Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Review Article

The Application of Modified SBA-15 as a Chemosensor

Author(s): Ghodsi Mohammadi Ziarani*, Mahdieh Khademi, Fatemeh Mohajer and Alireza Badiei

Volume 7, Issue 1, 2022

Published on: 20 April, 2021

Page: [4 - 24] Pages: 21

DOI: 10.2174/2405461506666210420132630

Price: $65

Abstract

The Santa Barbara Amorphous (SBA-15), with a large surface area covered with abundant Si-OH active groups on the walls of its pores, can be modified with various organic compounds to build organic-inorganic hybrid materials, which can be used as a catalyst in organic reactions, drug delivery systems, nano sorbent due to its high capacity for removing heavy metals in waste water and as chemosensors for ions. Tunable and straight channels of SBA-15 facilitate the entrance and diffusion of ions through the channels. This paper presents a review of the past five years of literature covering the application of SBA-15 as an ions chemosensor in the liquid and gaseous media.

Keywords: Ion chemosensors, functionalized SBA-15, modified mesoporous silica, heavy metals, nano sorbent, Si-OH.

Graphical Abstract

[1]
Fulvio PF, Pikus S, Jaroniec M. Tailoring properties of SBA-15 materials by controlling conditions of hydrothermal synthesis. J Mater Chem 2005; 15: 5049-53.
[http://dx.doi.org/10.1039/b511346f]
[2]
Newalkar BL, Komarneni S, Katsuki H. Rapid synthesis of mesoporous SBA-15 molecular sieve by a microwave-hydrothermal process. Chem Commun (Camb) 2000; 2389-90.
[http://dx.doi.org/10.1039/b007441l]
[3]
Yang J, Dass A, Rawashdeh A-MM, et al. Arylethynyl substituted 9, 10-anthraquinones: Tunable stokes shifts by substitution and solvent polarity. Chem Mater 2004; 16: 3457-68.
[http://dx.doi.org/10.1021/cm049590g]
[4]
Rioux RM, Song H, Hoefelmeyer JD, Yang P, Somorjai GA. High-surface-area catalyst design: Synthesis, characterization, and reaction studies of platinum nanoparticles in mesoporous SBA-15 silica. J Phys Chem B 2005; 109(6): 2192-202.
[http://dx.doi.org/10.1021/jp048867x] [PMID: 16851211]
[5]
JuneáShin H. Modification of SBA-15 pore connectivity by high-temperature calcination investigated by carbon inverse replication. Chem Commun (Camb) 2001; 349-50.
[http://dx.doi.org/10.1039/B009762O]
[6]
Rosenholm JM, Lindén M. Wet-chemical analysis of surface concentration of accessible groups on different amino-functionalized mesoporous SBA-15 silicas. Chem Mater 2007; 19: 5023-34.
[http://dx.doi.org/10.1021/cm071289n]
[7]
Mohajer F, Ziarani GM, Badiei A. The synthesis of SBA-Pr-3AP@Pd and its application as a highly dynamic, eco-friendly heterogeneous catalyst for Suzuki-Miyaura cross-coupling reaction. Res Chem Intermed 2020; 46: 4909-22.
[http://dx.doi.org/10.1007/s11164-020-04218-4]
[8]
Mohajer F, Mohammadi Ziarani G, Badiei A. Decorated palladium nanoparticles on mesoporous organosilicate as an efficient catalyst for Sonogashira coupling reaction. J Iran Chem Soc 2020; 18(3): 589-601.
[http://dx.doi.org/10.1007/s13738-020-02044-4]
[9]
Mohammadi Ziarani G, Rohani S, Ziarati A, Badiei A. Applications of SBA-15 supported Pd metal catalysts as nanoreactors in C–C coupling reactions. RSC Adv 2018; 8: 41048-100.
[http://dx.doi.org/10.1039/C8RA09038F]
[10]
Diarjani ES, Rajabi F, Yahyazadeh A, Puente-Santiago AR, Luque R. Copper tridentate Schiff base complex supported on SBA-15 as efficient nanocatalyst for three-component reactions under solventless conditions. Materials (Basel) 2018; 11(12): 2458.
[http://dx.doi.org/10.3390/ma11122458] [PMID: 30518075]
[11]
Ghomi JS, Bakhtiari A. Ultrasonic accelerated Biginelli-like reaction by the covalently anchored copper-isatoic anhydride over the modified surface of mesoporous SBA-15 to the synthesis of pyrimidines. Chem Select 2018; 3: 12704-11.
[http://dx.doi.org/10.1002/slct.201802435]
[12]
Chaudhary V, Sharma S. An overview of ordered mesoporous material SBA-15: Synthesis, functionalization and application in oxidation reactions. J Porous Mater 2017; 24: 741-9.
[http://dx.doi.org/10.1007/s10934-016-0311-z]
[13]
Pham XN, Tran DL, Pham TD, Nguyen QM, Van HD. One-step synthesis, characterization and oxidative desulfurization of 12-tungstophosphoric heteropolyanions immobilized on amino functionalized SBA-15. Adv Powder Technol 2018; 29: 58-65.
[http://dx.doi.org/10.1016/j.apt.2017.10.011]
[14]
Chakraborty I, Bodurtha KJ, Heeder NJ, et al. Massive electrical conductivity enhancement of multilayer graphene/polystyrene composites using a nonconductive filler. ACS Appl Mater Interfaces 2014; 6(19): 16472-5.
[http://dx.doi.org/10.1021/am5044592] [PMID: 25226457]
[15]
Szegedi A, Popova M, Goshev I, Mihály J. Effect of amine functionalization of spherical MCM-41 and SBA-15 on controlled drug release. J Solid State Chem 2011; 184: 1201-7.
[http://dx.doi.org/10.1016/j.jssc.2011.03.005]
[16]
Vavsari VF, Mohammadi Ziarani G, Badiei A. The role of SBA-15 in drug delivery. RSC. Adv 2015; 5: 91686-707.
[http://dx.doi.org/10.1039/C5RA17780D]
[17]
Prokopowicz M, Żeglinski J, Szewczyk A, Skwira A, Walker G. Surface-activated fibre-like SBA-15 as drug carriers for bone diseases. AAPS PharmSciTech 2018; 20(1): 17.
[http://dx.doi.org/10.1208/s12249-018-1243-5] [PMID: 30574669]
[18]
Alkafajy AM, Albayati TM. High performance of magnetic mesoporous modification for loading and release of meloxicam in drug delivery implementation. Mater Today Commun 2020; 23: 100890.
[http://dx.doi.org/10.1016/j.mtcomm.2019.100890]
[19]
Gonzalez G, Sagarzazu A, Cordova A, et al. Comparative study of two silica mesoporous materials (SBA-16 and SBA-15) modified with a hydroxyapatite layer for clindamycin controlled delivery. Microporous Mesoporous Mater 2018; 256: 251-65.
[http://dx.doi.org/10.1016/j.micromeso.2017.07.021]
[20]
Szewczyk A, Prokopowicz M. Amino-modified mesoporous silica SBA-15 as bifunctional drug delivery system for cefazolin: Release profile and mineralization potential. Mater Lett 2018; 227: 136-40.
[http://dx.doi.org/10.1016/j.matlet.2018.05.059]
[21]
Trendafilova I, Szegedi A, Mihály J, Momekov G, Lihareva N, Popova M. Preparation of efficient quercetin delivery system on Zn-modified mesoporous SBA-15 silica carrier. Mater Sci Eng C 2017; 73: 285-92.
[http://dx.doi.org/10.1016/j.msec.2016.12.063] [PMID: 28183610]
[22]
Appiah-Ntiamoah R, Chung W-J, Kim H. A highly selective SBA-15 supported fluorescent “turn-on” sensor for the fluoride anion. New J Chem 2015; 39: 5570-9.
[http://dx.doi.org/10.1039/C5NJ00495K]
[23]
Liu L, Fu X, Zhang H, et al. Luminogen-functionalized mesoporous SBA-15 for fluorescent detection of antibiotic cefalexin. J Mater Res 2018; 33: 1442.
[http://dx.doi.org/10.1557/jmr.2018.96]
[24]
Korzeniowska A, Strzempek W, Makowski W, Menaszek E, Roth WJ, Gil B. Incorporation and release of a model drug, ciprofloxacin, from non-modified SBA-15 molecular sieves with different pore sizes. Microporous Mesoporous Mater 2020; 294: 109903.
[http://dx.doi.org/10.1016/j.micromeso.2019.109903]
[25]
Lashgari N, Badiei A, Mohammadi Ziarani G. Modification of mesoporous silica SBA-15 with different organic molecules to gain chemical sensors: A review. Nanochemi Res 2016; 1: 127-41.
[http://dx.doi.org/10.7508/NCR.2016.01.014]
[26]
Dong Z, Dong Z, Ren J, et al. A quinoline group modified SBA-15 INHIBIT logic gate with [Cu2+ and Zn2+] or [Cu2+ and Cd2+] as inputs. Microporous Mesoporous Mater 2010; 135: 170-7.
[http://dx.doi.org/10.1016/j.micromeso.2010.07.006]
[27]
Dong Z, Tian X, Chen Y, Hou J, Ma J. Rhodamine group modified SBA-15 fluorescent sensor for highly selective detection of Hg2+ and its application as an INHIBIT logic device. RSC Adv 2013; 3: 2227-33.
[http://dx.doi.org/10.1039/C2RA21864J]
[28]
Zhao L, Sui D, Wang Y. Fluorescence chemosensors based on functionalized SBA-15 for detection of Pb2+ in aqueous media. RSC Adv 2015; 5: 16611-7.
[http://dx.doi.org/10.1039/C5RA00696A]
[29]
Yu S-Y, Wu S-P. A highly selective turn-on fluorescence chemosensor for Hg (II) and its application in living cell imaging. Sens Actuators B Chem 2014; 201: 25-30.
[http://dx.doi.org/10.1016/j.snb.2014.04.077]
[30]
Moradi R, Mohammadi Ziarani G, Badiei A, Mohajer F. Synthesis and characterization of mesoporous organosilica supported palladium (SBA-Pr-NCQ-Pd) as an efficient nanocatalyst in the Mizoroki–Heck coupling reaction. Appl Organomet Chem 2020; 34: e5916.
[http://dx.doi.org/10.1002/aoc.5916]
[31]
Mohammadi Ziarani G, Roshankar S, Mohajer F, Badiei A. The synthesis and application of functionalized mesoporous silica SBA-15 as heterogeneous catalyst in organic synthesis. Curr Org Chem 2021; 25: 361-87.
[http://dx.doi.org/10.2174/1385272824999201210194444]
[32]
Varun , Sonam , Kakkar R. Isatin and its derivatives: A survey of recent syntheses, reactions, and applications. MedChemComm 2019; 10(3): 351-68.
[http://dx.doi.org/10.1039/C8MD00585K] [PMID: 30996856]
[33]
Mohammadi Ziarani G, Moradi R, Lashgari N. Asymmetric synthesis of chiral oxindoles using isatin as starting material. Tetrahedron 2018; 74: 1323-53.
[http://dx.doi.org/10.1016/j.tet.2018.01.025]
[34]
Dileepan AB, Prakash TD, Kumar AG, Rajam PS, Dhayabaran VV, Rajaram R. Isatin based macrocyclic Schiff base ligands as novel candidates for antimicrobial and antioxidant drug design: In vitro DNA binding and biological studies. J Photochem Photobiol B 2018; 183: 191-200.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.04.029] [PMID: 29723731]
[35]
TG AK, Tekuri V, Mohan M, Trivedi DR. Selective colorimetric chemosensor for the detection of Hg2+ and arsenite ions using Isatin based Schiff’s bases; DFT Studies and Applications in test strips. Sens Actuators B Chem 2019; 284: 271-80.
[http://dx.doi.org/10.1016/j.snb.2018.12.003]
[36]
Aneja B, Khan NS, Khan P, et al. Design and development of Isatin-triazole hydrazones as potential inhibitors of microtubule affinity-regulating kinase 4 for the therapeutic management of cell proliferation and metastasis. Eur J Med Chem 2019; 163: 840-52.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.026] [PMID: 30579124]
[37]
Lashgari N, Badiei A, Mohammadi Ziarani G , Faridbod F. Isatin functionalized nanoporous SBA-15 as a selective fluorescent probe for the detection of Hg(II) in water. Anal Bioanal Chem 2017; 409(12): 3175-85.
[http://dx.doi.org/10.1007/s00216-017-0258-1] [PMID: 28271223]
[38]
Lashgari N, Badiei A, Mohammad Ziarani G. A novel functionalized nanoporous SBA-15 as a selective fluorescent sensor for the detection of multianalytes (Fe3+ and Cr2O72−) in water. J Phys Chem Solids 2017; 103: 238-48.
[http://dx.doi.org/10.1016/j.jpcs.2016.11.021]
[39]
Lashgari N, Badiei A, Mohammadi Ziarani G. Selective detection of Hg2+ ion in aqueous medium with the use of 3-(pyrimidin-2-ylimino) indolin-2-one-functionalized SBA-15. Appl Organomet Chem 2018; 32: e3991.
[http://dx.doi.org/10.1002/aoc.3991]
[40]
Elinson MN, Ryzhkov FV, Vereshchagin AN, Korshunov AD, Novikov RA, Egorov MP. ‘On-solvent’new domino reaction of salicylaldehyde, malononitrile and 4-hydroxy-6-methylpyridin-2 (1H)-one: Fast and efficient approach to medicinally relevant 4-pyridinyl-2-amino-4H-chromene scaffold. Mendeleev Commun 2017; 27: 559-61.
[http://dx.doi.org/10.1016/j.mencom.2017.11.006]
[41]
Pasha SS, Yadav HR, Choudhury AR, Laskar IR. Synthesis of an aggregation-induced emission (AIE) active salicylaldehyde based Schiff base: Study of mechanoluminescence and sensitive Zn (ii) sensing. J Mater Chem C Mater Opt Electron Devices 2017; 5: 9651-8.
[http://dx.doi.org/10.1039/C7TC03046K]
[42]
Assaleh MH, Božić AR, Bjelogrlić S, et al. Water-induced isomerism of salicylaldehyde and 2-acetylpyridine mono-and bis-(thiocarbohydrazones) improves the antioxidant activity: Spectroscopic and DFT study. Struct Chem 2019; 30: 2447-57.
[http://dx.doi.org/10.1007/s11224-019-01371-4]
[43]
Ribes S, Fuentes A, Talens P, Barat JM. Prevention of fungal spoilage in food products using natural compounds: A review. Crit Rev Food Sci Nutr 2018; 58(12): 2002-16.
[http://dx.doi.org/10.1080/10408398.2017.1295017] [PMID: 28394635]
[44]
Ghosh S, Biswas K, Bhattacharya S, Ghosh P, Basu B. Effect of the ortho-hydroxy group of salicylaldehyde in the A3 coupling reaction: A metal-catalyst-free synthesis of propargylamine. Beilstein J Org Chem 2017; 13: 552-7.
[http://dx.doi.org/10.3762/bjoc.13.53] [PMID: 28405234]
[45]
Liu C, Liu X, Ge X, et al. Fluorescent iridium(iii) coumarin-salicylaldehyde Schiff base compounds as lysosome-targeted antitumor agents. Dalton Trans 2020; 49(18): 5988-98.
[http://dx.doi.org/10.1039/D0DT00627K] [PMID: 32314774]
[46]
Krátký M, Dzurková M, Janoušek J, et al. Sulfadiazine salicylaldehyde-based Schiff bases: Synthesis, antimicrobial activity and cytotoxicity. Molecules 2017; 22(9): 1573.
[http://dx.doi.org/10.3390/molecules22091573] [PMID: 28925956]
[47]
Subbareddy CV, Sumathi S. One-pot three-component protocol for the synthesis of indolyl-4H-chromene-3-carboxamides as antioxidant and antibacterial agents. New J Chem 2017; 41: 9388-96.
[http://dx.doi.org/10.1039/C7NJ00980A]
[48]
Afshani J, Badiei A, Lashgari N, Mohammadi Ziarani G. A simple nanoporous silica-based dual mode optical sensor for detection of multiple analytes (Fe3+, Al3+ and CN−) in water mimicking XOR logic gate. RSC Adv 2016; 6: 5957-64.
[http://dx.doi.org/10.1039/C5RA23136A]
[49]
Afshani J, Badiei A, Karimi M, Lashgari N, Mohammadi Ziarani G. A Schiff base-grafted nanoporous silica material as a reversible optical probe for Hg2+ ion in water. Appl Organomet Chem 2017; 31: e3856.
[http://dx.doi.org/10.1002/aoc.3856]
[50]
Gonzalez-Raymat H, Liu G, Liriano C, et al. Elemental mercury: Its unique properties affect its behavior and fate in the environment. Environ Pollut 2017; 229: 69-86.
[http://dx.doi.org/10.1016/j.envpol.2017.04.101] [PMID: 28577384]
[51]
Okpala COR, Sardo G, Vitale S, Bono G, Arukwe A. Hazardous properties and toxicological update of mercury: From fish food to human health safety perspective. Crit Rev Food Sci Nutr 2018; 58(12): 1986-2001.
[http://dx.doi.org/10.1080/10408398.2017.1291491] [PMID: 28394636]
[52]
Halkos G, Argyropoulou G. Pollution and health effects: A nonparametric approach. Compu Econ 2020; 1-24.
[53]
Ball N, Teo W-P, Chandra S, Chapman J. Parkinson’s disease and the environment. Front Neurol 2019; 10: 218.
[http://dx.doi.org/10.3389/fneur.2019.00218] [PMID: 30941085]
[54]
Bornstein SR, Voit-Bak K, Rosenthal P, et al. Extracorporeal apheresis therapy for Alzheimer disease-targeting lipids, stress, and inflammation. Mol Psychiatry 2020; 25(2): 275-82.
[http://dx.doi.org/10.1038/s41380-019-0542-x] [PMID: 31595035]
[55]
Gawas RU, Anand S, Ghosh BK, et al. Development of a water-dispersible sba-15-benzothiazole-derived fluorescence nanosensor by physisorption and its use in organic-solvent-free detection of perborate and hydrazine. Chem Select 2018; 3: 10585-92.
[http://dx.doi.org/10.1002/slct.201802328]
[56]
Tran L, Orth R, Parashos P, et al. Depletion rate of hydrogen peroxide from sodium perborate bleaching agent. J Endod 2017; 43(3): 472-6.
[http://dx.doi.org/10.1016/j.joen.2016.10.043] [PMID: 28139287]
[57]
İpekçi D, Kabay N, Bunani S, et al. Application of heterogeneous ion exchange membranes for simultaneous separation and recovery of lithium and boron from aqueous solution with bipolar membrane electrodialysis (EDBM). Desalination 2020; 479: 114313.
[http://dx.doi.org/10.1016/j.desal.2020.114313]
[58]
Catovic C, Martin S, Desaint S, et al. members of the Cosmetic Valley EPMP commission. Development of a standardized method to evaluate the protective efficiency of cosmetic packaging against microbial contamination. AMB Express 2020; 10(1): 81.
[http://dx.doi.org/10.1186/s13568-020-01016-4] [PMID: 32333203]
[59]
Vu X, Lin J-Y, Shih Y-J, Huang Y-H. Reclaiming boron as calcium perborate pellets from synthetic wastewater by integrating chemical oxo-precipitation within a fluidized-bed crystallizer. ACS. Sustain Chem Engin 2018; 6: 4784-92.
[http://dx.doi.org/10.1021/acssuschemeng.7b03951]
[60]
Efimov V, Neupokoeva E, Peterson I, Lyubyashkin A, Suboch G, Tovbis M. Heterocyclization reactions of isonitroso β-diketones with hydrazine hydrate and alkylhydrazines. Russ J Org Chem 2019; 55: 1081-4.
[http://dx.doi.org/10.1134/S1070428019080037]
[61]
Yuan M, Zhang H, Yang C, Wang F, Dong Z. Co-MOF-derived hierarchical mesoporous yolk-shell-structured nanoreactor for the catalytic reduction of nitroarenes with hydrazine hydrate. ChemCatChem 2019; 11: 3327-38.
[http://dx.doi.org/10.1002/cctc.201900714]
[62]
Ansari A, Ali A, Asif M. Biologically active pyrazole derivatives. New J Chem 2017; 41: 16-41.
[http://dx.doi.org/10.1039/C6NJ03181A]
[63]
Dohare P, Ansari KR, Quraishi MA, Obot IB. Pyranpyrazole derivatives as novel corrosion inhibitors for mild steel useful for industrial pickling process: Experimental and quantum chemical study. J Ind Eng Chem 2017; 52: 197-210.
[http://dx.doi.org/10.1016/j.jiec.2017.03.044]
[64]
Teng M, Zhou Z, Qin Y, Zhao Y, Zhao C, Cao J. A water-soluble fluorescence sensor with high specificity for detecting hydrazine in river water detection and A549 cell imaging. Sens Actuators B Chem 2020; 311: 127914.
[http://dx.doi.org/10.1016/j.snb.2020.127914]
[65]
Yang Y, Liu X, Yan D, Deng P, Guo Z, Zhan H. Europium ion post-functionalized zirconium metal-organic frameworks as luminescent probes for effectively sensing hydrazine hydrate. RSC. Adv 2018; 8: 17471-6.
[http://dx.doi.org/10.1039/C8RA03049A]
[66]
Lai Q, Si S, Qin T, et al. A novel red-emissive probe for colorimetric and ratiometric detection of hydrazine and its application in plant imaging. Sens Actuators B Chem 2020; 307: 127640.
[http://dx.doi.org/10.1016/j.snb.2019.127640]
[67]
Zhao L, Li J, Sui D, Wang Y. Highly selective fluorescence chemosensors based on functionalized SBA-15 for detection of Ag+ in aqueous media. Sens Actuators B Chem 2017; 242: 1043-9.
[http://dx.doi.org/10.1016/j.snb.2016.09.148]
[68]
Cobos M, De-La-Pinta I, Quindós G, Fernández MJ, Fernández MD. Graphene oxide-silver nanoparticle nanohybrids: Synthesis, characterization, and antimicrobial properties. Nanomaterials (Basel) 2020; 10(2): 376.
[http://dx.doi.org/10.3390/nano10020376] [PMID: 32098083]
[69]
Naseri S, Lepry WC, Maisuria VB, Tufenkji N, Nazhat SN. Development and characterization of silver-doped sol-gel-derived borate glasses with antibacterial activity. J Non-Cryst Solids 2019; 505: 438-46.
[http://dx.doi.org/10.1016/j.jnoncrysol.2018.11.026]
[70]
Pye DR, Mankad NP. Bimetallic catalysis for C-C and C-X coupling reactions. Chem Sci (Camb) 2017; 8(3): 1705-18.
[http://dx.doi.org/10.1039/C6SC05556G] [PMID: 29780450]
[71]
Zhang Y, Cao X, Wu G, Wang J, Zhang T. Quaternized salicylaldehyde Schiff base modified mesoporous silica for efficiently sensing Cu(II) ions and their removal from aqueous solution. Appl Surf Sci 2020; 527: 146803.
[http://dx.doi.org/10.1016/j.apsusc.2020.146803]
[72]
Krężel A, Maret W. The functions of metamorphic metallothioneins in zinc and copper metabolism. Int J Mol Sci 2017; 18(6): 1237.
[http://dx.doi.org/10.3390/ijms18061237] [PMID: 28598392]
[73]
Alsalhi W, Alalola A, Randolph M, Gwillim E, Tosti A. Novel drug delivery approaches for the management of hair loss. Expert Opin Drug Deliv 2020; 17(3): 287-95.
[http://dx.doi.org/10.1080/17425247.2020.1723543] [PMID: 32003262]
[74]
Blockhuys S, Wittung-Stafshede P. Roles of copper-binding proteins in breast cancer. Int J Mol Sci 2017; 18(4): 871.
[http://dx.doi.org/10.3390/ijms18040871] [PMID: 28425924]
[75]
Qiu Q, Zhang F, Zhu W, Wu J, Liang M. Copper in diabetes mellitus: A meta-analysis and systematic review of plasma and serum studies. Biol Trace Elem Res 2017; 177(1): 53-63.
[http://dx.doi.org/10.1007/s12011-016-0877-y] [PMID: 27785738]
[76]
Harikrishna S, Robert AR, Ganja H, Maddila S, Jonnalagadda SB. A green, facile and recyclable Mn3O4/MWCNT nano-catalyst for the synthesis of quinolines via one-pot multicomponent reactions. Sustain Chem Pharm 2020; 16: 100265.
[http://dx.doi.org/10.1016/j.scp.2020.100265]
[77]
Xie L-Y, Peng S, Liu F, et al. Metal-free deoxygenative sulfonylation of quinoline N-oxides with sodium sulfinates via a dual radical coupling process. Org Chem Front 2018; 5: 2604-9.
[http://dx.doi.org/10.1039/C8QO00661J]
[78]
Wang Y, Ma Z-Y, Zhang D-L, et al. Highly selective and sensitive turn-on fluorescent sensor for detection of Al3+ based on quinoline-base Schiff base. Spectrochim Acta A Mol Biomol Spectrosc 2018; 195: 157-64.
[http://dx.doi.org/10.1016/j.saa.2018.01.049] [PMID: 29414573]
[79]
Sharma R, Kour P, Kumar A. A review on transition-metal mediated synthesis of quinolines. J Chem Sci 2018; 130: 1-25.
[http://dx.doi.org/10.1007/s12039-018-1466-8]
[80]
Alexpandi R, De Mesquita JF, Pandian SK, Ravi AV. Quinolines-based SARS-CoV-2 3CLpro and RdRp inhibitors and Spike-RBD-ACE2 inhibitor for drug-repurposing against COVID-19: An in silico analysis. Front Microbiol 2020; 11: 1796.
[http://dx.doi.org/10.3389/fmicb.2020.01796] [PMID: 32793181]
[81]
Jain S, Chandra V, Jain PK, Pathak K, Pathak D, Vaidya A. Comprehensive review on current developments of quinoline-based anticancer agents. Arab J Chem 2019; 12: 4920-46.
[http://dx.doi.org/10.1016/j.arabjc.2016.10.009]
[82]
Abdelrahman MH, Youssif BGM, Abdelgawad MA, et al. Synthesis, biological evaluation, docking study and ulcerogenicity profiling of some novel quinoline-2-carboxamides as dual COXs/LOX inhibitors endowed with anti-inflammatory activity. Eur J Med Chem 2017; 127: 972-85.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.006] [PMID: 27837994]
[83]
Zhang J, Wang S, Ba Y, Xu Z. 1,2,4-Triazole-quinoline/quinolone hybrids as potential anti-bacterial agents. Eur J Med Chem 2019; 174: 1-8.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.033] [PMID: 31015103]
[84]
Mubeen S, Rauf A, Qureshi AM. Synthesis of new quinoline scaffolds via a solvent-free fusion method and their antimicrobial properties. Trop J Pharm Res 2018; 17: 1853-8.
[http://dx.doi.org/10.4314/tjpr.v17i9.25]
[85]
Karimi M, Badiei A, Mohammadi Ziarani G. A click-derived dual organic-inorganic hybrid optical sensor based on SBA-15 for selective recognition of Zn2+ and CN− in water. Inorg Chim Acta 2016; 450: 346-52.
[http://dx.doi.org/10.1016/j.ica.2016.06.026]
[86]
Avudaiappan G, Jacob KA, Theresa LV, et al. A novel dendritic polymer based turn-off fluorescence sensor for the selective detection of cyanide ion in aqueous medium. React Funct Polym 2019; 137: 71-8.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2019.01.018]
[87]
Karimi M, Badieia A, Mohammadi Ziarani G. Fluorescence-enhanced optical sensor for detection of Al3+ in water based on functionalised nanoporous silica type SBA-15. Chem Pap 2016; 70: 1431-8.
[http://dx.doi.org/10.1515/chempap-2016-0079]
[88]
Weng M-H, Chen S-Y, Li Z-Y, Yen G-C. Camellia oil alleviates the progression of Alzheimer’s disease in aluminum chloride-treated rats. Free Radic Biol Med 2020; 152: 411-21.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.04.004] [PMID: 32294510]
[89]
Colomina MT, Peris-Sampedro F. Aluminum and Alzheimer’s disease. Neurotoxic Metals 2017; 183-97.
[http://dx.doi.org/10.1007/978-3-319-60189-2_9]
[90]
Karimi M, Badiei A, Mohammadi Ziarani G. SBA-15 functionalized with naphthalene derivative for selective optical sensing of Cr2O7(2-) in Water. Anal Sci 2016; 32(5): 511-6.
[http://dx.doi.org/10.2116/analsci.32.511] [PMID: 27169649]
[91]
Achmad RT, Auerkari EI. Effects of chromium on human body. Annu Res Rev Biol 2017; 1-8.
[http://dx.doi.org/10.9734/ARRB/2017/33462]
[92]
Sall ML, Diaw AKD, Gningue-Sall D, Efremova Aaron S, Aaron J-J. Toxic heavy metals: Impact on the environment and human health, and treatment with conducting organic polymers, a review. Environ Sci Pollut Res Int 2020; 27(24): 29927-42.
[http://dx.doi.org/10.1007/s11356-020-09354-3] [PMID: 32506411]
[93]
Karimi M, Badiei A, Lashgari N, Mohammadi Ziarani G. A chromotropic acid modified SBA-15 as a highly sensitive fluorescent probe for determination of Fe3+ and I− ions in water. J Porous Mater 2018; 25: 137-46.
[http://dx.doi.org/10.1007/s10934-017-0427-9]
[94]
Fayed TA, El-Nahass MN, El-Daly HA, Shokry AA. Development of nanomaterial chemosensors for toxic metal ions sensing. Appl Organomet Chem 2019; 33: e4868.
[http://dx.doi.org/10.1002/aoc.4868]
[95]
Kim H, Rao BA, Jeong J, et al. A rhodamine scaffold immobilized onto mesoporous silica as a fluorescent probe for the detection of Fe (III) and applications in bio-imaging and microfluidic chips. Sens Actuators B Chem 2016; 224: 404-12.
[http://dx.doi.org/10.1016/j.snb.2015.10.058]
[96]
Mondal S, Manna SK, Pathak S, Al Masum A, Mukhopadhyay S. A colorimetric and “off–on” fluorescent Pd2+ chemosensor based on a rhodamine-ampyrone conjugate: Synthesis, experimental and theoretical studies along with in vitro applications. New J Chem 2019; 43: 3513-9.
[http://dx.doi.org/10.1039/C8NJ05194A]
[97]
Lee SY, Yang M, Kim C. A dual target chemosensor for the fluorometric detection of In3+ and colorimetric detection of Fe3. Spectrochim Acta A Mol Biomol Spectrosc 2018; 205: 622-9.
[http://dx.doi.org/10.1016/j.saa.2018.07.091] [PMID: 30077953]
[98]
Badiei A, Yadavi M, Karimi M. A novel diethyl 2-(9-fluorenyl) malonate functionlized SBA-15 for selective optical sensing of Iron. J Nanostruct 2019; 9: 146-53.
[http://dx.doi.org/10.22052/JNS.2019.01.016]
[99]
Vojoudi H, Bastan B, Ghasemi JB, Badiei A. An ultrasensitive fluorescence sensor for determination of trace levels of copper in blood samples. Anal Bioanal Chem 2019; 411(21): 5593-603.
[http://dx.doi.org/10.1007/s00216-019-01940-w] [PMID: 31289896]
[100]
Wang J, Zhang X, Liu H-B, et al. Aggregation induced emission active fluorescent sensor for the sensitive detection of Hg2+ based on organic-inorganic hybrid mesoporous material. Spectrochim Acta A Mol Biomol Spectrosc 2020; 227: 117585.
[http://dx.doi.org/10.1016/j.saa.2019.117585] [PMID: 31734570]
[101]
Wu Y, Wen X, Fan Z. An AIE active pyrene based fluorescent probe for selective sensing Hg2+ and imaging in live cells. Spectrochim Acta A Mol Biomol Spectrosc 2019; 223: 117315.
[http://dx.doi.org/10.1016/j.saa.2019.117315] [PMID: 31277030]
[102]
Kachwal V, Alam P, Yadav HR, Pasha SS, Roy Choudhury A, Laskar IR. Simple ratiometric push-pull with an ‘aggregation induced enhanced emission’ active pyrene derivative: A multifunctional and highly sensitive fluorescent sensor. New J Chem 2018; 42: 1133-40.
[http://dx.doi.org/10.1039/C7NJ03964F]
[103]
Salahshoor Z, Ghasemi JB, Shahbazi A, Badiei A. Highly selective silica-based fluorescent nanosensor for ferric ion (Fe3+) detection in aqueous media. Spectrochim Acta A Mol Biomol Spectrosc 2019; 218: 293-8.
[http://dx.doi.org/10.1016/j.saa.2019.03.118] [PMID: 31005736]
[104]
Huang J, Liu H-B, Wang J. Functionalized mesoporous silica as a fluorescence sensor for selective detection of Hg2+ in aqueous medium. Spectrochim Acta A Mol Biomol Spectrosc 2021; 246: 118974.
[http://dx.doi.org/10.1016/j.saa.2020.118974] [PMID: 33010539]
[105]
Liu H-B, Liang Y, Liang J, et al. Pyrene derivative-functionalized mesoporous silica-Cu2+ hybrid ensemble for fluorescence “turn-on” detection of H2S and logic gate application in aqueous media. Anal Bioanal Chem 2020; 412(4): 905-13.
[http://dx.doi.org/10.1007/s00216-019-02302-2] [PMID: 31897560]
[106]
Paul L, Mukherjee S, Chatterjee S, Bhaumik A, Das D. Organically functionalized mesoporous sba-15 type material bearing fluorescent sites for selective detection of hgii from aqueous medium. ACS Omega 2019; 4(18): 17857-63.
[http://dx.doi.org/10.1021/acsomega.9b02631] [PMID: 31681894]
[107]
Tamizhdurai P, Sakthinathan S, Krishnan PS, et al. Catalytic activity of ratio-dependent SBA-15 supported zirconia catalysts for highly selective oxidation of benzyl alcohol to benzaldehyde and environmental pollutant heavy metal ions detection. J Mol Struct 2019; 1176: 650-61.
[http://dx.doi.org/10.1016/j.molstruc.2018.09.007]
[108]
Zhu Y, Cheng Z, Xiang Q, Zhu Y, Xu J. Rational design and synthesis of aldehyde-functionalized mesoporous SBA-15 for high-performance ammonia sensor. Sens Actuators B Chem 2018; 256: 888-95.
[http://dx.doi.org/10.1016/j.snb.2017.10.029]
[109]
Li Y, Xie D, Pang X, Yu X, Yu T, Ge X. Highly selective fluorescent sensing for fluoride based on a covalently bonded europium mesoporous hybrid material. Sens Actuators B Chem 2016; 227: 660-7.
[http://dx.doi.org/10.1016/j.snb.2016.01.047]
[110]
Li Y, Yu X, Yu T. Eu3+ based mesoporous hybrid material with tunable multicolor emission modulated by fluoride ion: Application for selective sensing toward fluoride ion. J Mater Chem C Mater Opt Electron Devices 2017; 5: 5411-9.
[http://dx.doi.org/10.1039/C7TC01240C]
[111]
Pang X, Li L, Wei Y, Yu X, Li Y. Novel luminescent lanthanide(iii) hybrid materials: Fluorescence sensing of fluoride ions and N,N-dimethylformamide. Dalton Trans 2018; 47(33): 11530-8.
[http://dx.doi.org/10.1039/C8DT02404A] [PMID: 30079916]
[112]
Zhang Z, Li H, Li Y, Yu X. Full-color emission of a Eu3+-based mesoporous hybrid material modulated by Zn2+ ions: Emission color changes for Zn2+ sensing via an ion exchange approach. Dalton Trans 2019; 48(28): 10547-56.
[http://dx.doi.org/10.1039/C9DT01668F] [PMID: 31215572]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy