Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

Plant-Derived Natural Compounds for the Treatment of Amyotrophic Lateral Sclerosis: An Update

Author(s): Roohi Mohi-ud-din, Reyaz Hassan Mir, Abdul Jalil Shah, Saba Sabreen, Taha Umair Wani, Mubashir Hussain Masoodi, Esra Küpeli Akkol, Zulfiqar Ali Bhat* and Haroon Khan*

Volume 20, Issue 1, 2022

Page: [179 - 193] Pages: 15

DOI: 10.2174/1570159X19666210428120514

Price: $65

Abstract

Background: Amyotrophic lateral sclerosis (ALS) is a motor neuron disease (MND) that typically causes death within 3-5 years after diagnosis. Regardless of the substantial scientific knowledge accrued more than a century ago, truly effective therapeutic strategies remain distant. Various conventional drugs are being used but are having several adverse effects.

Objective/Aim: The current study aims to thoroughly review plant-derived compounds with welldefined ALS activities and their structure-activity relationships. Moreover, the review also focuses on complex genetics, clinical trials, and the use of natural products that might decrypt the future and novel therapeutics in ALS.

Methods: The collection of data for the compilation of this review work was searched in PubMed Scopus, Google Scholar, and Science Direct.

Results: Results showed that phytochemicals like-Ginkgolides, Protopanaxatriol, Genistein, epigallocatechingallate, resveratrol, cassoside, and others possess Amyotrophic lateral sclerosis (ALS) activity by various mechanisms

Conclusion: These plant-derived compounds may be considered as supplements for conventional (ALS). Moreover, further preclinical and clinical studies are required to understand the structureactivity relationships, metabolism, absorption, and mechanisms of plant-derived natural agents.

Keywords: Plant-derived products, SOD1 mutations, CNS disorders, SAR, clinical trials, Therapeutic effects.

Graphical Abstract

[1]
Pasinelli, P.; Brown, R.H. Molecular biology of amyotrophic lateral sclerosis: Insights from genetics. Nat. Rev. Neurosci., 2006, 7(9), 710-723.
[http://dx.doi.org/10.1038/nrn1971] [PMID: 16924260]
[2]
Kumar, V.; Islam, A.; Hassan, M.I.; Ahmad, F. Therapeutic progress in amyotrophic lateral sclerosis-beginning to learning. Eur. J. Med. Chem., 2016, 121, 903-917.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.017] [PMID: 27372371]
[3]
Gil, J.; Funalot, B.; Verschueren, A.; Danel-Brunaud, V.; Camu, W.; Vandenberghe, N.; Desnuelle, C.; Guy, N.; Camdessanche, J.P.; Cintas, P.; Carluer, L.; Pittion, S.; Nicolas, G.; Corcia, P.; Fleury, M.C.; Maugras, C.; Besson, G.; Le Masson, G.; Couratier, P. Causes of death amongst French patients with amyotrophic lateral sclerosis: A prospective study. Eur. J. Neurol., 2008, 15(11), 1245-1251.
[http://dx.doi.org/10.1111/j.1468-1331.2008.02307.x] [PMID: 18973614]
[4]
Spataro, R.; Lo Re, M.; Piccoli, T.; Piccoli, F.; La Bella, V. Causes and place of death in Italian patients with amyotrophic lateral sclerosis. Acta Neurol. Scand., 2010, 122(3), 217-223.
[http://dx.doi.org/10.1111/j.1600-0404.2009.01290.x] [PMID: 20078446]
[5]
Robberecht, W.; Philips, T. The changing scene of amyotrophic lateral sclerosis. Nat. Rev. Neurosci., 2013, 14(4), 248-264.
[http://dx.doi.org/10.1038/nrn3430] [PMID: 23463272]
[6]
Pradas, J.; Puig, T.; Rojas-García, R.; Viguera, M.L.; Gich, I.; Logroscino, G. Amyotrophic lateral sclerosis in Catalonia: A population based study. Amyotroph. Lateral Scler. Frontotemporal Degener., 2013, 14(4), 278-283.
[http://dx.doi.org/10.3109/21678421.2012.749915] [PMID: 23286747]
[7]
Joensen, P. Incidence of amyotrophic lateral sclerosis in the Faroe Islands. Acta Neurol. Scand., 2012, 126(1), 62-66.
[http://dx.doi.org/10.1111/j.1600-0404.2011.01611.x] [PMID: 22034926]
[8]
Chiò, A.; Logroscino, G.; Traynor, B.J.; Collins, J.; Simeone, J.C.; Goldstein, L.A.; White, L.A. Global epidemiology of amyotrophic lateral sclerosis: A systematic review of the published literature. Neuroepidemiology, 2013, 41(2), 118-130.
[http://dx.doi.org/10.1159/000351153] [PMID: 23860588]
[9]
Wittie, M.; Nelson, L.M.; Usher, S.; Ward, K.; Benatar, M. Utility of capture-recapture methodology to assess completeness of amyotrophic lateral sclerosis case ascertainment. Neuroepidemiology, 2013, 40(2), 133-141.
[http://dx.doi.org/10.1159/000342156] [PMID: 23095852]
[10]
Zufiría, M.; Gil-Bea, F.J.; Fernández-Torrón, R.; Poza, J.J.; Muñoz-Blanco, J.L.; Rojas-García, R.; Riancho, J.; López de Munain, A. ALS: A bucket of genes, environment, metabolism and unknown ingredients. Prog. Neurobiol., 2016, 142, 104-129.
[http://dx.doi.org/10.1016/j.pneurobio.2016.05.004] [PMID: 27236050]
[11]
Logroscino, G.; Traynor, B.J.; Hardiman, O.; Chiò, A.; Mitchell, D.; Swingler, R.J.; Millul, A.; Benn, E.; Beghi, E. Incidence of amyotrophic lateral sclerosis in Europe. J. Neurol. Neurosurg. Psychiatry, 2010, 81(4), 385-390.
[http://dx.doi.org/10.1136/jnnp.2009.183525] [PMID: 19710046]
[12]
Zaldivar, T.; Gutierrez, J.; Lara, G.; Carbonara, M.; Logroscino, G.; Hardiman, O. Reduced frequency of ALS in an ethnically mixed population: A population-based mortality study. Neurology, 2009, 72(19), 1640-1645.
[http://dx.doi.org/10.1212/WNL.0b013e3181a55f7b] [PMID: 19433736]
[13]
Ferraiuolo, L.; Kirby, J.; Grierson, A.J.; Sendtner, M.; Shaw, P.J. Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat. Rev. Neurol., 2011, 7(11), 616-630.
[http://dx.doi.org/10.1038/nrneurol.2011.152] [PMID: 22051914]
[14]
Shaw, P.J. Molecular and cellular pathways of neurodegeneration in motor neurone disease. J. Neurol. Neurosurg. Psychiatry, 2005, 76(8), 1046-1057.
[http://dx.doi.org/10.1136/jnnp.2004.048652] [PMID: 16024877]
[15]
Dunkel, P.; Chai, C.L.; Sperlágh, B.; Huleatt, P.B.; Mátyus, P. Clinical utility of neuroprotective agents in neurodegenerative diseases: Current status of drug development for Alzheimer’s, Parkinson’s and Huntington’s diseases, and amyotrophic lateral sclerosis. Expert Opin. Investig. Drugs, 2012, 21(9), 1267-1308.
[http://dx.doi.org/10.1517/13543784.2012.703178] [PMID: 22741814]
[16]
Contestabile, A. Amyotrophic lateral sclerosis: From research to therapeutic attempts and therapeutic perspectives. Curr. Med. Chem., 2011, 18(36), 5655-5665.
[http://dx.doi.org/10.2174/092986711798347289] [PMID: 22172070]
[17]
Al-Saif, A.; Al-Mohanna, F.; Bohlega, S. A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann. Neurol., 2011, 70(6), 913-919.
[http://dx.doi.org/10.1002/ana.22534] [PMID: 21842496]
[18]
Swinnen, B.; Robberecht, W. The phenotypic variability of amyotrophic lateral sclerosis. Nat. Rev. Neurol., 2014, 10(11), 661-670.
[http://dx.doi.org/10.1038/nrneurol.2014.184] [PMID: 25311585]
[19]
Byrne, S.; Walsh, C.; Lynch, C.; Bede, P.; Elamin, M.; Kenna, K.; McLaughlin, R.; Hardiman, O. Rate of familial amyotrophic lateral sclerosis: A systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry, 2011, 82(6), 623-627.
[http://dx.doi.org/10.1136/jnnp.2010.224501] [PMID: 21047878]
[20]
Al-Chalabi, A.; Hardiman, O. The epidemiology of ALS: A conspiracy of genes, environment and time. Nat. Rev. Neurol., 2013, 9(11), 617-628.
[http://dx.doi.org/10.1038/nrneurol.2013.203] [PMID: 24126629]
[21]
Nagoshi, N.; Nakashima, H.; Fehlings, M.G. Riluzole as a neuroprotective drug for spinal cord injury: From bench to bedside. Molecules, 2015, 20(5), 7775-7789.
[http://dx.doi.org/10.3390/molecules20057775] [PMID: 25939067]
[22]
Glicksman, M.A. The preclinical discovery of amyotrophic lateral sclerosis drugs. Expert Opin. Drug Discov., 2011, 6(11), 1127-1138.
[http://dx.doi.org/10.1517/17460441.2011.628654] [PMID: 22646982]
[23]
Cruz, M.P. Edaravone (Radicava): a novel neuroprotective agent for the treatment of amyotrophic lateral sclerosis. P&T, 2018, 43(1), 25-28.
[PMID: 29290672]
[24]
Abe, K.; Aoki, M.; Tsuji, S.; Itoyama, Y.; Sobue, G.; Togo, M.; Hamada, C.; Tanaka, M.; Akimoto, M.; Nakamura, K. Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: A randomised, double-blind, placebo-controlled trial. Lancet Neurol., 2017, 16(7), 505-512.
[http://dx.doi.org/10.1016/S1474-4422(17)30115-1] [PMID: 28522181]
[25]
Mir, R.H.; Sawhney, G.; Verma, R.; Ahmad, B.; Kumar, P.; Ranjana, S.; Bhagat, A.; Madishetti, S.; Ahmed, Z.; Jachak, S.M. Oreganum Vulgare: In-vitro assessment of cytotoxicity, Molecular docking studies, Antioxidant, and evaluation of anti-inflammatory activity in LPS stimulated RAW 264.7 cells. Medicinal Chemistry: Shariqah, United Arab Emirates,, 2020.
[26]
Hassan Mir, R.; Godavari, G.; Siddiqui, N.A.; Ahmad, B.; Mothana, R.A.; Ullah, R.; Almarfadi, O.M.; Jachak, S.M.; Masoodi, M.H. Design, synthesis, molecular modelling, and biological evaluation of oleanolic acid-arylidene derivatives as potential anti-inflammatory agents. Drug Des. Devel. Ther., 2021, 15, 385-397.
[http://dx.doi.org/10.2147/DDDT.S291784] [PMID: 33574657]
[27]
Mohi-Ud-Din, R.; Mir, R.H.; Mir, P.A.; Farooq, S.; Raza, S.N.; Raja, W.Y.; Masoodi, M.H.; Singh, I.P.; Bhat, Z.A. Ethnomedicinal uses, phytochemistry and pharmacological aspects of the genus berberis linn: A comprehensive review. Comb. Chem. High Throughput Screen., 2021, 24(5), 624-644.
[PMID: 33143603]
[28]
Mir, R.H.; Bhat, M.F.; Sawhney, G.; Kumar, P.; Andrabi, N.I.; Shaikh, M.; Mohi-Ud-Din, R.; Masoodi, M.H. Prunella vulgaris L: Critical pharmacological, expository traditional uses and extensive phytochemistry: A review. Curr. Drug Discov. Technol., 2021.
[http://dx.doi.org/10.2174/1570163818666210203181542] [PMID: 33538676]
[29]
Hassan, R.; Masoodi, M.H. Saussurea lappa: A comprehensive review on its pharmacological activity and phytochemistry. Curr. Tradit. Med., 2020, 6(1), 13-23.
[http://dx.doi.org/10.2174/2215083805666190626144909]
[30]
Mir, R.H.; Masoodi, M.H. Anti-inflammatory plant polyphenolics and cellular action mechanisms. Curr. Bioact. Compd., 2020, 16(6), 809-817.
[http://dx.doi.org/10.2174/1573407215666190419205317]
[31]
Rates, S.M.K. Plants as source of drugs. Toxicon, 2001, 39(5), 603-613.
[http://dx.doi.org/10.1016/S0041-0101(00)00154-9] [PMID: 11072038]
[32]
Mir, R.H.; Shah, A.J.; Mohi-Ud-Din, R.; Pottoo, F.H.; Dar, M.A.; Jachak, S.M.; Masoodi, M.H. Natural anti-inflammatory compounds as drug candidates in Alzheimer’s disease. Curr. Med. Chem., 2020, 28(23), 4799-4825.
[http://dx.doi.org/10.2174/0929867327666200730213215] [PMID: 32744957]
[33]
Van Raamsdonk, J.M.; Vega, I.E.; Brundin, P. Oxidative stress in neurodegenerative disease: Causation or association? Oncotarget, 2017, 8(7), 10777-10778.
[http://dx.doi.org/10.18632/oncotarget.14650] [PMID: 28099897]
[34]
Liu, Z.; Zhou, T.; Ziegler, A.C.; Dimitrion, P.; Zuo, L. Oxidative stress in neurodegenerative diseases: From molecular mechanisms to clinical applications. Oxid. Med. Cell. Longev., 2017, 20172525967
[http://dx.doi.org/10.1155/2017/2525967]
[35]
Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules, 2019, 24(8), 1583.
[http://dx.doi.org/10.3390/molecules24081583] [PMID: 31013638]
[36]
Rekatsina, M.; Paladini, A.; Piroli, A.; Zis, P.; Pergolizzi, J.V.; Varrassi, G. Pathophysiology and therapeutic perspectives of oxidative stress and neurodegenerative diseases: A narrative review. Adv. Ther., 2020, 37(1), 113-139.
[http://dx.doi.org/10.1007/s12325-019-01148-5] [PMID: 31782132]
[37]
Fukui, K. Reactive oxygen species induce neurite degeneration before induction of cell death. J. Clin. Biochem. Nutr., 2016, 59(3), 155-159.
[http://dx.doi.org/10.3164/jcbn.16-34] [PMID: 27895381]
[38]
Forni, C.; Facchiano, F.; Bartoli, M.; Pieretti, S.; Facchiano, A.; D’Arcangelo, D.; Norelli, S.; Valle, G.; Nisini, R.; Beninati, S. Beneficial role of phytochemicals on oxidative stress and age-related diseases. BioMed Res. Int., 2019, 78748253
[http://dx.doi.org/10.1155/2019/8748253]
[39]
Chico, L.; Ienco, E.C.; Bisordi, C.; Lo Gerfo, A.; Petrozzi, L.; Petrucci, A.; Mancuso, M.; Siciliano, G. Amyotrophic Lateral Sclerosis and oxidative stress: A double-blind therapeutic trial after curcumin supplementation. CNS Neurol. Disord. Drug Targets, 2018, 17(10), 767-779.
[40]
Bai, J-R.; Liu, Y-J.; Song, Y. The mechanism of interfere effects of madecassoside (MC) on neurodegeneration in mice. Zhongguo Laonianxue Zazhi, 2008, 28, 2297-2300.
[41]
Kobayashi, Y.; Liu, Y.; Tobinaga, S.; Tsunematsu, T.; Nakamura, M. In journal of pharmacological sciences.Japanese pharmacological soc editorial off, kantohya bldg gokomachi, 2007, 103, 136.,
[42]
Liu, Y. Therapeutic potential of madecassoside in transgenic mice of amyotrophic lateral sclerosis. Chinese Traditional Herbal Drugs, 1994, 5.
[43]
Liu, S.; Li, G.; Tang, H.; Pan, R.; Wang, H.; Jin, F.; Yan, X.; Xing, Y.; Chen, G.; Fu, Y.; Dong, J. Madecassoside ameliorates lipopolysaccharide-induced neurotoxicity in rats by activating the Nrf2-HO-1 pathway. Neurosci. Lett., 2019, 709134386
[http://dx.doi.org/10.1016/j.neulet.2019.134386] [PMID: 31330225]
[44]
Kumar, V.; Preeti, G.; Md Imtaiyaz, H. Mechanism and implications of traditional Chinese medicine in amyotrophic lateral sclerosis therapy. J. Proteins Proteom., 2019, 10(2), 131-147.
[45]
Kambara, T.; Zhou, Y.; Oda, M.; Tamura, Y.; Miyakoshi, M.; Mizutani, K.; Ikeda, T.; Tanaka, O.; Chou, W. 120th Annual Meeting of Pharmaceutical Society of Japan, Gifu2000.
[46]
Murakami, T.; Miyakoshi, M.; Araho, D.; Mizutani, K.; Kambara, T.; Ikeda, T.; Chou, W-H.; Inukai, M.; Takenaka, A.; Igarashi, K. Hepatoprotective activity of tocha, the stems and leaves of Ampelopsis grossedentata, and ampelopsin. Biofactors, 2004, 21(1-4), 175-178.
[http://dx.doi.org/10.1002/biof.552210136] [PMID: 15630194]
[47]
Kou, X.; Shen, K.; An, Y.; Qi, S.; Dai, W.X.; Yin, Z. Ampelopsin inhibits H2O2-induced apoptosis by ERK and Akt signaling pathways and up-regulation of heme oxygenase-1. Phytother. Res., 2012, 26(7), 988-994.
[http://dx.doi.org/10.1002/ptr.3671] [PMID: 22144097]
[48]
Kim, T.Y.; Leem, E.; Lee, J.M.; Kim, S.R. Control of reactive oxygen species for the prevention of parkinson’s disease: The possible application of flavonoids. Antioxidants, 2020, 9(7), 583.
[http://dx.doi.org/10.3390/antiox9070583] [PMID: 32635299]
[49]
Mandel, S.; Weinreb, O.; Amit, T.; Youdim, M.B. Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: Implications for neurodegenerative diseases. J. Neurochem., 2004, 88(6), 1555-1569.
[http://dx.doi.org/10.1046/j.1471-4159.2003.02291.x] [PMID: 15009657]
[50]
Koh, S-H.; Lee, S.M.; Kim, H.Y.; Lee, K-Y.; Lee, Y.J.; Kim, H-T.; Kim, J.; Kim, M-H.; Hwang, M.S.; Song, C.; Yang, K.W.; Lee, K.W.; Kim, S.H.; Kim, O.H. The effect of epigallocatechin gallate on suppressing disease progression of ALS model mice. Neurosci. Lett., 2006, 395(2), 103-107.
[http://dx.doi.org/10.1016/j.neulet.2005.10.056] [PMID: 16356650]
[51]
Xu, Z.; Chen, S.; Li, X.; Luo, G.; Li, L.; Le, W. Neuroprotective effects of (-)-epigallocatechin-3-gallate in a transgenic mouse model of amyotrophic lateral sclerosis. Neurochem. Res., 2006, 31(10), 1263-1269.
[http://dx.doi.org/10.1007/s11064-006-9166-z] [PMID: 17021948]
[52]
Hockenbery, D.M.; Oltvai, Z.N.; Yin, X-M.; Milliman, C.L.; Korsmeyer, S.J. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell, 1993, 75(2), 241-251.
[http://dx.doi.org/10.1016/0092-8674(93)80066-N] [PMID: 7503812]
[53]
Nabavi, S.F.; Daglia, M.; D’Antona, G.; Sobarzo-Sánchez, E.; Talas, Z.S.; Nabavi, S.M. Natural compounds used as therapies targeting to amyotrophic lateral sclerosis. Curr. Pharm. Biotechnol., 2015, 16(3), 211-218.
[http://dx.doi.org/10.2174/1389201016666150118132224] [PMID: 25601606]
[54]
Srinivasan, E.; Rajasekaran, R. Probing the inhibitory activity of epigallocatechin-gallate on toxic aggregates of mutant (L84F) SOD1 protein through geometry based sampling and steered molecular dynamics. J. Mol. Graph. Model., 2017, 74, 288-295.
[http://dx.doi.org/10.1016/j.jmgm.2017.04.019] [PMID: 28458007]
[55]
Maher, P. The potential of flavonoids for the treatment of neurodegenerative diseases. Int. J. Mol. Sci., 2019, 20(12), 3056.
[http://dx.doi.org/10.3390/ijms20123056] [PMID: 31234550]
[56]
Solanki, I.; Parihar, P.; Parihar, M.S. Neurodegenerative diseases: From available treatments to prospective herbal therapy. Neurochem. Int., 2016, 95, 100-108.
[http://dx.doi.org/10.1016/j.neuint.2015.11.001] [PMID: 26550708]
[57]
Li, P.; Matsunaga, K.; Ohizumi, Y. Nerve growth factor-potentiating compounds from picrorhizae rhizoma. Biol. Pharm. Bull., 2000, 23(7), 890-892.
[http://dx.doi.org/10.1248/bpb.23.890] [PMID: 10919373]
[58]
Cao, Y.; Liu, J.W.; Yu, Y.J.; Zheng, P.Y.; Zhang, X.D.; Li, T.; Guo, M.C. Synergistic protective effect of picroside II and NGF on PC12 cells against oxidative stress induced by H2O2. Pharmacol. Rep., 2007, 59(5), 573-579.
[PMID: 18048958]
[59]
Li, T.; Liu, J-W.; Zhang, X-D.; Guo, M-C.; Ji, G. The neuroprotective effect of picroside II from hu-huang-lian against oxidative stress. Am. J. Chin. Med., 2007, 35(4), 681-691.
[http://dx.doi.org/10.1142/S0192415X0700517X] [PMID: 17708634]
[60]
Guo, N.; Jin, C.; Shen, L.; Wu, F.; Lin, X.; Feng, Y. Chemical components, pharmacological actions, and clinical applications of Rhizoma Picrorhizae. Phytother. Res., 2020, 34(5), 1071-1082.
[http://dx.doi.org/10.1002/ptr.6591] [PMID: 31880854]
[61]
Wang, W.; Xu, J.; Li, L.; Wang, P.; Ji, X.; Ai, H.; Zhang, L.; Li, L. Neuroprotective effect of morroniside on focal cerebral ischemia in rats. Brain Res. Bull., 2010, 83(5), 196-201.
[http://dx.doi.org/10.1016/j.brainresbull.2010.07.003] [PMID: 20637265]
[62]
Wang, W.; Huang, W.; Li, L.; Ai, H.; Sun, F.; Liu, C.; An, Y. Morroniside prevents peroxide-induced apoptosis by induction of endogenous glutathione in human neuroblastoma cells. Cell. Mol. Neurobiol., 2008, 28(2), 293-305.
[http://dx.doi.org/10.1007/s10571-007-9168-7] [PMID: 17647102]
[63]
Wang, W.; Sun, F.; An, Y.; Ai, H.; Zhang, L.; Huang, W.; Li, L. Morroniside protects human neuroblastoma SH-SY5Y cells against hydrogen peroxide-induced cytotoxicity. Eur. J. Pharmacol., 2009, 613(1-3), 19-23.
[http://dx.doi.org/10.1016/j.ejphar.2009.04.013] [PMID: 19379729]
[64]
Zhang, J-X.; Wang, R.; Xi, J.; Shen, L.; Zhu, A-Y.; Qi, Q.; Wang, Q-Y.; Zhang, L-J.; Wang, F-C.; Lü, H-Z.; Hu, J.G. Morroniside protects SK-N-SH human neuroblastoma cells against H2O2-induced damage. Int. J. Mol. Med., 2017, 39(3), 603-612.
[http://dx.doi.org/10.3892/ijmm.2017.2882] [PMID: 28204825]
[65]
Lin, Y.; Lin, B.; Lin, D. Effects of morroniside on the viability of random skin flaps in rats. J. Invest. Surg., 2020, 33(2), 182-188.
[http://dx.doi.org/10.1080/08941939.2018.1479007] [PMID: 29869899]
[66]
Wang, Shi-bo.; Jing-fu, Qiu.; Qun-hua, B.; Jia-Jia, Li.; Jin-yu, He.; Yan-jun G.; and Chao Y. A study on protection of astragaioside IV about oxidative stress on PC12 cells induced by H2O2. Chinese Pharmacol. Bull.,, 2011, 11
[67]
Rong, J.; Cheung, C.Y-H.; Lau, A.S-Y.; Shen, J.; Tam, P.K-H.; Cheng, Y-C. Induction of heme oxygenase-1 by traditional Chinese medicine formulation ISF-1 and its ingredients as a cytoprotective mechanism against oxidative stress. Int. J. Mol. Med., 2008, 21(4), 405-411.
[http://dx.doi.org/10.3892/ijmm.21.4.405] [PMID: 18360685]
[68]
Yu, J.; Guo, M.; Li, Y.; Zhang, H.; Chai, Z.; Wang, Q.; Yan, Y.; Yu, J.; Liu, C.; Zhang, G-X. Astragaloside IV protects neurons from microglia-mediated cell damage through promoting microglia polarization. Folia Neuropathol., 2019, 57(2), 170-181.
[http://dx.doi.org/10.5114/fn.2019.86299]
[69]
Shahzad, M.; Shabbir, A.; Wojcikowski, K.; Wohlmuth, H.; Gobe, G.C. The antioxidant effects of Radix Astragali (Astragalus membranaceus and related species) in protecting tissues from injury and disease. Curr. Drug Targets, 2016, 17(12), 1331-1340.
[http://dx.doi.org/10.2174/1389450116666150907104742] [PMID: 26343107]
[70]
Zhu, J.; Shen, L.; Lin, X.; Hong, Y.; Feng, Y. Clinical research on traditional chinese medicine compounds and their preparations for amyotrophic lateral sclerosis. Biomed. Pharmacother., 2017, 96, 854-864.
[http://dx.doi.org/10.1016/j.biopha.2017.09.135] [PMID: 29078263]
[71]
Sun, M-M.; Bu, H.; Li, B.; Yu, J-X.; Guo, Y-S.; Li, C-Y. Neuroprotective potential of phase II enzyme inducer diallyl trisulfide. Neurol. Res., 2009, 31(1), 23-27.
[http://dx.doi.org/10.1179/174313208X332959] [PMID: 18768114]
[72]
Guo, Y.; Zhang, K.; Wang, Q.; Li, Z.; Yin, Y.; Xu, Q.; Duan, W.; Li, C. Neuroprotective effects of diallyl trisulfide in SOD1-G93A transgenic mouse model of amyotrophic lateral sclerosis. Brain Res., 2011, 1374, 110-115.
[http://dx.doi.org/10.1016/j.brainres.2010.12.014] [PMID: 21147075]
[73]
Calò, L.A.; Fusaro, M.; Davis, P.A. HO-1 attenuates hypertension-induced inflammation/oxidative stress: support from Bartter’s/Gitelman’s patients. Am. J. Hypertens., 2010, 23(9), 936-936.
[http://dx.doi.org/10.1038/ajh.2010.130] [PMID: 20733571]
[74]
Liu, C.; Leng, B.; Li, Y.; Jiang, H.; Duan, W.; Guo, Y.; Li, C.; Hong, K. Diallyl trisulfide protects motor neurons from the neurotoxic protein TDP-43 via activating lysosomal degradation and the antioxidant response. Neurochem. Res., 2018, 43(12), 2304-2312.
[http://dx.doi.org/10.1007/s11064-018-2651-3] [PMID: 30317421]
[75]
Silva-Islas, C.A.; Chánez-Cárdenas, M.E.; Barrera-Oviedo, D.; Ortiz-Plata, A.; Pedraza-Chaverri, J.; Maldonado, P.D. Diallyl trisulfide protects rat brain tissue against the damage induced by ischemia-reperfusion through the Nrf2 pathway. Antioxidants, 2019, 8(9), 410.
[http://dx.doi.org/10.3390/antiox8090410] [PMID: 31540440]
[76]
Jain, K.K. In The Handbook of Neuroprotection; Springer, 2019, pp. 609-641.
[http://dx.doi.org/10.1007/978-1-4939-9465-6_10]
[77]
Weydt, P.; Möller, T. Neuroinflammation in the pathogenesis of amyotrophic lateral sclerosis. Neuroreport, 2005, 16(6), 527-531.
[http://dx.doi.org/10.1097/00001756-200504250-00001] [PMID: 15812300]
[78]
Weydt, P.; Weiss, M.D.; Möller, T.; Carter, G.T. Neuro-inflammation as a therapeutic target in amyotrophic lateral sclerosis. Curr. Opin. Investig. Drugs, 2002, 3(12), 1720-1724.
[79]
Subedi, L.; Lee, S.E.; Madiha, S.; Gaire, B.P.; Jin, M.; Yumnam, S.; Kim, S.Y. Phytochemicals against TNFα-mediated neuroinflammatory diseases. Int. J. Mol. Sci., 2020, 21(3), 764.
[http://dx.doi.org/10.3390/ijms21030764] [PMID: 31991572]
[80]
Ong, W.Y.; Farooqui, T.; Ho, C.F.Y.; Ng, Y.K.; Farooqui, A.A. Use of Phytochemicals against neuroinflammation; Neuroprotective Effects of Phytochemicals in Neurological Disorders, 2017, p. 648.
[81]
Morita, T. Celastrol: A new therapeutic potential of traditional Chinese medicine. Am. J. Hypertens., 2010, 23(8), 821-821.
[http://dx.doi.org/10.1038/ajh.2010.87] [PMID: 20644533]
[82]
Kiaei, M.; Kipiani, K.; Petri, S.; Chen, J.; Calingasan, N.Y.; Beal, M.F. Celastrol blocks neuronal cell death and extends life in transgenic mouse model of amyotrophic lateral sclerosis. Neurodegener. Dis., 2005, 2(5), 246-254.
[http://dx.doi.org/10.1159/000090364] [PMID: 16909005]
[83]
Jung, H.W.; Chung, Y.S.; Kim, Y.S.; Park, Y-K. Celastrol inhibits production of nitric oxide and proinflammatory cytokines through MAPK signal transduction and NF-kappaB in LPS-stimulated BV-2 microglial cells. Exp. Mol. Med., 2007, 39(6), 715-721.
[http://dx.doi.org/10.1038/emm.2007.78] [PMID: 18160842]
[84]
Venkatesha, S.H.; Dudics, S.; Astry, B.; Moudgil, K.D. Control of autoimmune inflammation by celastrol, a natural triterpenoid. Pathog. Dis., 2016, 74(6)ftw059
[http://dx.doi.org/10.1093/femspd/ftw059] [PMID: 27405485]
[85]
Zhu, Y.; Fotinos, A.; Mao, L.L.; Atassi, N.; Zhou, E.W.; Ahmad, S.; Guan, Y.; Berry, J.D.; Cudkowicz, M.E.; Wang, X. Neuroprotective agents target molecular mechanisms of disease in ALS. Drug Discov. Today, 2015, 20(1), 65-75.
[http://dx.doi.org/10.1016/j.drudis.2014.08.016] [PMID: 25205348]
[86]
Zhang, R.; Zhu, Y.; Dong, X.; Liu, B.; Zhang, N.; Wang, X.; Liu, L.; Xu, C.; Huang, S.; Chen, L. Celastrol attenuates cadmium-induced neuronal apoptosis via inhibiting Ca2+ -CaMKII-dependent Akt/mTOR pathway. J. Cell. Physiol., 2017, 232(8), 2145-2157.
[http://dx.doi.org/10.1002/jcp.25703] [PMID: 27891586]
[87]
Burns, J.; Yokota, T.; Ashihara, H.; Lean, M.E.; Crozier, A. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem., 2002, 50(11), 3337-3340.
[http://dx.doi.org/10.1021/jf0112973] [PMID: 12010007]
[88]
Bi, X.L.; Yang, J.Y.; Dong, Y.X.; Wang, J.M.; Cui, Y.H.; Ikeshima, T.; Zhao, Y.Q.; Wu, C.F. Resveratrol inhibits nitric oxide and TNF-α production by lipopolysaccharide-activated microglia. Int. Immunopharmacol., 2005, 5(1), 185-193.
[http://dx.doi.org/10.1016/j.intimp.2004.08.008] [PMID: 15589480]
[89]
Meng, X-L.; Yang, J-Y.; Chen, G-L.; Wang, L-H.; Zhang, L-J.; Wang, S.; Li, J.; Wu, C-F. Effects of resveratrol and its derivatives on lipopolysaccharide-induced microglial activation and their structure-activity relationships. Chem. Biol. Interact., 2008, 174(1), 51-59.
[http://dx.doi.org/10.1016/j.cbi.2008.04.015] [PMID: 18513711]
[90]
Contestabile, A. Oxidative stress in neurodegeneration: mechanisms and therapeutic perspectives. Curr. Top. Med. Chem., 2001, 1(6), 553-568.
[http://dx.doi.org/10.2174/1568026013394723] [PMID: 11895131]
[91]
Mancuso, R.; del Valle, J.; Modol, L.; Martinez, A.; Granado-Serrano, A.B.; Ramirez-Núñez, O.; Pallás, M.; Portero-Otin, M.; Osta, R.; Navarro, X. Resveratrol improves motoneuron function and extends survival in SOD1(G93A) ALS mice. Neurotherapeutics, 2014, 11(2), 419-432.
[PMID: 24414863]
[92]
Yun, Y.C.; Jeong, S.G.; Kim, S.H.; Cho, G.W. Reduced sirtuin 1/adenosine monophosphate-activated protein kinase in amyotrophic lateral sclerosis patient-derived mesenchymal stem cells can be restored by resveratrol. J. Tissue Eng. Regen. Med., 2019, 13(1), 110-115.
[PMID: 30479062]
[93]
ALS Untangled no. 49. Resveratrol. Amyotroph. Lateral Scler. Frontotemporal Degener., 2019, 20(7-8), 619-624.
[http://dx.doi.org/10.1080/21678421.2019.1593596] [PMID: 30945567]
[94]
Laudati, G.; Mascolo, L.; Guida, N.; Sirabella, R.; Pizzorusso, V.; Bruzzaniti, S.; Serani, A.; Di Renzo, G.; Canzoniero, L.M.T.; Formisano, L. Resveratrol treatment reduces the vulnerability of SH-SY5Y cells and cortical neurons overexpressing SOD1-G93A to Thimerosal toxicity through SIRT1/DREAM/PDYN pathway. Neurotoxicology, 2019, 71, 6-15.
[http://dx.doi.org/10.1016/j.neuro.2018.11.009] [PMID: 30503815]
[95]
Kaiyan, Y.; Jianlan, G.; Dongmei, Y.; Qin, S. Effect of curcumin on iNOS expression in LPS-activated microglia cells and anti-oxidation., 2010.
[96]
Yin, W.; Shi, X.; Zhang, X.; Yu, L. Curcumins upregulate expression of HO-1 via inducing Nrf-2 in SH-SY5Y cells. Chinese Pharmacol. Bulletin,, 2003.
[97]
Sikora, E.; Scapagnini, G.; Barbagallo, M. Curcumin, inflammation, ageing and age-related diseases. Immun. Ageing, 2010, 7(1), 1.
[http://dx.doi.org/10.1186/1742-4933-7-1] [PMID: 20205886]
[98]
Bedlack, R.; Group, A. ALSUntangled 44. Curcumin. Amyotroph. Lateral Scler. Frontotemporal Degener., 2018, 19(7-8), 623-629.
[http://dx.doi.org/10.1080/21678421.2018.1440738] [PMID: 29493344]
[99]
Chico, L.; Ienco, E.C.; Bisordi, C.; Gerfo, A.L.; Schirinzi, E.; Siciliano, G. Curcumin as an ROS scavenger in amyotrophic lateral sclerosis. React. Oxygen Species, 2016, 2(5), 339-354.
[100]
Adami, R.; Bottai, D. Curcumin and neurological diseases. Nutr. Neurosci., 2020, 1-21.
[http://dx.doi.org/10.1080/1028415X.2020.1760531] [PMID: 32441587]
[101]
Yuan, D.; Ma, B.; Yang, J.Y.; Xie, Y.Y.; Wang, L.; Zhang, L.J.; Kano, Y.; Wu, C.F. Anti-inflammatory effects of rhynchophylline and isorhynchophylline in mouse N9 microglial cells and the molecular mechanism. Int. Immunopharmacol., 2009, 9(13-14), 1549-1554.
[http://dx.doi.org/10.1016/j.intimp.2009.09.010] [PMID: 19781666]
[102]
Song, Y.; Liu, J.; Shi, F.; Lan, Z.; Li, L.; Ma, S. Inhibitory effect of isorhynchophylline on lipopolysaccharide stimulated release of inflammatory mediators in primary rat astrocytes. Pharmacol Clin Res, 2011, 19(2), 311-314.
[103]
Rahman, M.A.; Rahman, M.R.; Zaman, T.; Uddin, M.S.; Islam, R.; Abdel-Daim, M.M.; Rhim, H. Emerging potential of naturally occurring autophagy Modulators against neurodegeneration. Curr. Pharm. Des., 2020, 26(7), 772-779.
[http://dx.doi.org/10.2174/1381612826666200107142541] [PMID: 31914904]
[104]
Ock, J.; Han, H.S.; Hong, S.H.; Lee, S.Y.; Han, Y.M.; Kwon, B.M.; Suk, K. Obovatol attenuates microglia-mediated neuroinflammation by modulating redox regulation. Br. J. Pharmacol., 2010, 159(8), 1646-1662.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00659.x] [PMID: 20397299]
[105]
Liu, J.; Su, G.; Gao, J.; Tian, Y.; Liu, X.; Zhang, Z. Effects of peroxiredoxin 2 in neurological disorders: A review of its molecular mechanisms. Neurochem. Res., 2020, 45(4), 720-730.
[http://dx.doi.org/10.1007/s11064-020-02971-x] [PMID: 32002772]
[106]
Rehman, M.U.; Wali, A.F.; Ahmad, A.; Shakeel, S.; Rasool, S.; Ali, R.; Rashid, S.M.; Madkhali, H.; Ganaie, M.A.; Khan, R. Neuroprotective strategies for neurological disorders by natural products: An update. Curr. Neuropharmacol., 2019, 17(3), 247-267.
[http://dx.doi.org/10.2174/1570159X16666180911124605] [PMID: 30207234]
[107]
Tseng, Y-T.; Hsu, Y-Y.; Shih, Y-T.; Lo, Y-C. Paeonol attenuates microglia-mediated inflammation and oxidative stress-induced neurotoxicity in rat primary microglia and cortical neurons. Shock, 2012, 37(3), 312-318.
[http://dx.doi.org/10.1097/SHK.0b013e31823fe939] [PMID: 22089194]
[108]
Wang, X.; Zhu, G.; Yang, S.; Wang, X.; Cheng, H.; Wang, F.; Li, X.; Li, Q. Paeonol prevents excitotoxicity in rat pheochromocytoma PC12 cells via downregulation of ERK activation and inhibition of apoptosis. Planta Med., 2011, 77(15), 1695-1701.
[http://dx.doi.org/10.1055/s-0030-1271033] [PMID: 21509715]
[109]
He, L.X.; Tong, X.; Zeng, J.; Tu, Y.; Wu, S.; Li, M.; Deng, H.; Zhu, M.; Li, X.; Nie, H.; Yang, L.; Huang, F. Paeonol suppresses neuroinflammatory responses in LPS-activated microglia cells. Inflammation, 2016, 39(6), 1904-1917.
[http://dx.doi.org/10.1007/s10753-016-0426-z] [PMID: 27624059]
[110]
Lee, H.; Kim, Y.O.; Kim, H.; Kim, S.Y.; Noh, H.S.; Kang, S.S.; Cho, G.J.; Choi, W.S.; Suk, K. Flavonoid wogonin from medicinal herb is neuroprotective by inhibiting inflammatory activation of microglia. FASEB J., 2003, 17(13), 1943-1944.
[http://dx.doi.org/10.1096/fj.03-0057fje] [PMID: 12897065]
[111]
Piao, H.; Cui, H.; Piao, R.; Yingjun, L. Effects of wogonin on LPS-induced production of proinflammatory cytokines. J. Xi’an Jiaotong University; Medical Sciences, 1981, p. 2.
[112]
Zhang, J.; He, Y.; Jiang, X.; Jiang, H.; Shen, J. Nature brings new avenues to the therapy of central nervous system diseases-An overview of possible treatments derived from natural products. Sci. China Life Sci., 2019, 62(10), 1332-1367.
[http://dx.doi.org/10.1007/s11427-019-9587-y] [PMID: 31444682]
[113]
Li, Y.; Liu, S.; Zhang, H.; Zhou, F.; Liu, Y.; Lu, Q.; Yang, L. Antioxidant effects of celastrol against hydrogen peroxide-induced oxidative stress in the cell model of amyotrophic lateral sclerosis. Sheng Li Xue Bao, 2017, 69(6), 751.
[114]
Deane, C.A.; Brown, I.R. Induction of heat shock proteins in differentiated human neuronal cells following co-application of celastrol and arimoclomol. Cell Stress Chaperones, 2016, 21(5), 837-848.
[http://dx.doi.org/10.1007/s12192-016-0708-2] [PMID: 27273088]
[115]
Kim, D.; Nguyen, M.D.; Dobbin, M.M.; Fischer, A.; Sananbenesi, F.; Rodgers, J.T.; Delalle, I.; Baur, J.A.; Sui, G.; Armour, S.M.; Puigserver, P.; Sinclair, D.A.; Tsai, L.H. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J., 2007, 26(13), 3169-3179.
[http://dx.doi.org/10.1038/sj.emboj.7601758] [PMID: 17581637]
[116]
Wang, J.; Zhang, Y.; Tang, L.; Zhang, N.; Fan, D. Protective effects of resveratrol through the up-regulation of SIRT1 expression in the mutant hSOD1-G93A-bearing motor neuron-like cell culture model of amyotrophic lateral sclerosis. Neurosci. Lett., 2011, 503(3), 250-255.
[http://dx.doi.org/10.1016/j.neulet.2011.08.047] [PMID: 21896316]
[117]
Markert, C.D.; Kim, E.; Gifondorwa, D.J.; Childers, M.K.; Milligan, C.E. A single-dose resveratrol treatment in a mouse model of amyotrophic lateral sclerosis. J. Med. Food, 2010, 13(5), 1081-1085.
[http://dx.doi.org/10.1089/jmf.2009.0243] [PMID: 20626250]
[118]
Mancuso, R.; Del Valle, J.; Morell, M.; Pallás, M.; Osta, R.; Navarro, X. Lack of synergistic effect of resveratrol and sigma-1 receptor agonist (PRE-084) in SOD1G93A ALS mice: Overlapping effects or limited therapeutic opportunity? Orphanet J. Rare Dis., 2014, 9(1), 78.
[http://dx.doi.org/10.1186/1750-1172-9-78] [PMID: 24885036]
[119]
Dong, H.; Xu, L.; Wu, L.; Wang, X.; Duan, W.; Li, H.; Li, C. Curcumin abolishes mutant TDP-43 induced excitability in a motoneuron-like cellular model of ALS. Neuroscience, 2014, 272, 141-153.
[http://dx.doi.org/10.1016/j.neuroscience.2014.04.032] [PMID: 24785678]
[120]
Zhang, X.; Hong, Y.L.; Xu, D.S.; Feng, Y.; Zhao, L.J.; Ruan, K.F.; Yang, X.J. A review of experimental research on herbal compounds in amyotrophic lateral sclerosis. Phytother. Res., 2014, 28(1), 9-21.
[http://dx.doi.org/10.1002/ptr.4960] [PMID: 23519768]
[121]
Kaneko, Y.; Coats, A.B.; Tuazon, J.P.; Jo, M.; Borlongan, C.V. Rhynchophylline promotes stem cell autonomous metabolic homeostasis. Cytotherapy, 2020, 22(2), 106-113.
[http://dx.doi.org/10.1016/j.jcyt.2019.12.008] [PMID: 31983606]
[122]
Wang, Y-H.; Zeng, K-W. Natural products as a crucial source of anti-inflammatory drugs: Recent trends and advancements. Trad. Med. Res., 2019, 4(5), 257-268.
[123]
Lee, S-H.; Suk, K. Identification of glia phenotype modulators based on select glial function regulatory signaling pathways. Expert Opin. Drug Discov., 2018, 13(7), 627-641.
[http://dx.doi.org/10.1080/17460441.2018.1465925] [PMID: 29676181]
[124]
Zhu, Y.; Wang, J. Wogonin increases β-amyloid clearance and inhibits tau phosphorylation via inhibition of mammalian target of rapamycin: Potential drug to treat Alzheimer’s disease. Neurol. Sci., 2015, 36(7), 1181-1188.
[http://dx.doi.org/10.1007/s10072-015-2070-z] [PMID: 25596147]
[125]
Yousuf, M.; Khan, P.; Shamsi, A.; Shahbaaz, M.; Hasan, G.M.; Haque, Q.M.R.; Christoffels, A.; Islam, A.; Hassan, M.I. Inhibiting CDK6 activity by quercetin is an attractive strategy for cancer therapy. ACS Omega, 2020, 5(42), 27480-27491.
[http://dx.doi.org/10.1021/acsomega.0c03975] [PMID: 33134711]
[126]
von Lewinski, F.; Keller, B.U. Ca2+, mitochondria and selective motoneuron vulnerability: Implications for ALS. Trends Neurosci., 2005, 28(9), 494-500.
[http://dx.doi.org/10.1016/j.tins.2005.07.001] [PMID: 16026864]
[127]
Appel, S.H.; Beers, D.; Siklos, L.; Engelhardt, J.I.; Mosier, D.R. Calcium: The darth vader of ALS. Amyotroph. Lateral Scler. Other Motor Neuron Disord., 2001, 2(1)(Suppl. 1), S47-S54.
[PMID: 11465925]
[128]
Prell, T.; Lautenschläger, J.; Grosskreutz, J. Calcium-dependent protein folding in amyotrophic lateral sclerosis. Cell Calcium, 2013, 54(2), 132-143.
[http://dx.doi.org/10.1016/j.ceca.2013.05.007] [PMID: 23764168]
[129]
Chen, D-M.; Xiao, L.; Cai, X.; Zeng, R.; Zhu, X-Z. Involvement of multitargets in paeoniflorin-induced preconditioning. J. Pharmacol. Exp. Ther., 2006, 319(1), 165-180.
[http://dx.doi.org/10.1124/jpet.106.104380] [PMID: 16840647]
[130]
Mao, Q.Q.; Zhong, X.M.; Li, Z.Y.; Huang, Z. Paeoniflorin protects against NMDA-induced neurotoxicity in PC12 cells via Ca2+ antagonism. Phytother. Res., 2011, 25(5), 681-685.
[http://dx.doi.org/10.1002/ptr.3321] [PMID: 21043034]
[131]
Yang, J.; He, L.N.; He, S.B. Effect of paeoniflorin on calcium overloading injury in cultured PC12 cells. Zhongguo Xin Yao Zazhi, 2001, 6, 413-416.
[132]
Mao, Q-Q.; Zhong, X-M.; Feng, C-R.; Pan, A-J.; Li, Z-Y.; Huang, Z. Protective effects of paeoniflorin against glutamate-induced neurotoxicity in PC12 cells via antioxidant mechanisms and Ca(2+) antagonism. Cell. Mol. Neurobiol., 2010, 30(7), 1059-1066.
[http://dx.doi.org/10.1007/s10571-010-9537-5] [PMID: 20577899]
[133]
da S Hage-Melim, L.I.; Ferreira, J.V.; de Oliveira, N.K.; Correia, L.C.; Almeida, M.R.; Poiani, J.G.; Taft, C.A.; de Paula da Silva, C.H. The impact of natural compounds on the treatment of neurodegenerative diseases. Curr. Org. Chem., 2019, 23(3), 335-360.
[134]
Zhang, L-C. Paeoniflorin reduces the spinal cord injury in rats through TLR4 inflammatory pathway and Nrf2 oxidative stress pathway: The experimental study. Hainan Yixueyuan Xuebao, 2017, 23(8), 26-30.
[135]
Yifeng, D.; Zhaolin, S.; Yang, L.; Zhongyan, H.; Shuli, S. Effects of ligustrazine on L-type calcium current in SH-SY5Y human neuroblastoma. Chinese J. Neuroimmunol. Neurol., 2004, 11(1), 43-45.
[136]
Masoomzadeh, S.; Aminroaia, P.; Darchin Tabrizi, F.; Rashvand, S.; Rostamizadeh, K. Lipid based nanoparticles for treatment of CNS diseases. Nanomed. Res. J., 2020, 5(2), 101-113.
[137]
Li, Y-M.; Chen, F-P.; Liu, G-Q. Studies on inhibitive effect of gastrodin on PC12 cell damage induced by glutamate and H~ 2O~ 2. Zhongguo Yaoke Daxue Xuebao, 2003, 34(5), 456-460.
[138]
Xu, X.; Lu, Y.; Bie, X. Protective effects of gastrodin on hypoxia-induced toxicity in primary cultures of rat cortical neurons. Planta Med., 2007, 73(7), 650-654.
[http://dx.doi.org/10.1055/s-2007-981523] [PMID: 17583824]
[139]
Du, F.; Wang, X.; Shang, B.; Fang, J.; Xi, Y.; Li, A.; Diao, Y. Gastrodin ameliorates spinal cord injury via antioxidant and anti-inflammatory effects. Acta Biochim. Pol., 2016, 63(3), 589-593.
[http://dx.doi.org/10.18388/abp.2016_1272] [PMID: 27474401]
[140]
Sun, R.; Zhang, Z.; Huang, W.; Lv, L.; Yin, J. Protective effects and machanism of muskone on pheochromocytoma cell injure induced by glutamate. Zhongguo Zhongyao Zazhi, 2009, 34(13), 1701-1704.
[PMID: 19873786]
[141]
Van Damme, P.; Dewil, M.; Robberecht, W.; Van Den Bosch, L. Excitotoxicity and amyotrophic lateral sclerosis. Neurodegener. Dis., 2005, 2(3-4), 147-159.
[http://dx.doi.org/10.1159/000089620] [PMID: 16909020]
[142]
Rosenblum, L.T. Trotti, D. Glial Amino Acid Transporters; Springer, 2017, pp. 117-136.
[http://dx.doi.org/10.1007/978-3-319-55769-4_6]
[143]
Malik, A.R.; Willnow, T.E. Excitatory amino acid transporters in physiology and disorders of the central nervous system. Int. J. Mol. Sci., 2019, 20(22), 5671.
[http://dx.doi.org/10.3390/ijms20225671] [PMID: 31726793]
[144]
Cho, J.; Kim, Y.H.; Kong, J-Y.; Yang, C.H.; Park, C.G. Protection of cultured rat cortical neurons from excitotoxicity by asarone, a major essential oil component in the rhizomes of Acorus gramineus. Life Sci., 2002, 71(5), 591-599.
[http://dx.doi.org/10.1016/S0024-3205(02)01729-0] [PMID: 12052443]
[145]
Chen, Y.; Fang, Y.; Liang, Y.; Wang, Q.; He, Y. Protective effects of β-asarone on PC12 cells damage induced by glutamate. Zhongguo Zhongyiyao Xinxi Zazhi, 2007, 14, 22-23.
[146]
Zheng, M.; Fan, D. Different distribution of NMDA receptor subunits in cortex contributes to selective vulnerability of motor neurons in amyotrophic lateral sclerosis. Beijing Da Xue Xue Bao, 2011, 43(2), 228-233.
[147]
Deolankar, S.C.; Modi, P.K.; Subbannayya, Y.; Pervaje, R.; Prasad, T.S.K. Molecular targets from traditional medicines for neuroprotection in human neurodegenerative diseases. OMICS, 2020, 24(7), 394-403.
[http://dx.doi.org/10.1089/omi.2020.0033] [PMID: 32486962]
[148]
Gordon, R.K.; Nigam, S.V.; Weitz, J.A.; Dave, J.R.; Doctor, B.P.; Ved, H.S. The NMDA receptor ion channel: A site for binding of Huperzine A. J. Appl. Toxicol., 2001, 21(S1)(Suppl. 1), S47-S51.
[http://dx.doi.org/10.1002/jat.805] [PMID: 11920920]
[149]
Hemendinger, R.A.; Armstrong, E.J., III; Persinski, R.; Todd, J.; Mougeot, J-L.; Volvovitz, F.; Rosenfeld, J. Huperzine a provides neuroprotection against several cell death inducers using In-vitro model systems of motor neuron cell death. Neurotox. Res., 2008, 13(1), 49-61.
[http://dx.doi.org/10.1007/BF03033367] [PMID: 18367440]
[150]
Kumar, S.S. Application of phytochemicals for the treatment of neurodegenerative diseases.Drug Invention Today,, 2018, 10(3)
[151]
Jiang, B.; Liu, J.H.; Bao, Y.M.; An, L.J. Catalpol inhibits apoptosis in hydrogen peroxide-induced PC12 cells by preventing cytochrome c release and inactivating of caspase cascade. Toxicon, 2004, 43(1), 53-59.
[http://dx.doi.org/10.1016/j.toxicon.2003.10.017] [PMID: 15037029]
[152]
Wang, J.; Kang, B.; Hu, Y. XIA, Z.-q. Catalpol attenuates PC12 cells injury induced by L-glutamate. Zhongguo Yaolixue Tongbao, 2008, 24, 1258-1259.
[153]
Zheng, X-w.; Yang, W-t.; Chen, S.; Xu, Q-q.; Shan, C-s.; Zheng, G-q.; Ruan, J-c. Neuroprotection of catalpol for experimental acute focal ischemic stroke: Preclinical evidence and possible mechanisms of antioxidation, anti-inflammation, and antiapoptosis. Oxid. Med. Cell. Longev., 2017, 20175058609
[154]
Liu, R.; Liu, J-f.; Xu, K-p. ZOU, H.; SONG, L.-y.; DANG, R.-L.; ZOU, Z.-x.; LI, G.; TAN, G.-s. Chemical constituents in Selaginella tamariscina. Cent. South Pharm., 2011, 9(8), 564-566.
[155]
Wang, C-J.; Hu, C-P.; Xu, K-P.; Yuan, Q.; Li, F-S.; Zou, H.; Tan, G-S.; Li, Y-J. Protective effect of selaginellin on glutamate-induced cytotoxicity and apoptosis in differentiated PC12 cells. Naunyn Schmiedebergs Arch. Pharmacol., 2010, 381(1), 73-81.
[http://dx.doi.org/10.1007/s00210-009-0470-4] [PMID: 19936711]
[156]
Pérez-Hernández, J.; Zaldívar-Machorro, V.J.; Villanueva-Porras, D.; Vega-Ávila, E.; Chavarría, A. A potential alternative against neurodegenerative diseases. Phytodrugs. Oxid. Med. Cell. Longev., 2016, 20168378613
[157]
Yi, D.; Ning, W.; Quan, Z. Neuroprotective effects of ferulic acid against glutamate-induced neurotoxicity in PC12 cells; Pharmacol. Clin. Chinese Materia Medica, 2008, p. 6.
[158]
Jin, Y.; Yan, E.Z.; Fan, Y.; Guo, X.L.; Zhao, Y.J.; Zong, Z.H.; Liu, Z. Neuroprotection by sodium ferulate against glutamate-induced apoptosis is mediated by ERK and PI3 kinase pathways. Acta Pharmacol. Sin., 2007, 28(12), 1881-1890.
[http://dx.doi.org/10.1111/j.1745-7254.2007.00634.x] [PMID: 18031600]
[159]
Luo, L.; Sun, Y. Neuroprotective effect of ferulic acid In-vitro. Zhong Yao Cai, 2011, 34(11), 1750-1753.
[PMID: 22506403]
[160]
Holeček, V.; Rokyta, R. Possible etiology and treatment of amyotrophic lateral sclerosis. Neuroendocrinol. Lett., 2018, 38(8), 528-531.
[PMID: 29504729]
[161]
Zhang, F.; Zheng, W.; Pi, R.; Mei, Z.; Bao, Y.; Gao, J.; Tang, W.; Chen, S.; Liu, P. Cryptotanshinone protects primary rat cortical neurons from glutamate-induced neurotoxicity via the activation of the phosphatidylinositol 3-kinase/Akt signaling pathway. Exp. Brain Res., 2009, 193(1), 109-118.
[http://dx.doi.org/10.1007/s00221-008-1600-9] [PMID: 18936923]
[162]
Kanekura, K.; Hashimoto, Y.; Kita, Y.; Sasabe, J.; Aiso, S.; Nishimoto, I.; Matsuoka, M.A. Rac1/phosphatidylinositol 3-kinase/Akt3 anti-apoptotic pathway, triggered by AlsinLF, the product of the ALS2 gene, antagonizes Cu/Zn-superoxide dismutase (SOD1) mutant-induced motoneuronal cell death. J. Biol. Chem., 2005, 280(6), 4532-4543.
[http://dx.doi.org/10.1074/jbc.M410508200] [PMID: 15579468]
[163]
Fang, X. Impaired tissue barriers as potential therapeutic targets for Parkinson’s disease and amyotrophic lateral sclerosis. Metab. Brain Dis., 2018, 33(4), 1031-1043.
[http://dx.doi.org/10.1007/s11011-018-0239-x] [PMID: 29681010]
[164]
Chandran, G. Insights on the neuromodulatory propensity of Selaginella (Sanjeevani) and its potential pharmacological applications. CNS Neurol. Disord. Drug Targets, 2014, 13(1), 82-95.
[165]
Ren, Z.; Zhang, R.; Li, Y.; Li, Y.; Yang, Z.; Yang, H. Ferulic acid exerts neuroprotective effects against cerebral ischemia/reperfusion-induced injury via antioxidant and anti-apoptotic mechanisms in vitro and in vivo. Int. J. Mol. Med., 2017, 40(5), 1444-1456.
[http://dx.doi.org/10.3892/ijmm.2017.3127] [PMID: 28901374]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy