K.; Thwin, K.K.M.; Kuroda, J.; Kurokawa, D.; Koda, T.; Nishida, K.; Ikuta, T.; Fujioka, K.; Mizobuchi, M.; Taniguchi-Ikeda, M.; Morioka, I.; Iijima, K.; Nishimura, N. Involvement of WNT Signaling in the Regulation of Gestational Age-Dependent Umbilical Cord-Derived Mesenchymal Stem Cell Proliferation. Stem Cells Int., 2017, 2017, 8749751.
[http://dx.doi.org/10.1155/2017/8749751] [PMID: 29138639]
[34]
Amjadi-Moheb, F.; Hosseini, S.R.; Kosari-Monfared, M.; Ghadami, E.; Nooreddini, H.; Akhavan-Niaki, H. A specific haplotype in potential miRNAs binding sites of secreted frizzled-related protein 1 (SFRP1) is associated with BMD variation in osteoporosis. Gene, 2018, 677, 132-141.
[http://dx.doi.org/10.1016/j.gene.2018.07.061] [PMID: 30055306]
[35]
Park, H.W.; Kim, Y.C.; Yu, B.; Moroishi, T.; Mo, J.S.; Plouffe, S.W.; Meng, Z.; Lin, K.C.; Yu, F.X.; Alexander, C.M.; Wang, C.Y.; Guan, K.L. Alternative Wnt signaling activates YAP/TAZ. Cell, 2015, 162(4), 780-794.
[http://dx.doi.org/10.1016/j.cell.2015.07.013] [PMID: 26276632]
[36]
Wang, Z.; Humphries, B.; Xiao, H.; Jiang, Y.; Yang, C. MicroRNA-200b suppresses arsenic-transformed cell migration by targeting protein kinase Cα and Wnt5b-protein kinase Cα positive feedback loop and inhibiting Rac1 activation. J. Biol. Chem., 2014, 289(26), 18373-18386.
[http://dx.doi.org/10.1074/jbc.M114.554246] [PMID: 24841200]
[37]
Ackers, I.; Malgor, R. Interrelationship of canonical and non-canonical Wnt signalling pathways in chronic metabolic diseases. Diab. Vasc. Dis. Res., 2018, 15(1), 3-13.
[http://dx.doi.org/10.1177/1479164117738442] [PMID: 29113510]
[38]
De, A. Wnt/Ca2+ signaling pathway: A brief overview. Acta Biochim. Biophys. Sin. (Shanghai), 2011, 43(10), 745-756.
[http://dx.doi.org/10.1093/abbs/gmr079] [PMID: 21903638]
[39]
Weidinger, G.; Moon, R.T. When Wnts antagonize Wnts. J. Cell Biol., 2003, 162(5), 753-755.
[http://dx.doi.org/10.1083/jcb.200307181] [PMID: 12952929]
[40]
Stoick-Cooper, C.L.; Weidinger, G.; Riehle, K.J.; Hubbert, C.; Major, M.B.; Fausto, N.; Moon, R.T. Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development, 2007, 134(3), 479-489.
[http://dx.doi.org/10.1242/dev.001123] [PMID: 17185322]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy