Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Review Article

Increased Fetal Cardiovascular Disease Risk: Potential Synergy Between Gestational Diabetes Mellitus and Maternal Hypercholesterolemia

Author(s): Cristian Espinoza, Barbara Fuenzalida and Andrea Leiva*

Volume 19, Issue 6, 2021

Published on: 22 April, 2021

Page: [601 - 623] Pages: 23

DOI: 10.2174/1570161119666210423085407

Price: $65

Abstract

Cardiovascular diseases (CVD) remain a major cause of death worldwide. Evidence suggests that the risk for CVD can increase at the fetal stages due to maternal metabolic diseases, such as gestational diabetes mellitus (GDM) and maternal supraphysiological hypercholesterolemia (MSPH). GDM is a hyperglycemic, inflammatory, and insulin-resistant state that increases plasma levels of free fatty acids and triglycerides, impairs endothelial vascular tone regulation, and due to the increased nutrient transport, exposes the fetus to the altered metabolic conditions of the mother. MSPH involves increased levels of cholesterol (mainly as low-density lipoprotein cholesterol) which also causes endothelial dysfunction and alters nutrient transport to the fetus. Despite that an association has already been established between MSPH and increased CVD risk, however, little is known about the cellular processes underlying this relationship. Our knowledge is further obscured when the simultaneous presentation of MSPH and GDM takes place. In this context, GDM and MSPH may substantially increase fetal CVD risk due to synergistic impairment of placental nutrient transport and endothelial dysfunction. More studies on the separate and/or cumulative role of both processes are warranted to suggest specific treatment options.

Keywords: Dyslipidemia, gestational diabetes, endothelium, pregnancy, cardiovascular disease, diabetes mellitus.

Graphical Abstract

[1]
McAloon CJ, Boylan LM, Hamborg T, et al. The changing face of cardiovascular disease 2000-2012: An analysis of the world health organisation global health estimates data. Int J Cardiol 2016; 224: 256-64.
[http://dx.doi.org/10.1016/j.ijcard.2016.09.026] [PMID: 27664572]
[2]
Yu Y, Arah OA, Liew Z, et al. Maternal diabetes during pregnancy and early onset of cardiovascular disease in offspring: Population based cohort study with 40 years of follow-up. BMJ 2019; 367: l6398.
[http://dx.doi.org/10.1136/bmj.l6398] [PMID: 31801789]
[3]
Napoli C, Glass CK, Witztum JL, Deutsch R, D’Armiento FP, Palinski W. Influence of maternal hypercholesterolaemia during pregnancy on progression of early atherosclerotic lesions in childhood: Fate of Early Lesions in Children (FELIC) study. Lancet 1999; 354(9186): 1234-41.
[http://dx.doi.org/10.1016/S0140-6736(99)02131-5] [PMID: 10520631]
[4]
Kampmann U, Knorr S, Fuglsang J, Ovesen P. Determinants of Maternal Insulin Resistance during Pregnancy: An Updated Overview. J Diabetes Res 2019; 2019: 5320156.
[http://dx.doi.org/10.1155/2019/5320156] [PMID: 31828161]
[5]
Catalano PM. Trying to understand gestational diabetes. Diabet Med 2014; 31(3): 273-81.
[http://dx.doi.org/10.1111/dme.12381] [PMID: 24341419]
[6]
American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care 2015; 38(Suppl.): S8-S16.
[http://dx.doi.org/10.2337/dc15-S005] [PMID: 25537714]
[7]
Sobrevia L, Salsoso R, Fuenzalida B, et al. Insulin is a key modulator of fetoplacental endothelium metabolic disturbances in gestational diabetes mellitus. Front Physiol 2016; 7: 119.
[http://dx.doi.org/10.3389/fphys.2016.00119] [PMID: 27065887]
[8]
Tam WH, Ma RCW, Ozaki R, et al. In Utero Exposure to Maternal Hyperglycemia Increases Childhood Cardiometabolic Risk in Offspring. Diabetes Care 2017; 40(5): 679-86.
[http://dx.doi.org/10.2337/dc16-2397] [PMID: 28279981]
[9]
Marco LJ, McCloskey K, Vuillermin PJ, Burgner D, Said J, Ponsonby AL. Cardiovascular disease risk in the offspring of diabetic women: The impact of the intrauterine environment. Exp Diabetes Res 2012; 2012
[http://dx.doi.org/10.1155/2012/565160] [PMID: 23133443]
[10]
Koklu E, Akcakus M, Kurtoglu S, et al. Aortic intima-media thickness and lipid profile in macrosomic newborns. Eur J Pediatr 2007; 166(4): 333-8.
[http://dx.doi.org/10.1007/s00431-006-0243-8] [PMID: 16977439]
[11]
Zhu Y, Zhang C. Prevalence of Gestational Diabetes and Risk of Progression to Type 2 Diabetes: A Global Perspective. Curr Diab Rep 2016; 16(1): 7.
[http://dx.doi.org/10.1007/s11892-015-0699-x] [PMID: 26742932]
[12]
Lain KY, Catalano PM. Metabolic changes in pregnancy. Clin Obstet Gynecol 2007; 50(4): 938-48.
[http://dx.doi.org/10.1097/GRF.0b013e31815a5494] [PMID: 17982337]
[13]
Basaran A. Pregnancy-induced hyperlipoproteinemia: Review of the literature. Reprod Sci 2009; 16(5): 431-7.
[http://dx.doi.org/10.1177/1933719108330569] [PMID: 19233944]
[14]
Leiva A, Fuenzalida B, Westermeier F, et al. Role for tetrahydrobiopterin in the fetoplacental endothelial dysfunction in maternal supraphysiological hypercholesterolemia. Oxid Med Cell Longev 2016; 2016
[http://dx.doi.org/10.1155/2016/5346327]
[15]
Leiva A. Maternal Hypercholesterolemia in Gestational Diabetes and the Association with Placental Endothelial Dysfunction. Rijeka: IntechOpen 2013.
[http://dx.doi.org/10.5772/55297]
[16]
Napoli C, D’Armiento FP, Mancini FP, et al. Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. J Clin Invest 1997; 100(11): 2680-90.
[http://dx.doi.org/10.1172/JCI119813] [PMID: 9389731]
[17]
Leiva A, de Medina CD, Salsoso R, et al. Maternal hypercholesterolemia in pregnancy associates with umbilical vein endothelial dysfunction: Role of endothelial nitric oxide synthase and arginase II. Arterioscler Thromb Vasc Biol 2013; 33(10): 2444-53.
[http://dx.doi.org/10.1161/ATVBAHA.113.301987] [PMID: 23950140]
[18]
Chatuphonprasert W, Jarukamjorn K, Ellinger I. Physiology and Pathophysiology of Steroid Biosynthesis, Transport and Metabolism in the Human Placenta. Front Pharmacol 2018; 9: 1027.
[http://dx.doi.org/10.3389/fphar.2018.01027] [PMID: 30258364]
[19]
Carroll MD, Fryar CD, Nguyen DT. Total and high-density lipoprotein cholesterol in adults: United states, 2015-2016 key findings data from the national health and nutrition examination survey. NCHS Data Brief 2017; 290: 1-8.
[PMID: 29155686]
[20]
Miranda JJ, Herrera VM, Chirinos JA, et al. Major cardiovascular risk factors in Latin America: A comparison with the United States. PLoS One 2013; 8(1): e54056.
[http://dx.doi.org/10.1371/journal.pone.0054056] [PMID: 23349785]
[21]
Leiva A, Fuenzalida B, Salsoso R, et al. Tetrahydrobiopterin Role in human umbilical vein endothelial dysfunction in maternal supraphysiological hypercholesterolemia. Biochim Biophys Acta 2016; 1862(4): 536-44.
[http://dx.doi.org/10.1016/j.bbadis.2016.01.021] [PMID: 26826019]
[22]
Herrera Martínez A, Palomares Ortega R, Bahamondes Opazo R, Moreno-Moreno P, Molina Puerta MJ, Gálvez-Moreno MA. Hyperlipidemia during gestational diabetes and its relation with maternal and offspring complications. Nutr Hosp 2018; 35(3): 698-706.
[http://dx.doi.org/10.20960/nh.1539] [PMID: 29974782]
[23]
Garvey WT, Maianu L, Zhu JH, Hancock JA, Golichowski AM. Multiple defects in the adipocyte glucose transport system cause cellular insulin resistance in gestational diabetes. Heterogeneity in the number and a novel abnormality in subcellular localization of GLUT4 glucose transporters. Diabetes 1993; 42(12): 1773-85.
[http://dx.doi.org/10.2337/diab.42.12.1773] [PMID: 8243823]
[24]
Barbour LA, McCurdy CE, Hernandez TL, Kirwan JP, Catalano PM, Friedman JE. Cellular mechanisms for insulin resistance in normal pregnancy and gestational diabetes. Diabetes Care 2007; 30(Suppl. 2): S112-9.
[http://dx.doi.org/10.2337/dc07-s202] [PMID: 17596458]
[25]
Friedman JE, Ishizuka T, Shao J, Huston L, Highman T, Catalano P. Impaired glucose transport and insulin receptor tyrosine phosphorylation in skeletal muscle from obese women with gestational diabetes. Diabetes 1999; 48(9): 1807-14.
[http://dx.doi.org/10.2337/diabetes.48.9.1807] [PMID: 10480612]
[26]
Layton J, Powe C, Allard C, et al. Maternal lipid profile differs by gestational diabetes physiologic subtype. Metabolism 2019; 91: 39-42.
[http://dx.doi.org/10.1016/j.metabol.2018.11.008] [PMID: 30468781]
[27]
Ryckman KK, Spracklen CN, Smith CJ, Robinson JG, Saftlas AF. Maternal lipid levels during pregnancy and gestational diabetes: A systematic review and meta-analysis. BJOG 2015; 122(5): 643-51.
[http://dx.doi.org/10.1111/1471-0528.13261] [PMID: 25612005]
[28]
Wang J, Li Z, Lin L. Maternal lipid profiles in women with and without gestational diabetes mellitus. Medicine (Baltimore) 2019; 98(16): e15320-0.
[http://dx.doi.org/10.1097/MD.0000000000015320] [PMID: 31008986]
[29]
Chodick G, Tenne Y, Barer Y, Shalev V, Elchalal U. Gestational diabetes and long-term risk for dyslipidemia: A population-based historical cohort study. BMJ Open Diabetes Res Care 2020; 8(1): 1-7.
[http://dx.doi.org/10.1136/bmjdrc-2019-000870] [PMID: 32049628]
[30]
Gerich JE. Is reduced first-phase insulin release the earliest detectable abnormality in individuals destined to develop type 2 diabetes? Diabetes 2002; 51(Suppl. 1): S117-21.
[http://dx.doi.org/10.2337/diabetes.51.2007.S117] [PMID: 11815469]
[31]
Utzschneider KM, Prigeon RL, Faulenbach MV, et al. Oral disposition index predicts the development of future diabetes above and beyond fasting and 2-h glucose levels. Diabetes Care 2009; 32(2): 335-41.
[http://dx.doi.org/10.2337/dc08-1478] [PMID: 18957530]
[32]
Zheng S, Xu H, Zhou H, et al. Associations of lipid profiles with insulin resistance and β cell function in adults with normal glucose tolerance and different categories of impaired glucose regulation. PLoS One 2017; 12(2): e0172221.
[http://dx.doi.org/10.1371/journal.pone.0172221] [PMID: 28199386]
[33]
O’Malley EG, Reynolds CME, Killalea A, O’Kelly R, Sheehan SR, Turner MJ. Maternal obesity and dyslipidemia associated with gestational diabetes mellitus (GDM). Eur J Obstet Gynecol Reprod Biol 2020; 246: 67-71.
[http://dx.doi.org/10.1016/j.ejogrb.2020.01.007] [PMID: 31962258]
[34]
Chu SY, Callaghan WM, Kim SY, et al. Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care 2007; 30(8): 2070-6.
[http://dx.doi.org/10.2337/dc06-2559a] [PMID: 17416786]
[35]
Rydén M, Arner P. Subcutaneous Adipocyte Lipolysis Contributes to Circulating Lipid Levels. Arterioscler Thromb Vasc Biol 2017; 37(9): 1782-7.
[http://dx.doi.org/10.1161/ATVBAHA.117.309759] [PMID: 28663255]
[36]
Kristensen C, Wiberg FC, Schäffer L, Andersen AS. Expression and characterization of a 70-kDa fragment of the insulin receptor that binds insulin. Minimizing ligand binding domain of the insulin receptor. J Biol Chem 1998; 273(28): 17780-6.
[http://dx.doi.org/10.1074/jbc.273.28.17780] [PMID: 9651379]
[37]
Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol 2014; 6(1): 1-23.
[http://dx.doi.org/10.1101/cshperspect.a009191] [PMID: 24384568]
[38]
Tokarz VL, MacDonald PE, Klip A. The cell biology of systemic insulin function. J Cell Biol 2018; 217(7): 2273-89.
[http://dx.doi.org/10.1083/jcb.201802095] [PMID: 29622564]
[39]
Okuno S, Akazawa S, Yasuhi I, et al. Decreased expression of the GLUT4 glucose transporter protein in adipose tissue during pregnancy. Horm Metab Res 1995; 27(5): 231-4.
[http://dx.doi.org/10.1055/s-2007-979946] [PMID: 7642174]
[40]
Shao J, Catalano PM, Yamashita H, et al. Decreased insulin receptor tyrosine kinase activity and plasma cell membrane glycoprotein-1 overexpression in skeletal muscle from obese women with gestational diabetes mellitus (GDM): Evidence for increased serine/threonine phosphorylation in pregnancy and GDM. Diabetes 2000; 49(4): 603-10.
[http://dx.doi.org/10.2337/diabetes.49.4.603] [PMID: 10871198]
[41]
Ericsson A, Hamark B, Powell TL, Jansson T. Glucose transporter isoform 4 is expressed in the syncytiotrophoblast of first trimester human placenta. Hum Reprod 2005; 20(2): 521-30.
[http://dx.doi.org/10.1093/humrep/deh596] [PMID: 15528266]
[42]
Hiden U, Glitzner E, Hartmann M, Desoye G. Insulin and the IGF system in the human placenta of normal and diabetic pregnancies. J Anat 2009; 215(1): 60-8.
[http://dx.doi.org/10.1111/j.1469-7580.2008.01035.x] [PMID: 19467150]
[43]
James-Allan LB, Arbet J, Teal SB, Powell TL, Jansson T. Insulin stimulates GLUT4 trafficking to the syncytiotrophoblast basal plasma membrane in the human placenta. J Clin Endocrinol Metab 2019; 104: 4225-38.
[http://dx.doi.org/10.1210/jc.2018-02778] [PMID: 31112275]
[44]
Colomiere M, Permezel M, Riley C, Desoye G, Lappas M. Defective insulin signaling in placenta from pregnancies complicated by gestational diabetes mellitus. Eur J Endocrinol 2009; 160(4): 567-78.
[http://dx.doi.org/10.1530/EJE-09-0031] [PMID: 19179458]
[45]
Jansson T, Wennergren M, Illsley NP. Glucose transporter protein expression in human placenta throughout gestation and in intrauterine growth retardation. J Clin Endocrinol Metab 1993; 77(6): 1554-62.
[PMID: 8263141]
[46]
Illsley NP. Glucose transporters in the human placenta. Placenta 2000; 21(1): 14-22.
[http://dx.doi.org/10.1053/plac.1999.0448] [PMID: 10692246]
[47]
Borges MH, Pullockaran J, Catalano P, Baumann MU, Illsley NP. Human placental GLUT1 glucose transporter expression and the fetal insulin-like growth factor axis in pregnancies complicated by diabetes. Biochim Biophys Acta Mol Basis Dis 2019; 1865(9): 2411-9.
[http://dx.doi.org/10.1016/j.bbadis.2019.06.002] [PMID: 31175930]
[48]
Yang G-R, Dye TD, Li D. Effects of pre-gestational diabetes mellitus and gestational diabetes mellitus on macrosomia and birth defects in Upstate New York. Diabetes Res Clin Pract 2019; 155: 107811.
[http://dx.doi.org/10.1016/j.diabres.2019.107811] [PMID: 31401151]
[49]
Jansson T, Wennergren M, Powell TL. Placental glucose transport and GLUT 1 expression in insulin-dependent diabetes. Am J Obstet Gynecol 1999; 180(1 Pt 1): 163-8.
[http://dx.doi.org/10.1016/S0002-9378(99)70169-9] [PMID: 9914598]
[50]
Gaither K, Quraishi AN, Illsley NP. Diabetes alters the expression and activity of the human placental GLUT1 glucose transporter. J Clin Endocrinol Metab 1999; 84(2): 695-701.
[http://dx.doi.org/10.1210/jc.84.2.695] [PMID: 10022440]
[51]
Jansson T, Ekstrand Y, Wennergren M, Powell TL. Placental glucose transport in gestational diabetes mellitus. Am J Obstet Gynecol 2001; 184(2): 111-6.
[http://dx.doi.org/10.1067/mob.2001.108075] [PMID: 11174489]
[52]
Díaz P, Dimasuay KG, Koele-Schmidt L, et al. Glyburide treatment in gestational diabetes is associated with increased placental glucose transporter 1 expression and higher birth weight. Placenta 2017; 57: 52-9.
[http://dx.doi.org/10.1016/j.placenta.2017.05.016] [PMID: 28864019]
[53]
Subramanian S, Chait A. Hypertriglyceridemia secondary to obesity and diabetes. Biochim Biophys Acta 2012; 1821(5): 819-25.
[http://dx.doi.org/10.1016/j.bbalip.2011.10.003] [PMID: 22005032]
[54]
Subiabre M, Silva L, Toledo F, et al. Insulin therapy and its consequences for the mother, foetus, and newborn in gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis 2018; 1864(9 Pt B): 2949-56.
[http://dx.doi.org/10.1016/j.bbadis.2018.06.005] [PMID: 29890222]
[55]
Baumann MU, Schneider H, Malek A, et al. Regulation of human trophoblast GLUT1 glucose transporter by insulin-like growth factor I (IGF-I). PLoS One 2014; 9(8): e106037.
[http://dx.doi.org/10.1371/journal.pone.0106037] [PMID: 25157747]
[56]
Catalano PM, Hauguel-De Mouzon S. Is it time to revisit the Pedersen hypothesis in the face of the obesity epidemic? Am J Obstet Gynecol 2011; 204(6): 479-87.
[http://dx.doi.org/10.1016/j.ajog.2010.11.039] [PMID: 21288502]
[57]
Hoenig MR, Sellke FW. Insulin resistance is associated with increased cholesterol synthesis, decreased cholesterol absorption and enhanced lipid response to statin therapy. Atherosclerosis 2010; 211(1): 260-5.
[http://dx.doi.org/10.1016/j.atherosclerosis.2010.02.029] [PMID: 20356594]
[58]
Pathirana MM, Lassi ZS, Roberts CT, Andraweera PH. Cardiovascular risk factors in offspring exposed to gestational diabetes mellitus in utero: Systematic review and meta-analysis. J Dev Orig Health Dis 2020; 11(6): 599-616.
[http://dx.doi.org/10.1017/S2040174419000850] [PMID: 31902382]
[59]
Kirwan JP, Hauguel-De Mouzon S, Lepercq J, et al. TNF-alpha is a predictor of insulin resistance in human pregnancy. Diabetes 2002; 51(7): 2207-13.
[http://dx.doi.org/10.2337/diabetes.51.7.2207] [PMID: 12086951]
[60]
Schulze F, Wehner J, Kratschmar DV, et al. Inhibition of IL-1beta improves Glycaemia in a Mouse Model for Gestational Diabetes. Sci Rep 2020; 10(1): 3035.
[http://dx.doi.org/10.1038/s41598-020-59701-0] [PMID: 32080229]
[61]
Vitoratos N, Valsamakis G, Mastorakos G, et al. Pre- and early post-partum adiponectin and interleukin-1beta levels in women with and without gestational diabetes. Hormones (Athens) 2008; 7(3): 230-6.
[http://dx.doi.org/10.14310/horm.2002.1202] [PMID: 18694861]
[62]
Lappas M. Effect of pre-existing maternal obesity, gestational diabetes and adipokines on the expression of genes involved in lipid metabolism in adipose tissue. Metabolism 2014; 63(2): 250-62.
[http://dx.doi.org/10.1016/j.metabol.2013.10.001] [PMID: 24262292]
[63]
Marseille-Tremblay C, Ethier-Chiasson M, Forest JC, et al. Impact of maternal circulating cholesterol and gestational diabetes mellitus on lipid metabolism in human term placenta. Mol Reprod Dev 2008; 75(6): 1054-62.
[http://dx.doi.org/10.1002/mrd.20842] [PMID: 18095312]
[64]
Akash MSH, Rehman K, Liaqat A. Tumor Necrosis Factor-Alpha: Role in Development of Insulin Resistance and Pathogenesis of Type 2 Diabetes Mellitus. J Cell Biochem 2018; 119(1): 105-10.
[http://dx.doi.org/10.1002/jcb.26174] [PMID: 28569437]
[65]
Lagathu C, Yvan-Charvet L, Bastard JP, et al. Long-term treatment with interleukin-1β induces insulin resistance in murine and human adipocytes. Diabetologia 2006; 49(9): 2162-73.
[http://dx.doi.org/10.1007/s00125-006-0335-z] [PMID: 16865359]
[66]
Gao D, Madi M, Ding C, et al. Interleukin-1β mediates macrophage-induced impairment of insulin signaling in human primary adipocytes. Am J Physiol Endocrinol Metab 2014; 307(3): E289-304.
[http://dx.doi.org/10.1152/ajpendo.00430.2013] [PMID: 24918199]
[67]
Villafan-Bernal JR, Acevedo-Alba M, Reyes-Pavon R, et al. Plasma Levels of Free Fatty Acids in Women with Gestational Diabetes and Its Intrinsic and Extrinsic Determinants: Systematic Review and Meta-Analysis. J Diabetes Res 2019; 2019: 7098470.
[http://dx.doi.org/10.1155/2019/7098470] [PMID: 31531374]
[68]
Mehmood S, Margolis M, Ye C, et al. Hepatic fat and glucose tolerance in women with recent gestational diabetes. BMJ Open Diabetes Res Care 2018; 6(1): e000549.
[http://dx.doi.org/10.1136/bmjdrc-2018-000549] [PMID: 30233804]
[69]
Haas ME, Attie AD, Biddinger SB. The regulation of ApoB metabolism by insulin. Trends Endocrinol Metab 2013; 24(8): 391-7.
[http://dx.doi.org/10.1016/j.tem.2013.04.001] [PMID: 23721961]
[70]
Fried SK, Russell CD, Grauso NL, Brolin RE. Lipoprotein lipase regulation by insulin and glucocorticoid in subcutaneous and omental adipose tissues of obese women and men. J Clin Invest 1993; 92(5): 2191-8.
[http://dx.doi.org/10.1172/JCI116821] [PMID: 8227334]
[71]
Sundaram M, Yao Z. Recent progress in understanding protein and lipid factors affecting hepatic VLDL assembly and secretion. Nutr Metab (Lond) 2010; 7: 35.
[http://dx.doi.org/10.1186/1743-7075-7-35] [PMID: 20423497]
[72]
Sparks JD, Sparks CE, Adeli K. Selective hepatic insulin resistance, VLDL overproduction, and hypertriglyceridemia. Arterioscler Thromb Vasc Biol 2012; 32(9): 2104-12.
[http://dx.doi.org/10.1161/ATVBAHA.111.241463] [PMID: 22796579]
[73]
Mittendorfer B, Yoshino M, Patterson BW, Klein S. VLDL Triglyceride Kinetics in Lean, Overweight, and Obese Men and Women. J Clin Endocrinol Metab 2016; 101(11): 4151-60.
[http://dx.doi.org/10.1210/jc.2016-1500] [PMID: 27588438]
[74]
Tumurbaatar B, Poole AT, Olson G, et al. Adipose Tissue Insulin Resistance in Gestational Diabetes. Metab Syndr Relat Disord 2017; 15(2): 86-92.
[http://dx.doi.org/10.1089/met.2016.0124] [PMID: 28080219]
[75]
Kalmár T, Seres I, Balogh Z, Káplár M, Winkler G, Paragh G. Correlation between the activities of lipoprotein lipase and paraoxonase in type 2 diabetes mellitus. Diabetes Metab 2005; 31(6): 574-80.
[http://dx.doi.org/10.1016/S1262-3636(07)70233-1] [PMID: 16357806]
[76]
Leiva A, Salsoso R, Sáez T, Sanhueza C, Pardo F, Sobrevia L. Cross-sectional and longitudinal lipid determination studies in pregnant women reveal an association between increased maternal LDL cholesterol concentrations and reduced human umbilical vein relaxation. Placenta 2015; 36(8): 895-902.
[http://dx.doi.org/10.1016/j.placenta.2015.05.012] [PMID: 26055528]
[77]
Son GH, Kwon JY, Kim YH, Park YW. Maternal serum triglycerides as predictive factors for large-for-gestational age newborns in women with gestational diabetes mellitus. Acta Obstet Gynecol Scand 2010; 89(5): 700-4.
[http://dx.doi.org/10.3109/00016341003605677] [PMID: 20423280]
[78]
Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002; 8(11): 1288-95.
[http://dx.doi.org/10.1038/nm788] [PMID: 12368907]
[79]
Cseh K, Baranyi E, Melczer Z, Kaszás E, Palik E, Winkler G. Plasma adiponectin and pregnancy-induced insulin resistance. Diabetes Care 2004; 27(1): 274-5.
[http://dx.doi.org/10.2337/diacare.27.1.274] [PMID: 14694004]
[80]
Nayak M, Eekhoff MEW, Peinhaupt M, Heinemann A, Desoye G, van Poppel MNM. Cytokines and their association with insulin resistance in obese pregnant women with different levels of physical activity. Cytokine 2016; 77: 72-8.
[http://dx.doi.org/10.1016/j.cyto.2015.11.003] [PMID: 26546776]
[81]
Aye ILMH, Powell TL, Jansson T. Review: Adiponectin--the missing link between maternal adiposity, placental transport and fetal growth? Placenta 2013; 34(Suppl.): S40-5.
[http://dx.doi.org/10.1016/j.placenta.2012.11.024] [PMID: 23245987]
[82]
Hector J, Schwarzloh B, Goehring J, et al. TNF-alpha alters visfatin and adiponectin levels in human fat. Horm Metab Res 2007; 39(4): 250-5.
[http://dx.doi.org/10.1055/s-2007-973075] [PMID: 17447161]
[83]
Xu J, Zhao YH, Chen YP, et al. Maternal circulating concentrations of tumor necrosis factor-alpha, Leptin, and Adiponectin in gestational diabetes mellitus: A systematic review and meta-analysis. Sci World J 2014; 2014: 926932.
[http://dx.doi.org/10.1155/2014/926932] [PMID: 25202741]
[84]
von Eynatten M, Schneider JG, Humpert PM, et al. Decreased plasma lipoprotein lipase in hypoadiponectinemia: An association independent of systemic inflammation and insulin resistance. Diabetes Care 2004; 27(12): 2925-9.
[http://dx.doi.org/10.2337/diacare.27.12.2925] [PMID: 15562208]
[85]
Moller DE. Potential role of TNF-alpha in the pathogenesis of insulin resistance and type 2 diabetes. Trends Endocrinol Metab 2000; 11(6): 212-7.
[http://dx.doi.org/10.1016/S1043-2760(00)00272-1] [PMID: 10878750]
[86]
Velegrakis A, Sfakiotaki M, Sifakis S. Human placental growth hormone in normal and abnormal fetal growth. Biomed Rep 2017; 7(2): 115-22.
[http://dx.doi.org/10.3892/br.2017.930] [PMID: 28804622]
[87]
Feng H, Su R, Song Y, et al. Positive correlation between enhanced expression of TLR4/MyD88/NF-κB with insulin resistance in placentae of Gestational diabetes mellitus. PLoS One 2016; 11: 1-15.
[http://dx.doi.org/10.1371/journal.pone.0157185]
[88]
Hassan A, Essa T. Ultrastructure of the placenta in gestational diabetes mellitus. Anatomy 2016; 10: 159-69.
[http://dx.doi.org/10.2399/ana.16.019]
[89]
Lappas M, Mitton A, Permezel M. In response to oxidative stress, the expression of inflammatory cytokines and antioxidant enzymes are impaired in placenta, but not adipose tissue, of women with gestational diabetes. J Endocrinol 2010; 204(1): 75-84.
[http://dx.doi.org/10.1677/JOE-09-0321] [PMID: 19833719]
[90]
Subiabre M, Silva L, Villalobos-Labra R, et al. Maternal insulin therapy does not restore foetoplacental endothelial dysfunction in gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis 2017; 1863(11): 2987-98.
[http://dx.doi.org/10.1016/j.bbadis.2017.07.022] [PMID: 28756217]
[91]
Ignarro LJ, Napoli C. Novel features of nitric oxide, endothelial nitric oxide synthase, and atherosclerosis. Curr Diab Rep 2005; 5(1): 17-23.
[http://dx.doi.org/10.1007/s11892-005-0062-8] [PMID: 15663912]
[92]
Cabrera L, Saavedra A, Rojas S, et al. Insulin induces relaxation and decreases hydrogen peroxide-induced vasoconstriction in human placental vascular bed in a mechanism mediated by calcium-activated potassium channels and l-arginine/nitric oxide pathways. Front Physiol 2016; 7: 529.
[http://dx.doi.org/10.3389/fphys.2016.00529] [PMID: 27920724]
[93]
Taricco E, Radaelli T, Rossi G, et al. Effects of gestational diabetes on fetal oxygen and glucose levels in vivo. BJOG 2009; 116(13): 1729-35.
[http://dx.doi.org/10.1111/j.1471-0528.2009.02341.x] [PMID: 19832834]
[94]
Bianchi C, Taricco E, Cardellicchio M, et al. The role of obesity and gestational diabetes on placental size and fetal oxygenation. Placenta 2021; 103: 59-63.
[http://dx.doi.org/10.1016/j.placenta.2020.10.013] [PMID: 33080447]
[95]
Fiorentino TV, Prioletta A, Zuo P, Folli F. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr Pharm Des 2013; 19(32): 5695-703.
[http://dx.doi.org/10.2174/1381612811319320005] [PMID: 23448484]
[96]
Visiedo F, Santos-Rosendo C, Mateos-Bernal RM, et al. Characterization of NO-induced nitrosative status in human placenta from pregnant women with gestational diabetes mellitus. Oxid Med Cell Longev 2017; 2017: 5629341.
[http://dx.doi.org/10.1155/2017/5629341] [PMID: 28400911]
[97]
Ramírez-Emiliano J, Fajardo-Araujo ME, Zúñiga-Trujillo I, Pérez-Vázquez V, Sandoval-Salazar C, Órnelas-Vázquez JK. Mitochondrial content, oxidative, and nitrosative stress in human full-term placentas with gestational diabetes mellitus. Reprod Biol Endocrinol 2017; 15(1): 26.
[http://dx.doi.org/10.1186/s12958-017-0244-7] [PMID: 28376894]
[98]
Lappas M, Hiden U, Desoye G, Froehlich J, Hauguel-de Mouzon S, Jawerbaum A. The role of oxidative stress in the pathophysiology of gestational diabetes mellitus. Antioxid Redox Signal 2011; 15(12): 3061-100.
[http://dx.doi.org/10.1089/ars.2010.3765] [PMID: 21675877]
[99]
Gao C-L, Zhu C, Zhao Y-P, et al. Mitochondrial dysfunction is induced by high levels of glucose and free fatty acids in 3T3-L1 adipocytes. Mol Cell Endocrinol 2010; 320(1-2): 25-33.
[http://dx.doi.org/10.1016/j.mce.2010.01.039] [PMID: 20144685]
[100]
Kim JK. Endothelial nuclear factor κB in obesity and aging: Is endothelial nuclear factor κB a master regulator of inflammation and insulin resistance? Circulation 2012; 125(9): 1081-3.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.090134] [PMID: 22302839]
[101]
Tsai K-H, Wang W-J, Lin C-W, et al. NADPH oxidase-derived superoxide anion-induced apoptosis is mediated via the JNK-dependent activation of NF-κB in cardiomyocytes exposed to high glucose. J Cell Physiol 2012; 227(4): 1347-57.
[http://dx.doi.org/10.1002/jcp.22847] [PMID: 21604272]
[102]
Pierce GL, Lesniewski LA, Lawson BR, Beske SD, Seals DR. Nuclear factor-κB activation contributes to vascular endothelial dysfunction via oxidative stress in overweight/obese middle-aged and older humans. Circulation 2009; 119(9): 1284-92.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.804294] [PMID: 19237660]
[103]
Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transduct Target Ther 2017; 2: 17023.
[http://dx.doi.org/10.1038/sigtrans.2017.23] [PMID: 29158945]
[104]
Li Y-X, Long D-L, Liu J, et al. Gestational diabetes mellitus in women increased the risk of neonatal infection via inflammation and autophagy in the placenta. Medicine (Baltimore) 2020; 99(40): e22152-2.
[http://dx.doi.org/10.1097/MD.0000000000022152] [PMID: 33019392]
[105]
Westgate JA, Lindsay RS, Beattie J, et al. Hyperinsulinemia in cord blood in mothers with type 2 diabetes and gestational diabetes mellitus in New Zealand. Diabetes Care 2006; 29(6): 1345-50.
[http://dx.doi.org/10.2337/dc05-1677] [PMID: 16732019]
[106]
Baldea I, Teacoe I, Olteanu DE, et al. Effects of different hypoxia degrees on endothelial cell cultures-Time course study. Mech Ageing Dev 2018; 172: 45-50.
[http://dx.doi.org/10.1016/j.mad.2017.11.003] [PMID: 29155057]
[107]
Yu J, Su X-L, Jia J, et al. The relationship between the expression of resistin and apoptosis factors in placenta and the pathogenesis of gestational diabetes mellitus. Matern Med 2020; 2: 80-3.
[http://dx.doi.org/10.1097/FM9.0000000000000040]
[108]
Holdsworth-Carson SJ, Lim R, Mitton A, et al. Peroxisome proliferator-activated receptors are altered in pathologies of the human placenta: Gestational diabetes mellitus, intrauterine growth restriction and preeclampsia. Placenta 2010; 31(3): 222-9.
[http://dx.doi.org/10.1016/j.placenta.2009.12.009] [PMID: 20045185]
[109]
Astapova O, Leff T. Adiponectin and PPARγ: Cooperative and interdependent actions of two key regulators of metabolism. Vitam Horm 2012; 90: 143-62.
[http://dx.doi.org/10.1016/B978-0-12-398313-8.00006-3] [PMID: 23017715]
[110]
Ouchi N, Kihara S, Arita Y, et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation 2000; 102(11): 1296-301.
[http://dx.doi.org/10.1161/01.CIR.102.11.1296] [PMID: 10982546]
[111]
Rieusset J, Andreelli F, Auboeuf D, et al. Insulin acutely regulates the expression of the peroxisome proliferator-activated receptor-gamma in human adipocytes. Diabetes 1999; 48(4): 699-705.
[http://dx.doi.org/10.2337/diabetes.48.4.699] [PMID: 10102684]
[112]
Mente A, Meyre D, Lanktree MB, et al. Causal relationship between adiponectin and metabolic traits: A Mendelian randomization study in a multiethnic population. PLoS One 2013; 8(6): e66808.
[http://dx.doi.org/10.1371/journal.pone.0066808] [PMID: 23826141]
[113]
Woollett LA. Review: Transport of maternal cholesterol to the fetal circulation. Placenta 2011; 32(Suppl. 2): S218-21.
[http://dx.doi.org/10.1016/j.placenta.2011.01.011] [PMID: 21300403]
[114]
Jaye M, Lynch KJ, Krawiec J, et al. A novel endothelial-derived lipase that modulates HDL metabolism. Nat Genet 1999; 21(4): 424-8.
[http://dx.doi.org/10.1038/7766] [PMID: 10192396]
[115]
Gauster M, Hiden U, van Poppel M, et al. Dysregulation of placental endothelial lipase in obese women with gestational diabetes mellitus. Diabetes 2011; 60(10): 2457-64.
[http://dx.doi.org/10.2337/db10-1434] [PMID: 21852675]
[116]
Gauster M, Rechberger G, Sovic A, et al. Endothelial lipase releases saturated and unsaturated fatty acids of high density lipoprotein phosphatidylcholine. J Lipid Res 2005; 46(7): 1517-25.
[http://dx.doi.org/10.1194/jlr.M500054-JLR200] [PMID: 15834125]
[117]
McCoy MG, Sun G-S, Marchadier D, Maugeais C, Glick JM, Rader DJ. Characterization of the lipolytic activity of endothelial lipase. J Lipid Res 2002; 43(6): 921-9.
[http://dx.doi.org/10.1016/S0022-2275(20)30466-1] [PMID: 12032167]
[118]
Wang H, Eckel RH. Lipoprotein lipase: From gene to obesity. Am J Physiol Endocrinol Metab 2009; 297(2): E271-88.
[http://dx.doi.org/10.1152/ajpendo.90920.2008] [PMID: 19318514]
[119]
Mead JR, Irvine SA, Ramji DP. Lipoprotein lipase: Structure, function, regulation, and role in disease. J Mol Med (Berl) 2002; 80(12): 753-69.
[http://dx.doi.org/10.1007/s00109-002-0384-9] [PMID: 12483461]
[120]
Semenkovich CF, Wims M, Noe L, Etienne J, Chan L. Insulin regulation of lipoprotein lipase activity in 3T3-L1 adipocytes is mediated at posttranscriptional and posttranslational levels. J Biol Chem 1989; 264(15): 9030-8.
[http://dx.doi.org/10.1016/S0021-9258(18)81898-1] [PMID: 2656693]
[121]
Li B, Fang J, He T, et al. Resistin up-regulates LPL expression through the PPARγ-dependent PI3K/AKT signaling pathway impacting lipid accumulation in RAW264.7 macrophages. Cytokine 2019; 119: 168-74.
[http://dx.doi.org/10.1016/j.cyto.2019.03.016] [PMID: 30925325]
[122]
Alvarez JJ, Montelongo A, Iglesias A, Lasunción MA, Herrera E. Longitudinal study on lipoprotein profile, high density lipoprotein subclass, and postheparin lipases during gestation in women. J Lipid Res 1996; 37(2): 299-308.
[http://dx.doi.org/10.1016/S0022-2275(20)37617-3] [PMID: 9026528]
[123]
Dubé E, Ethier-Chiasson M, Lafond J. Modulation of cholesterol transport by insulin-treated gestational diabetes mellitus in human full-term placenta. Biol Reprod 2013; 88(1): 16.
[http://dx.doi.org/10.1095/biolreprod.112.105619] [PMID: 23221398]
[124]
Magnusson-Olsson AL, Hamark B, Ericsson A, Wennergren M, Jansson T, Powell TL. Gestational and hormonal regulation of human placental lipoprotein lipase. J Lipid Res 2006; 47(11): 2551-61.
[http://dx.doi.org/10.1194/jlr.M600098-JLR200] [PMID: 16926441]
[125]
Houde AA, St-Pierre J, Hivert MF, et al. Placental lipoprotein lipase DNA methylation levels are associated with gestational diabetes mellitus and maternal and cord blood lipid profiles. J Dev Orig Health Dis 2014; 5(2): 132-41.
[http://dx.doi.org/10.1017/S2040174414000038] [PMID: 24847699]
[126]
Gagné-Ouellet V, Houde A-A, Guay S-P, et al. Placental lipoprotein lipase DNA methylation alterations are associated with gestational diabetes and body composition at 5 years of age. Epigenetics 2017; 12(8): 616-25.
[http://dx.doi.org/10.1080/15592294.2017.1322254] [PMID: 28486003]
[127]
Sharma D, Shastri S, Sharma P. Intrauterine Growth Restriction: Antenatal and Postnatal Aspects. Clin Med Insights Pediatr 2016; 10: 67-83.
[http://dx.doi.org/10.4137/CMPed.S40070] [PMID: 27441006]
[128]
Tabano S, Alvino G, Antonazzo P, Grati FR, Miozzo M, Cetin I. Placental LPL gene expression is increased in severe intrauterine growth-restricted pregnancies. Pediatr Res 2006; 59(2): 250-3.
[http://dx.doi.org/10.1203/01.pdr.0000199441.62045.a1] [PMID: 16439587]
[129]
Magnusson AL, Waterman IJ, Wennergren M, Jansson T, Powell TL. Triglyceride hydrolase activities and expression of fatty acid binding proteins in the human placenta in pregnancies complicated by intrauterine growth restriction and diabetes. J Clin Endocrinol Metab 2004; 89(9): 4607-14.
[http://dx.doi.org/10.1210/jc.2003-032234] [PMID: 15356070]
[130]
Ruiz-Palacios M, Prieto-Sánchez MT, Ruiz-Alcaraz AJ, et al. Insulin treatment may alter fatty acid carriers in placentas from gestational diabetes subjects. Int J Mol Sci 2017; 18(6): 1203.
[http://dx.doi.org/10.3390/ijms18061203] [PMID: 28587267]
[131]
Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28(7): 412-9.
[http://dx.doi.org/10.1007/BF00280883] [PMID: 3899825]
[132]
Radaelli T, Lepercq J, Varastehpour A, Basu S, Catalano PM, Hauguel-De Mouzon S. Differential regulation of genes for fetoplacental lipid pathways in pregnancy with gestational and type 1 diabetes mellitus. Am J Obstet Gynecol 2009; 201(2): 209.e1-209.e10.
[http://dx.doi.org/10.1016/j.ajog.2009.04.019] [PMID: 19560108]
[133]
Nieto-Díaz A, Villar J, Matorras-Weinig R, Valenzuela-Ruìz P. Intrauterine growth retardation at term: Association between anthropometric and endocrine parameters. Acta Obstet Gynecol Scand 1996; 75(2): 127-31.
[http://dx.doi.org/10.3109/00016349609033303] [PMID: 8604597]
[134]
Braun JE, Severson DL. Regulation of the synthesis, processing and translocation of lipoprotein lipase. Biochem J 1992; 287(Pt 2): 337-47.
[http://dx.doi.org/10.1042/bj2870337] [PMID: 1445192]
[135]
Semb H, Olivecrona T. The relation between glycosylation and activity of guinea pig lipoprotein lipase. J Biol Chem 1989; 264(7): 4195-200.
[http://dx.doi.org/10.1016/S0021-9258(19)84982-7] [PMID: 2521859]
[136]
Aronson D. Hyperglycemia and the pathobiology of diabetic complications. Adv Cardiol 2008; 45: 1-16.
[http://dx.doi.org/10.1159/000115118] [PMID: 18230953]
[137]
Kratky D, Zimmermann R, Wagner EM, et al. Endothelial lipase provides an alternative pathway for FFA uptake in lipoprotein lipase-deficient mouse adipose tissue. J Clin Invest 2005; 115(1): 161-7.
[http://dx.doi.org/10.1172/JCI200515972] [PMID: 15630456]
[138]
Griffon N, Jin W, Petty TJ, et al. Identification of the active form of endothelial lipase, a homodimer in a head-to-tail conformation. J Biol Chem 2009; 284(35): 23322-30.
[http://dx.doi.org/10.1074/jbc.M109.037002] [PMID: 19567873]
[139]
Jin W, Millar JS, Broedl U, Glick JM, Rader DJ. Inhibition of endothelial lipase causes increased HDL cholesterol levels in vivo. J Clin Invest 2003; 111(3): 357-62.
[http://dx.doi.org/10.1172/JCI16146] [PMID: 12569161]
[140]
Barter PJ, Nicholls S, Rye K-A, Anantharamaiah GM, Navab M, Fogelman AM. Antiinflammatory properties of HDL. Circ Res 2004; 95(8): 764-72.
[http://dx.doi.org/10.1161/01.RES.0000146094.59640.13] [PMID: 15486323]
[141]
Zhang J, Chi H, Xiao H, et al. Interleukin 6 (IL-6) and Tumor Necrosis Factor α (TNF-α) Single Nucleotide Polymorphisms (SNPs), Inflammation and Metabolism in Gestational Diabetes Mellitus in Inner Mongolia. Med Sci Monit 2017; 23: 4149-57.
[http://dx.doi.org/10.12659/MSM.903565] [PMID: 28846666]
[142]
Segura MT, Demmelmair H, Krauss-Etschmann S, et al. Maternal BMI and gestational diabetes alter placental lipid transporters and fatty acid composition. Placenta 2017; 57: 144-51.
[http://dx.doi.org/10.1016/j.placenta.2017.07.001] [PMID: 28864004]
[143]
Sherwani SI, Khan HA, Ekhzaimy A, Masood A, Sakharkar MK. Significance of HbA1c Test in Diagnosis and Prognosis of Diabetic Patients. Biomark Insights 2016; 11: 95-104.
[http://dx.doi.org/10.4137/BMI.S38440] [PMID: 27398023]
[144]
Badellino KO, Wolfe ML, Reilly MP, Rader DJ. Endothelial lipase concentrations are increased in metabolic syndrome and associated with coronary atherosclerosis. PLoS Med 2006; 3(2): e22-2.
[http://dx.doi.org/10.1371/journal.pmed.0030022] [PMID: 16354105]
[145]
Kamp F, Hamilton JA. How fatty acids of different chain length enter and leave cells by free diffusion. Prostaglandins Leukot Essent Fatty Acids 2006; 75(3): 149-59.
[http://dx.doi.org/10.1016/j.plefa.2006.05.003] [PMID: 16829065]
[146]
Glatz JFC. Lipids and lipid binding proteins: A perfect match. Prostaglandins Leukot Essent Fatty Acids 2015; 93: 45-9.
[http://dx.doi.org/10.1016/j.plefa.2014.07.011] [PMID: 25154384]
[147]
Perazzolo S, Hirschmugl B, Wadsack C, Desoye G, Lewis RM, Sengers BG. The influence of placental metabolism on fatty acid transfer to the fetus. J Lipid Res 2017; 58(2): 443-54.
[http://dx.doi.org/10.1194/jlr.P072355] [PMID: 27913585]
[148]
Schaiff WT, Bildirici I, Cheong M, Chern PL, Nelson DM, Sadovsky Y. Peroxisome proliferator-activated receptor-γ and retinoid X receptor signaling regulate fatty acid uptake by primary human placental trophoblasts. J Clin Endocrinol Metab 2005; 90(7): 4267-75.
[http://dx.doi.org/10.1210/jc.2004-2265] [PMID: 15827101]
[149]
Hulme CH, Nicolaou A, Murphy SA, Heazell AEP, Myers JE, Westwood M. The effect of high glucose on lipid metabolism in the human placenta. Sci Rep 2019; 9(1): 14114.
[http://dx.doi.org/10.1038/s41598-019-50626-x] [PMID: 31575970]
[150]
Lager S, Ramirez VI, Gaccioli F, Jang B, Jansson T, Powell TL. Protein expression of fatty acid transporter 2 is polarized to the trophoblast basal plasma membrane and increased in placentas from overweight/obese women. Placenta 2016; 40: 60-6.
[http://dx.doi.org/10.1016/j.placenta.2016.02.010] [PMID: 27016784]
[151]
Sweeney G, Somwar R, Ramlal T, Volchuk A, Ueyama A, Klip A. An inhibitor of p38 mitogen-activated protein kinase prevents insulin-stimulated glucose transport but not glucose transporter translocation in 3T3-L1 adipocytes and L6 myotubes. J Biol Chem 1999; 274(15): 10071-8.
[http://dx.doi.org/10.1074/jbc.274.15.10071] [PMID: 10187787]
[152]
Wang S, Dougherty EJ, Danner RL. PPARγ signaling and emerging opportunities for improved therapeutics. Pharmacol Res 2016; 111: 76-85.
[http://dx.doi.org/10.1016/j.phrs.2016.02.028] [PMID: 27268145]
[153]
Gao Y, She R, Sha W. Gestational diabetes mellitus is associated with decreased adipose and placenta peroxisome proliferator-activator receptor γ expression in a Chinese population. Oncotarget 2017; 8(69): 113928-37.
[http://dx.doi.org/10.18632/oncotarget.23043] [PMID: 29371958]
[154]
Calabuig-Navarro V, Haghiac M, Minium J, et al. Effect of Maternal Obesity on Placental Lipid Metabolism. Endocrinology 2017; 158(8): 2543-55.
[http://dx.doi.org/10.1210/en.2017-00152] [PMID: 28541534]
[155]
Zanotti G. Muscle fatty acid-binding protein. Biochim Biophys Acta 1999; 1441(2-3): 94-105.
[http://dx.doi.org/10.1016/S1388-1981(99)00163-8] [PMID: 10570238]
[156]
Furuhashi M, Hotamisligil GS. Fatty acid-binding proteins: Role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov 2008; 7(6): 489-503.
[http://dx.doi.org/10.1038/nrd2589] [PMID: 18511927]
[157]
Veerkamp JH, van Moerkerk HT. Fatty acid-binding protein and its relation to fatty acid oxidation. Mol Cell Biochem 1993; 123(1-2): 101-6.
[http://dx.doi.org/10.1007/BF01076480] [PMID: 8232250]
[158]
Lamas Bervejillo M, Bonanata J, Franchini GR, et al. A FABP4-PPARγ signaling axis regulates human monocyte responses to electrophilic fatty acid nitroalkenes. Redox Biol 2020; 29: 101376.
[http://dx.doi.org/10.1016/j.redox.2019.101376] [PMID: 31926616]
[159]
Biron-Shental T, Schaiff WT, Ratajczak CK, Bildirici I, Nelson DM, Sadovsky Y. Hypoxia regulates the expression of fatty acid-binding proteins in primary term human trophoblasts. Am J Obstet Gynecol 2007; 197(5): 516.e1-6.
[http://dx.doi.org/10.1016/j.ajog.2007.03.066] [PMID: 17826730]
[160]
Scifres CM, Chen B, Nelson DM, Sadovsky Y. Fatty acid binding protein 4 regulates intracellular lipid accumulation in human trophoblasts. J Clin Endocrinol Metab 2011; 96(7): E1083-91.
[http://dx.doi.org/10.1210/jc.2010-2084] [PMID: 21525163]
[161]
Kimber-Trojnar Ż, Patro-Małysza J, Trojnar M, et al. Fatty Acid-Binding Protein 4-An “Inauspicious” Adipokine-In Serum and Urine of Post-Partum Women with Excessive Gestational Weight Gain and Gestational Diabetes Mellitus. J Clin Med 2018; 7(12): 505.
[http://dx.doi.org/10.3390/jcm7120505] [PMID: 30513800]
[162]
Li L, Lee SJ, Kook SY, Ahn TG, Lee JY, Hwang JY. Serum from pregnant women with gestational diabetes mellitus increases the expression of FABP4 mRNA in primary subcutaneous human pre-adipocytes. Obstet Gynecol Sci 2017; 60(3): 274-82.
[http://dx.doi.org/10.5468/ogs.2017.60.3.274] [PMID: 28534013]
[163]
Nakamura R, Okura T, Fujioka Y, et al. Serum fatty acid-binding protein 4 (FABP4) concentration is associated with insulin resistance in peripheral tissues, A clinical study. PLoS One 2017; 12(6): e0179737-.
[http://dx.doi.org/10.1371/journal.pone.0179737] [PMID: 28654680]
[164]
Prentice KJ, Saksi J, Hotamisligil GS. Adipokine FABP4 integrates energy stores and counterregulatory metabolic responses. J Lipid Res 2019; 60(4): 734-40.
[http://dx.doi.org/10.1194/jlr.S091793] [PMID: 30705117]
[165]
Trojnar M, Patro-Małysza J, Kimber-Trojnar Ż, Leszczyńska-Gorzelak B, Mosiewicz J. Associations between Fatty Acid-Binding Protein 4⁻A Proinflammatory Adipokine and Insulin Resistance, Gestational and Type 2 Diabetes Mellitus. Cells 2019; 8(3): 227.
[http://dx.doi.org/10.3390/cells8030227] [PMID: 30857223]
[166]
Wu LE, Samocha-Bonet D, Whitworth PT, et al. Identification of fatty acid binding protein 4 as an adipokine that regulates insulin secretion during obesity. Mol Metab 2014; 3(4): 465-73.
[http://dx.doi.org/10.1016/j.molmet.2014.02.005] [PMID: 24944906]
[167]
Li Y, Chen WL, Liu L, Gu H. [Expression of peroxisome proliferator-activated receptors, fatty acid binding protein-4 in placenta and their correlations with the prognosis of pre-eclampsia]. Zhonghua Fu Chan Ke Za Zhi 2017; 52(7): 443-8.
[PMID: 28797150]
[168]
Li YY, Xiao R, Li CP, Huangfu J, Mao JF. Increased plasma levels of FABP4 and PTEN is associated with more severe insulin resistance in women with gestational diabetes mellitus. Med Sci Monit 2015; 21: 426-31.
[http://dx.doi.org/10.12659/MSM.892431] [PMID: 25659997]
[169]
Patro-Małysza J, Trojnar M, Kimber-Trojnar Ż, et al. FABP4 in Gestational Diabetes-Association between Mothers and Offspring. J Clin Med 2019; 8(3): 285.
[http://dx.doi.org/10.3390/jcm8030285] [PMID: 30818771]
[170]
Pryor WA, Houk KN, Foote CS, et al. Free radical biology and medicine: It’s a gas, man! Am J Physiol Regul Integr Comp Physiol 2006; 291(3): R491-511.
[http://dx.doi.org/10.1152/ajpregu.00614.2005] [PMID: 16627692]
[171]
Kansanen E, Bonacci G, Schopfer FJ, et al. Electrophilic nitro-fatty acids activate NRF2 by a KEAP1 cysteine 151-independent mechanism. J Biol Chem 2011; 286(16): 14019-27.
[http://dx.doi.org/10.1074/jbc.M110.190710] [PMID: 21357422]
[172]
Hwang J, Lee KE, Lim J-Y, Park SI. Nitrated fatty acids prevent TNFalpha-stimulated inflammatory and atherogenic responses in endothelial cells. Biochem Biophys Res Commun 2009; 387(4): 633-40.
[http://dx.doi.org/10.1016/j.bbrc.2009.07.030] [PMID: 19607809]
[173]
Schaefer-Graf UM, Graf K, Kulbacka I, et al. Maternal lipids as strong determinants of fetal environment and growth in pregnancies with gestational diabetes mellitus. Diabetes Care 2008; 31(9): 1858-63.
[http://dx.doi.org/10.2337/dc08-0039] [PMID: 18606978]
[174]
Herrera E, Ortega-Senovilla H. Disturbances in lipid metabolism in diabetic pregnancy - Are these the cause of the problem? Best Pract Res Clin Endocrinol Metab 2010; 24(4): 515-25.
[http://dx.doi.org/10.1016/j.beem.2010.05.006] [PMID: 20832733]
[175]
Herrera E. Lipid metabolism in pregnancy and its consequences in the fetus and newborn. Endocrine 2002; 19(1): 43-55.
[http://dx.doi.org/10.1385/ENDO:19:1:43] [PMID: 12583601]
[176]
Escobar JC, Patel SS, Beshay VE, Suzuki T, Carr BR. The human placenta expresses CYP17 and generates androgens de novo. J Clin Endocrinol Metab 2011; 96(5): 1385-92.
[http://dx.doi.org/10.1210/jc.2010-2504] [PMID: 21307141]
[177]
Desoye G, Schweditsch MO, Pfeiffer KP, Zechner R, Kostner GM. Correlation of hormones with lipid and lipoprotein levels during normal pregnancy and postpartum. J Clin Endocrinol Metab 1987; 64(4): 704-12.
[http://dx.doi.org/10.1210/jcem-64-4-704] [PMID: 3546352]
[178]
Abbassi-Ghanavati M, Greer LG, Cunningham FG. Pregnancy and laboratory studies: A reference table for clinicians. Obstet Gynecol 2009; 114(6): 1326-31.
[http://dx.doi.org/10.1097/AOG.0b013e3181c2bde8] [PMID: 19935037]
[179]
Iglesias A, Montelongo A, Herrera E, Lasunción MA. Changes in cholesteryl ester transfer protein activity during normal gestation and postpartum. Clin Biochem 1994; 27(1): 63-8.
[http://dx.doi.org/10.1016/0009-9120(94)90013-2] [PMID: 8200117]
[180]
Silliman K, Tall AR, Kretchmer N, Forte TM. Unusual high-density lipoprotein subclass distribution during late pregnancy. Metabolism 1993; 42(12): 1592-9.
[http://dx.doi.org/10.1016/0026-0495(93)90156-I] [PMID: 8246775]
[181]
Sattar N, Bendomir A, Berry C, Shepherd J, Greer IA, Packard CJ. Lipoprotein subfraction concentrations in preeclampsia: Pathogenic parallels to atherosclerosis. Obstet Gynecol 1997; 89(3): 403-8.
[http://dx.doi.org/10.1016/S0029-7844(96)00514-5] [PMID: 9052594]
[182]
Stocker R, Keaney JFJ Jr. Role of oxidative modifications in atherosclerosis. Physiol Rev 2004; 84(4): 1381-478.
[http://dx.doi.org/10.1152/physrev.00047.2003] [PMID: 15383655]
[183]
Montes A, Walden CE, Knopp RH, Cheung M, Chapman MB, Albers JJ. Physiologic and supraphysiologic increases in lipoprotein lipids and apoproteins in late pregnancy and postpartum. Possible markers for the diagnosis of “prelipemia”. Arteriosclerosis 1984; 4(4): 407-17.
[http://dx.doi.org/10.1161/01.ATV.4.4.407] [PMID: 6431954]
[184]
Palinski W, Nicolaides E, Liguori A, Napoli C. Influence of maternal dysmetabolic conditions during pregnancy on cardiovascular disease. J Cardiovasc Transl Res 2009; 2(3): 277-85.
[http://dx.doi.org/10.1007/s12265-009-9108-7] [PMID: 19655024]
[185]
Reilly FD, Russell PT. Neurohistochemical evidence supporting an absence of adrenergic and cholinergic innervation in the human placenta and umbilical cord. Anat Rec 1977; 188(3): 277-86.
[http://dx.doi.org/10.1002/ar.1091880302] [PMID: 900518]
[186]
Saarelainen H, Laitinen T, Raitakari OT, et al. Pregnancy-related hyperlipidemia and endothelial function in healthy women. Circ J 2006; 70(6): 768-72.
[http://dx.doi.org/10.1253/circj.70.768] [PMID: 16723801]
[187]
Fuenzalida B, Sobrevia B, Cantin C, et al. Maternal supraphysiological hypercholesterolemia associates with endothelial dysfunction of the placental microvasculature. Sci Rep 2018; 8(1): 7690.
[http://dx.doi.org/10.1038/s41598-018-25985-6] [PMID: 29769708]
[188]
Liguori A, D’Armiento FP, Palagiano A, et al. Effect of gestational hypercholesterolaemia on omental vasoreactivity, placental enzyme activity and transplacental passage of normal and oxidised fatty acids. BJOG 2007; 114(12): 1547-56.
[http://dx.doi.org/10.1111/j.1471-0528.2007.01510.x] [PMID: 17903226]
[189]
Contreras-Duarte S, Carvajal L, Garchitorena MJ, et al. Gestational Diabetes Mellitus Treatment Schemes Modify Maternal Plasma Cholesterol Levels Dependent to Women´s Weight: Possible Impact on Feto-Placental Vascular Function. Nutrients 2020; 12(2): 506.
[http://dx.doi.org/10.3390/nu12020506] [PMID: 32079298]
[190]
Wild R, Weedin EA, Wilson D. Dyslipidemia in pregnancy. Cardiol Clin 2015; 33(2): 209-15.
[http://dx.doi.org/10.1016/j.ccl.2015.01.002] [PMID: 25939294]
[191]
Cantin C, Fuenzalida B, Leiva A. Maternal hypercholesterolemia during pregnancy: Potential modulation of cholesterol transport through the human placenta and lipoprotein profile in maternal and neonatal circulation. Placenta 2020; 94: 26-33.
[http://dx.doi.org/10.1016/j.placenta.2020.03.007] [PMID: 32421531]
[192]
Lindegaard MLS, Olivecrona G, Christoffersen C, et al. Endothelial and lipoprotein lipases in human and mouse placenta. J Lipid Res 2005; 46(11): 2339-46.
[http://dx.doi.org/10.1194/jlr.M500277-JLR200] [PMID: 16150822]
[193]
Go G-W, Mani A. Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Yale J Biol Med 2012; 85(1): 19-28.
[PMID: 22461740]
[194]
Baardman ME, Kerstjens-Frederikse WS, Berger RMF, Bakker MK, Hofstra RMW, Plösch T. The role of maternal-fetal cholesterol transport in early fetal life: Current insights. Biol Reprod 2013; 88(1): 24.
[http://dx.doi.org/10.1095/biolreprod.112.102442] [PMID: 23153566]
[195]
Wittmaack FM, Gåfvels ME, Bronner M, et al. Localization and regulation of the human very low density lipoprotein/apolipoprotein-E receptor: Trophoblast expression predicts a role for the receptor in placental lipid transport. Endocrinology 1995; 136(1): 340-8.
[http://dx.doi.org/10.1210/endo.136.1.7828550] [PMID: 7828550]
[196]
Liu Z, Li H, Li Y, et al. Up-regulation of VLDL receptor expression and its signaling pathway induced by VLDL and beta-VLDL. J Huazhong Univ Sci Technolog Med Sci 2009; 29(1): 1-7.
[http://dx.doi.org/10.1007/s11596-009-0101-9] [PMID: 19224153]
[197]
Degrace P, Moindrot B, Mohamed I, et al. Upregulation of liver VLDL receptor and FAT/CD36 expression in LDLR-/- apoB100/100 mice fed trans-10,cis-12 conjugated linoleic acid. J Lipid Res 2006; 47(12): 2647-55.
[http://dx.doi.org/10.1194/jlr.M600140-JLR200] [PMID: 16957181]
[198]
Kamper M, Mittermayer F, Cabuk R, Gelles K, Ellinger I, Hermann M. Estrogen-enhanced apical and basolateral secretion of apolipoprotein B-100 by polarized trophoblast-derived BeWo cells. Biochimie 2017; 138: 116-23.
[http://dx.doi.org/10.1016/j.biochi.2017.05.006] [PMID: 28487135]
[199]
Furuhashi M, Seo H, Mizutani S, Narita O, Tomoda Y, Matsui N. Expression of low density lipoprotein receptor gene in human placenta during pregnancy. Mol Endocrinol 1989; 3(8): 1252-6.
[http://dx.doi.org/10.1210/mend-3-8-1252] [PMID: 2571080]
[200]
Schmid KE, Davidson WS, Myatt L, Woollett LA. Transport of cholesterol across a BeWo cell monolayer: Implications for net transport of sterol from maternal to fetal circulation. J Lipid Res 2003; 44(10): 1909-18.
[http://dx.doi.org/10.1194/jlr.M300126-JLR200] [PMID: 12897187]
[201]
Wadsack C, Hammer A, Levak-Frank S, et al. Selective cholesteryl ester uptake from high density lipoprotein by human first trimester and term villous trophoblast cells. Placenta 2003; 24(2-3): 131-43.
[http://dx.doi.org/10.1053/plac.2002.0912] [PMID: 12566239]
[202]
Fuenzalida B, Cantin C, Kallol S, et al. Cholesterol uptake and efflux are impaired in human trophoblast cells from pregnancies with maternal supraphysiological hypercholesterolemia. Sci Rep 2020; 10(1): 5264.
[http://dx.doi.org/10.1038/s41598-020-61629-4] [PMID: 32210256]
[203]
Stefulj J, Panzenboeck U, Becker T, et al. Human endothelial cells of the placental barrier efficiently deliver cholesterol to the fetal circulation via ABCA1 and ABCG1. Circ Res 2009; 104(5): 600-8.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.185066] [PMID: 19168441]
[204]
Brown MS, Goldstein JL. The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997; 89(3): 331-40.
[http://dx.doi.org/10.1016/S0092-8674(00)80213-5] [PMID: 9150132]
[205]
Sato R. Sterol metabolism and SREBP activation. Arch Biochem Biophys 2010; 501(2): 177-81.
[http://dx.doi.org/10.1016/j.abb.2010.06.004] [PMID: 20541520]
[206]
Horton JD, Goldstein JL, Brown MS. SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002; 109(9): 1125-31.
[http://dx.doi.org/10.1172/JCI0215593] [PMID: 11994399]
[207]
Cao G, Garcia CK, Wyne KL, Schultz RA, Parker KL, Hobbs HH. Structure and localization of the human gene encoding SR-BI/CLA-1. Evidence for transcriptional control by steroidogenic factor 1. J Biol Chem 1997; 272(52): 33068-76.
[http://dx.doi.org/10.1074/jbc.272.52.33068] [PMID: 9407090]
[208]
Shen W-J, Asthana S, Kraemer FB, Azhar S. Scavenger receptor B type 1: Expression, molecular regulation, and cholesterol transport function. J Lipid Res 2018; 59(7): 1114-31.
[http://dx.doi.org/10.1194/jlr.R083121] [PMID: 29720388]
[209]
Goldstein JL, Debose-boyd RA, Brown MS. Review Protein Sensors for Membrane Sterols. Cell 2006; 124: 35-46.
[http://dx.doi.org/10.1016/j.cell.2005.12.022] [PMID: 16413480]
[210]
Miserez AR, Muller PY, Barella L, et al. Sterol-regulatory element-binding protein (SREBP)-2 contributes to polygenic hypercholesterolaemia. Atherosclerosis 2002; 164(1): 15-26.
[http://dx.doi.org/10.1016/S0021-9150(01)00762-6] [PMID: 12119189]
[211]
Brown MS, Goldstein JL. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci USA 1999; 96(20): 11041-8.
[http://dx.doi.org/10.1073/pnas.96.20.11041] [PMID: 10500120]
[212]
Zhang R, Dong S, Ma WW, et al. Modulation of cholesterol transport by maternal hypercholesterolemia in human full-term placenta. PLoS One 2017; 12(2): e0171934.
[http://dx.doi.org/10.1371/journal.pone.0171934] [PMID: 28199412]
[213]
Matsuzaka T, Shimano H. Insulin-dependent and -independent regulation of sterol regulatory element-binding protein-1c. J Diabetes Investig 2013; 4(5): 411-2.
[http://dx.doi.org/10.1111/jdi.12098] [PMID: 24843688]
[214]
Sakakura Y, Shimano H, Sone H, et al. Sterol regulatory element-binding proteins induce an entire pathway of cholesterol synthesis. Biochem Biophys Res Commun 2001; 286(1): 176-83.
[http://dx.doi.org/10.1006/bbrc.2001.5375] [PMID: 11485325]
[215]
Aye ILMH, Waddell BJ, Mark PJ, Keelan JA. Placental ABCA1 and ABCG1 transporters efflux cholesterol and protect trophoblasts from oxysterol induced toxicity. Biochim Biophys Acta 2010; 1801(9): 1013-24.
[http://dx.doi.org/10.1016/j.bbalip.2010.05.015] [PMID: 20570635]
[216]
Ramakrishnan G, Arjuman A, Suneja S, Das C, Chandra NC. The association between insulin and low-density lipoprotein receptors. Diab Vasc Dis Res 2012; 9(3): 196-204.
[http://dx.doi.org/10.1177/1479164111430243] [PMID: 22278734]
[217]
Costet P, Luo Y, Wang N, Tall AR. Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J Biol Chem 2000; 275(36): 28240-5.
[http://dx.doi.org/10.1074/jbc.M003337200] [PMID: 10858438]
[218]
Sun Y, Kopp S, Strutz J, et al. Gestational diabetes mellitus modulates cholesterol homeostasis in human fetoplacental endothelium. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863(9): 968-79.
[http://dx.doi.org/10.1016/j.bbalip.2018.05.005] [PMID: 29778664]
[219]
Sabol SL, Brewer HBJ Jr, Santamarina-Fojo S. The human ABCG1 gene: Identification of LXR response elements that modulate expression in macrophages and liver. J Lipid Res 2005; 46(10): 2151-67.
[http://dx.doi.org/10.1194/jlr.M500080-JLR200] [PMID: 16024918]
[220]
Kallol S, Huang X, Müller S, Ontsouka CE, Albrecht C. Novel Insights into Concepts and Directionality of Maternal⁻Fetal Cholesterol Transfer across the Human Placenta. Int J Mol Sci 2018; 19(8): 2334.
[http://dx.doi.org/10.3390/ijms19082334] [PMID: 30096856]
[221]
Larkin JC, Sears SB, Sadovsky Y. The influence of ligand-activated LXR on primary human trophoblasts. Placenta 2014; 35(11): 919-24.
[http://dx.doi.org/10.1016/j.placenta.2014.09.002] [PMID: 25255963]
[222]
Vincent V, Thakkar H, Aggarwal S, Mridha AR, Ramakrishnan L, Singh A. ATP-binding cassette transporter A1 (ABCA1) expression in adipose tissue and its modulation with insulin resistance in obesity. Diabetes Metab Syndr Obes 2019; 12: 275-84.
[http://dx.doi.org/10.2147/DMSO.S186565] [PMID: 30881070]
[223]
Ogata M, Tsujita M, Hossain MA, et al. On the mechanism for PPAR agonists to enhance ABCA1 gene expression. Atherosclerosis 2009; 205(2): 413-9.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.01.008] [PMID: 19201410]
[224]
Zarrouk A, Vejux A, Mackrill J, et al. Involvement of oxysterols in age-related diseases and ageing processes. Ageing Res Rev 2014; 18: 148-62.
[http://dx.doi.org/10.1016/j.arr.2014.09.006] [PMID: 25305550]
[225]
Zhao Y, Vanhoutte PM, Leung SWS. Vascular nitric oxide: Beyond eNOS. J Pharmacol Sci 2015; 129(2): 83-94.
[http://dx.doi.org/10.1016/j.jphs.2015.09.002] [PMID: 26499181]
[226]
Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: Testing and clinical relevance. Circulation 2007; 115(10): 1285-95.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.652859] [PMID: 17353456]
[227]
Hampl V, Bíbová J, Stranák Z, et al. Hypoxic fetoplacental vasoconstriction in humans is mediated by potassium channel inhibition. Am J Physiol Heart Circ Physiol 2002; 283(6): H2440-9.
[http://dx.doi.org/10.1152/ajpheart.01033.2001] [PMID: 12388256]
[228]
Gertler JP, Ocasio VH. Endothelin production by hypoxic human endothelium. J Vasc Surg 1993; 18(2): 178-82.
[http://dx.doi.org/10.1016/0741-5214(93)90597-F] [PMID: 8350426]
[229]
Dieber-Rotheneder M, Beganovic S, Desoye G, Lang U, Cervar-Zivkovic M. Complex expression changes of the placental endothelin system in early and late onset preeclampsia, fetal growth restriction and gestational diabetes. Life Sci 2012; 91(13-14): 710-5.
[http://dx.doi.org/10.1016/j.lfs.2012.04.040] [PMID: 22580289]
[230]
Farrah TE, Anand A, Gallacher PJ, et al. Endothelin Receptor Antagonism Improves Lipid Profiles and Lowers PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) in Patients With Chronic Kidney Disease. Hypertension 2019; 74(2): 323-30.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.12919] [PMID: 31177906]
[231]
Seligman BG, Biolo A, Polanczyk CA, Gross JL, Clausell N. Increased plasma levels of endothelin 1 and von Willebrand factor in patients with type 2 diabetes and dyslipidemia. Diabetes Care 2000; 23(9): 1395-400.
[http://dx.doi.org/10.2337/diacare.23.9.1395] [PMID: 10977040]
[232]
Kalenga MK, Thomas K, de Gasparo M, De Hertogh R. Determination of renin, angiotensin converting enzyme and angiotensin II levels in human placenta, chorion and amnion from women with pregnancy induced hypertension. Clin Endocrinol (Oxf) 1996; 44(4): 429-33.
[http://dx.doi.org/10.1046/j.1365-2265.1996.703525.x] [PMID: 8706309]
[233]
Bonakdaran S, Azami G, Tara F, Poorali L. Soluble (Pro) Renin Receptor is a Predictor of Gestational Diabetes Mellitus. Curr Diabetes Rev 2017; 13(6): 555-9.
[http://dx.doi.org/10.2174/1573399812666160919100253] [PMID: 27654965]
[234]
Chen Y-P, Li J, Wang Z-N, et al. Renin angiotensin aldosterone system and glycemia in pregnancy. Clin Lab 2012; 58(5-6): 527-33.
[PMID: 22783584]
[235]
Zhang F, Xiao X, Liu D, Dong X, Sun J, Zhang X. Increased cord blood angiotensin II concentration is associated with decreased insulin sensitivity in the offspring of mothers with gestational diabetes mellitus. J Perinatol 2013; 33(1): 9-14.
[http://dx.doi.org/10.1038/jp.2012.40] [PMID: 22499083]
[236]
Brasier AR, Recinos A III, Eledrisi MS. Vascular inflammation and the renin-angiotensin system. Arterioscler Thromb Vasc Biol 2002; 22(8): 1257-66.
[http://dx.doi.org/10.1161/01.ATV.0000021412.56621.A2] [PMID: 12171785]
[237]
Stanhewicz AE, Alexander LM. Local angiotensin-(1-7) administration improves microvascular endothelial function in women who have had preeclampsia. Am J Physiol Regul Integr Comp Physiol 2020; 318(1): R148-55.
[http://dx.doi.org/10.1152/ajpregu.00221.2019] [PMID: 31577152]
[238]
Bian F, Cui J, Zheng T, Jin S. Reactive oxygen species mediate angiotensin II-induced transcytosis of low-density lipoprotein across endothelial cells. Int J Mol Med 2017; 39(3): 629-35.
[http://dx.doi.org/10.3892/ijmm.2017.2887] [PMID: 28204818]
[239]
Halushka PV. Thromboxane A(2) receptors: Where have you gone? Prostaglandins Other Lipid Mediat 2000; 60(4-6): 175-89.
[http://dx.doi.org/10.1016/S0090-6980(99)00062-3] [PMID: 10751648]
[240]
Daray FM, Minvielle AI, Puppo S, Rothlin RP. Pharmacological characterization of prostanoid receptors mediating vasoconstriction in human umbilical vein. Br J Pharmacol 2003; 139(8): 1409-16.
[http://dx.doi.org/10.1038/sj.bjp.0705375] [PMID: 12922927]
[241]
Voynow JA, Kummarapurugu A. Isoprostanes and asthma. Biochim Biophys Acta 2011; 1810(11): 1091-5.
[http://dx.doi.org/10.1016/j.bbagen.2011.04.016] [PMID: 21596100]
[242]
Daray FM, Minvielle AI, Puppo S, Rothlin RP. Vasoconstrictor effects of 8-iso-prostaglandin E2 and 8-iso-prostaglandin F(2alpha) on human umbilical vein. Eur J Pharmacol 2004; 499(1-2): 189-95.
[http://dx.doi.org/10.1016/j.ejphar.2004.07.100] [PMID: 15363966]
[243]
Bowen RS, Zhang Y, Gu Y, Lewis DF, Wang Y. Increased phospholipase A2 and thromboxane but not prostacyclin production by placental trophoblast cells from normal and preeclamptic pregnancies cultured under hypoxia condition. Placenta 2005; 26(5): 402-9.
[http://dx.doi.org/10.1016/j.placenta.2004.07.007] [PMID: 15850645]
[244]
Coughlan MT, Vervaart PP, Permezel M, Georgiou HM, Rice GE. Altered placental oxidative stress status in gestational diabetes mellitus. Placenta 2004; 25(1): 78-84.
[http://dx.doi.org/10.1016/S0143-4004(03)00183-8] [PMID: 15013642]
[245]
Razak AA, Leach L, Ralevic V. Impaired vasocontractile responses to adenosine in chorionic vessels of human term placenta from pregnant women with pre-existing and gestational diabetes. Diab Vasc Dis Res 2018; 15(6): 528-40.
[http://dx.doi.org/10.1177/1479164118790904] [PMID: 30130976]
[246]
Stubbs CD, Smith AD. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophys Acta 1984; 779(1): 89-137.
[http://dx.doi.org/10.1016/0304-4157(84)90005-4] [PMID: 6229284]
[247]
Catalá A. An overview of lipid peroxidation with emphasis in outer segments of photoreceptors and the chemiluminescence assay. Int J Biochem Cell Biol 2006; 38(9): 1482-95.
[http://dx.doi.org/10.1016/j.biocel.2006.02.010] [PMID: 16621670]
[248]
Ozkor MA, Quyyumi AA. Endothelium-derived hyperpolarizing factor and vascular function. Cardiol Res Pract 2011; 2011: 156146.
[http://dx.doi.org/10.4061/2011/156146] [PMID: 21876822]
[249]
Luksha L, Luksha N, Kublickas M, Nisell H, Kublickiene K. Diverse mechanisms of endothelium-derived hyperpolarizing factor-mediated dilatation in small myometrial arteries in normal human pregnancy and preeclampsia. Biol Reprod 2010; 83(5): 728-35.
[http://dx.doi.org/10.1095/biolreprod.110.084426] [PMID: 20610807]
[250]
Ozkor MA, Hayek SS, Rahman AM, et al. Contribution of endothelium-derived hyperpolarizing factor to exercise-induced vasodilation in health and hypercholesterolemia. Vasc Med 2015; 20(1): 14-22.
[http://dx.doi.org/10.1177/1358863X14565374] [PMID: 25648989]
[251]
Mokhtar SS, Vanhoutte PM, Leung SWS, et al. Endothelium dependent hyperpolarization-type relaxation compensates for attenuated nitric oxide-mediated responses in subcutaneous arteries of diabetic patients. Nitric Oxide 2016; 53: 35-44.
[http://dx.doi.org/10.1016/j.niox.2015.12.007] [PMID: 26768833]
[252]
Gryglewski RJ. Prostacyclin among prostanoids. Pharmacol Rep 2008; 60(1): 3-11.
[PMID: 18276980]
[253]
Smith WL, Garavito RM, DeWitt DL. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J Biol Chem 1996; 271(52): 33157-60.
[http://dx.doi.org/10.1074/jbc.271.52.33157] [PMID: 8969167]
[254]
Vane J, Corin RE. Prostacyclin: A vascular mediator. Eur J Vasc Endovasc Surg 2003; 26(6): 571-8.
[http://dx.doi.org/10.1016/S1078-5884(03)00385-X] [PMID: 14603414]
[255]
Majed BH, Khalil RA. Molecular mechanisms regulating the vascular prostacyclin pathways and their adaptation during pregnancy and in the newborn. Pharmacol Rev 2012; 64(3): 540-82.
[http://dx.doi.org/10.1124/pr.111.004770] [PMID: 22679221]
[256]
Kuhn DC, Botti JJ, Cherouny PH, Demers LM. Eicosanoid production and transfer in the placenta of the diabetic pregnancy. Prostaglandins 1990; 40(2): 205-15.
[http://dx.doi.org/10.1016/0090-6980(90)90084-9] [PMID: 2120739]
[257]
Saldeen P, Olofsson P, Laurini RN. Structural, functional and circulatory placental changes associated with impaired glucose metabolism. Eur J Obstet Gynecol Reprod Biol 2002; 105(2): 136-42.
[http://dx.doi.org/10.1016/S0301-2115(02)00161-6] [PMID: 12381475]
[258]
Wang Y, Walsh SW, Kay HH. Placental lipid peroxides and thromboxane are increased and prostacyclin is decreased in women with preeclampsia. Am J Obstet Gynecol 1992; 167(4 Pt 1): 946-9.
[http://dx.doi.org/10.1016/S0002-9378(12)80017-2] [PMID: 1415430]
[259]
Fox NS, Saltzman DH, Oppal S, Klauser CK, Gupta S, Rebarber A. The relationship between preeclampsia and intrauterine growth restriction in twin pregnancies. Am J Obstet Gynecol 2014; 211(4): 422.e1-5.
[http://dx.doi.org/10.1016/j.ajog.2014.05.035] [PMID: 24881822]
[260]
Pomerantz KB, Hajjar DP. High-density-lipoprotein-induced cholesterol efflux from arterial smooth muscle cell derived foam cells: Functional relationship of the cholesteryl ester cycle and eicosanoid biosynthesis. Biochemistry 1990; 29(7): 1892-9.
[http://dx.doi.org/10.1021/bi00459a033] [PMID: 2331470]
[261]
Kaaja R, Tikkanen MJ, Viinikka L, Ylikorkala O. Serum lipoproteins, insulin, and urinary prostanoid metabolites in normal and hypertensive pregnant women. Obstet Gynecol 1995; 85(3): 353-6.
[http://dx.doi.org/10.1016/0029-7844(94)00380-V] [PMID: 7862371]
[262]
Spracklen CN, Smith CJ, Saftlas AF, Robinson JG, Ryckman KK. Maternal hyperlipidemia and the risk of preeclampsia: A meta-analysis. Am J Epidemiol 2014; 180(4): 346-58.
[http://dx.doi.org/10.1093/aje/kwu145] [PMID: 24989239]
[263]
Endresen MJ, Tøsti E, Heimli H, Lorentzen B, Henriksen T. Effects of free fatty acids found increased in women who develop pre-eclampsia on the ability of endothelial cells to produce prostacyclin, cGMP and inhibit platelet aggregation. Scand J Clin Lab Invest 1994; 54(7): 549-57.
[http://dx.doi.org/10.3109/00365519409088567] [PMID: 7863232]
[264]
Ogundipe E, Samuelson S, Crawford MA. Gestational diabetes mellitus prediction? A unique fatty acid profile study. Nutr Diabetes 2020; 10(1): 36.
[http://dx.doi.org/10.1038/s41387-020-00138-9] [PMID: 32999269]
[265]
Alvino G, Cozzi V, Radaelli T, Ortega H, Herrera E, Cetin I. Maternal and fetal fatty acid profile in normal and intrauterine growth restriction pregnancies with and without preeclampsia. Pediatr Res 2008; 64(6): 615-20.
[http://dx.doi.org/10.1203/PDR.0b013e31818702a2] [PMID: 19034199]
[266]
Lee E, Kim H, Kim H, Ha E-H, Chang N. Association of maternal omega-6 fatty acid intake with infant birth outcomes: Korean Mothers and Children’s Environmental Health (MOCEH). Nutr J 2018; 17(1): 47.
[http://dx.doi.org/10.1186/s12937-018-0353-y] [PMID: 29679982]
[267]
Vidakovic AJ, Jaddoe VWV, Voortman T, Demmelmair H, Koletzko B, Gaillard R. Maternal plasma polyunsaturated fatty acid levels during pregnancy and childhood lipid and insulin levels. Nutr Metab Cardiovasc Dis 2017; 27(1): 78-85.
[http://dx.doi.org/10.1016/j.numecd.2016.10.001] [PMID: 27919543]
[268]
Saccone G, Berghella V, Maruotti GM, Sarno L, Martinelli P. Omega-3 supplementation during pregnancy to prevent recurrent intrauterine growth restriction: Systematic review and meta-analysis of randomized controlled trials. Ultrasound Obstet Gynecol 2015; 46(6): 659-64.
[http://dx.doi.org/10.1002/uog.14910] [PMID: 26033362]
[269]
San Martín R, Sobrevia L. Gestational diabetes and the adenosine/L-arginine/nitric oxide (ALANO) pathway in human umbilical vein endothelium. Placenta 2006; 27(1): 1-10.
[http://dx.doi.org/10.1016/j.placenta.2005.01.011] [PMID: 16310032]
[270]
Myatt L, Brockman DE, Eis AL, Pollock JS. Immunohistochemical localization of nitric oxide synthase in the human placenta. Placenta 1993; 14(5): 487-95.
[http://dx.doi.org/10.1016/S0143-4004(05)80202-4] [PMID: 7507242]
[271]
Grillo MA, Lanza A, Colombatto S. Transport of amino acids through the placenta and their role. Amino Acids 2008; 34(4): 517-23.
[http://dx.doi.org/10.1007/s00726-007-0006-5] [PMID: 18172742]
[272]
Subiabre M, Villalobos-Labra R, Silva L, Fuentes G, Toledo F, Sobrevia L. Role of insulin, adenosine, and adipokine receptors in the foetoplacental vascular dysfunction in gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis 2020; 1866(2): 165370.
[http://dx.doi.org/10.1016/j.bbadis.2018.12.021] [PMID: 30660686]
[273]
Westermeier F, Salomón C, González M, et al. Insulin restores gestational diabetes mellitus-reduced adenosine transport involving differential expression of insulin receptor isoforms in human umbilical vein endothelium. Diabetes 2011; 60(6): 1677-87.
[http://dx.doi.org/10.2337/db11-0155] [PMID: 21515851]
[274]
Vásquez G, Sanhueza F, Vásquez R, et al. Role of adenosine transport in gestational diabetes-induced L-arginine transport and nitric oxide synthesis in human umbilical vein endothelium. J Physiol 2004; 560(Pt 1): 111-22.
[http://dx.doi.org/10.1113/jphysiol.2004.068288] [PMID: 15272035]
[275]
Barradas MA, Mikhailidis DP, Dandona P. The effect of non-esterified fatty acids on vascular ADP-degrading enzyme activity. Diabetes Res Clin Pract 1987; 3(1): 9-19.
[http://dx.doi.org/10.1016/S0168-8227(87)80003-7] [PMID: 3028742]
[276]
Barradas MA, Mikhailidis DP, Dandona P. ADPase activity in human maternal and cord blood: Possible evidence for a placenta-specific vascular protective mechanism. Int J Gynaecol Obstet 1990; 31(1): 15-20.
[http://dx.doi.org/10.1016/0020-7292(90)90175-K] [PMID: 1968011]
[277]
Di Fulvio P, Pandolfi A, Formoso G, et al. Features of endothelial dysfunction in umbilical cord vessels of women with gestational diabetes. Nutr Metab Cardiovasc Dis 2014; 24(12): 1337-45.
[http://dx.doi.org/10.1016/j.numecd.2014.06.005] [PMID: 25438716]
[278]
Farías M, Puebla C, Westermeier F, et al. Nitric oxide reduces SLC29A1 promoter activity and adenosine transport involving transcription factor complex hCHOP-C/EBPalpha in human umbilical vein endothelial cells from gestational diabetes. Cardiovasc Res 2010; 86(1): 45-54.
[http://dx.doi.org/10.1093/cvr/cvp410] [PMID: 20032083]
[279]
Leiva A, Fuenzalida B, Barros E, et al. Nitric Oxide is a Central Common Metabolite in Vascular Dysfunction Associated with Diseases of Human Pregnancy. Curr Vasc Pharmacol 2016; 14(3): 237-59.
[http://dx.doi.org/10.2174/1570161114666160222115158] [PMID: 26899560]
[280]
Liao JK, Shin WS, Lee WY, Clark SL. Oxidized low-density lipoprotein decreases the expression of endothelial nitric oxide synthase. J Biol Chem 1995; 270(1): 319-24.
[http://dx.doi.org/10.1074/jbc.270.1.319] [PMID: 7529227]
[281]
Ward ZJ, Bleich SN, Cradock AL, et al. Projected U.S. State-Level Prevalence of Adult Obesity and Severe Obesity. N Engl J Med 2019; 381(25): 2440-50.
[http://dx.doi.org/10.1056/NEJMsa1909301] [PMID: 31851800]
[282]
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 2019; 157.
[283]
Hadi HAR, Carr CS, Al Suwaidi J. Endothelial dysfunction: Cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag 2005; 1(3): 183-98.
[PMID: 17319104]
[284]
Adank MC, Benschop L, Kors AW, et al. Maternal lipid profile in early pregnancy is associated with foetal growth and the risk of a child born large-for-gestational age: A population-based prospective cohort study : Maternal lipid profile in early pregnancy and foetal growth. BMC Med 2020; 18(1): 276.
[http://dx.doi.org/10.1186/s12916-020-01730-7] [PMID: 33004027]
[285]
Yoshida H. ER stress and diseases. FEBS J 2007; 274(3): 630-58.
[http://dx.doi.org/10.1111/j.1742-4658.2007.05639.x] [PMID: 17288551]
[286]
Liong S, Lappas M. Endoplasmic reticulum stress is increased in adipose tissue of women with gestational diabetes. PLoS One 2015; 10(4): e0122633.
[http://dx.doi.org/10.1371/journal.pone.0122633] [PMID: 25849717]
[287]
Oyadomari S, Harding HP, Zhang Y, Oyadomari M, Ron D. Dephosphorylation of translation initiation factor 2alpha enhances glucose tolerance and attenuates hepatosteatosis in mice. Cell Metab 2008; 7(6): 520-32.
[http://dx.doi.org/10.1016/j.cmet.2008.04.011] [PMID: 18522833]
[288]
Villalobos-Labra R, Sáez PJ, Subiabre M, et al. Pre-pregnancy maternal obesity associates with endoplasmic reticulum stress in human umbilical vein endothelium. Biochim Biophys Acta Mol Basis Dis 2018; 1864(10): 3195-210.
[http://dx.doi.org/10.1016/j.bbadis.2018.07.007] [PMID: 30006153]
[289]
Basseri S, Austin RC. Endoplasmic Reticulum Stress and Lipid Metabolism: Mechanisms and Therapeutic Potential. Biochem Res Int 2012; 2012: 841362.
[http://dx.doi.org/10.1155/2012/841362] [PMID: 22195283]
[290]
Sozen E, Ozer NK. Impact of high cholesterol and endoplasmic reticulum stress on metabolic diseases: An updated mini-review. Redox Biol 2017; 12: 456-61.
[http://dx.doi.org/10.1016/j.redox.2017.02.025] [PMID: 28319895]
[291]
Yung H-W, Alnæs-Katjavivi P, Jones CJP, et al. Placental endoplasmic reticulum stress in gestational diabetes: The potential for therapeutic intervention with chemical chaperones and antioxidants. Diabetologia 2016; 59(10): 2240-50.
[http://dx.doi.org/10.1007/s00125-016-4040-2] [PMID: 27406815]
[292]
Dolganiuc A. Role of lipid rafts in liver health and disease. World J Gastroenterol 2011; 17(20): 2520-35.
[http://dx.doi.org/10.3748/wjg.v17.i20.2520] [PMID: 21633657]
[293]
Amiya E. Interaction of hyperlipidemia and reactive oxygen species: Insights from the lipid-raft platform. World J Cardiol 2016; 8(12): 689-94.
[http://dx.doi.org/10.4330/wjc.v8.i12.689] [PMID: 28070236]
[294]
Morikage N, Kishi H, Sato M, et al. Cholesterol primes vascular smooth muscle to induce Ca2 sensitization mediated by a sphingosylphosphorylcholine-Rho-kinase pathway: Possible role for membrane raft. Circ Res 2006; 99(3): 299-306.
[http://dx.doi.org/10.1161/01.RES.0000235877.33682.e9] [PMID: 16825579]
[295]
Harder T, Simons K. Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr Opin Cell Biol 1997; 9(4): 534-42.
[http://dx.doi.org/10.1016/S0955-0674(97)80030-0] [PMID: 9261060]
[296]
García-Cardeña G, Oh P, Liu J, Schnitzer JE, Sessa WC. Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: Implications for nitric oxide signaling. Proc Natl Acad Sci USA 1996; 93(13): 6448-53.
[http://dx.doi.org/10.1073/pnas.93.13.6448] [PMID: 8692835]
[297]
Feron O, Dessy C, Moniotte S, Desager JP, Balligand JL. Hypercholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase. J Clin Invest 1999; 103(6): 897-905.
[http://dx.doi.org/10.1172/JCI4829] [PMID: 10079111]
[298]
Razani B, Engelman JA, Wang XB, et al. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 2001; 276(41): 38121-38.
[http://dx.doi.org/10.1074/jbc.M105408200] [PMID: 11457855]
[299]
Ghosh S, Gachhui R, Crooks C, Wu C, Lisanti MP, Stuehr DJ. Interaction between caveolin-1 and the reductase domain of endothelial nitric-oxide synthase. Consequences for catalysis. J Biol Chem 1998; 273(35): 22267-71.
[http://dx.doi.org/10.1074/jbc.273.35.22267] [PMID: 9712842]
[300]
Vainio S, Heino S, Mansson J-E, et al. Dynamic association of human insulin receptor with lipid rafts in cells lacking caveolae. EMBO Rep 2002; 3(1): 95-100.
[http://dx.doi.org/10.1093/embo-reports/kvf010] [PMID: 11751579]
[301]
Tang S, Tabet F, Cochran BJ, et al. Apolipoprotein A-I enhances insulin-dependent and insulin-independent glucose uptake by skeletal muscle. Sci Rep 2019; 9(1): 1350.
[http://dx.doi.org/10.1038/s41598-018-38014-3] [PMID: 30718702]
[302]
Hao M, Head WS, Gunawardana SC, Hasty AH, Piston DW. Direct effect of cholesterol on insulin secretion: A novel mechanism for pancreatic beta-cell dysfunction. Diabetes 2007; 56(9): 2328-38.
[http://dx.doi.org/10.2337/db07-0056] [PMID: 17575085]
[303]
Dirkx R Jr, Solimena M. Cholesterol-enriched membrane rafts and insulin secretion. J Diabetes Investig 2012; 3(4): 339-46.
[http://dx.doi.org/10.1111/j.2040-1124.2012.00200.x] [PMID: 24843586]
[304]
Manandhar B, Cochran BJ, Rye K-A. Role of High-Density Lipoproteins in Cholesterol Homeostasis and Glycemic Control. J Am Heart Assoc 2020; 9(1): e013531.
[http://dx.doi.org/10.1161/JAHA.119.013531] [PMID: 31888429]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy