Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Mini-Review Article

Protein Aggregation and Self Assembly in Health and Disease

Author(s): Ajoy Basak* and Sarmistha Basak

Volume 19, Issue 1, 2022

Published on: 23 February, 2021

Page: [4 - 19] Pages: 16

DOI: 10.2174/1570164618666210223160742

Price: $65

Abstract

Self-attachment of proteins leading to the formation of highly insoluble protein oligomers and aggregates has become an important focus of research owing to its diverse implications in pathophysiology and diseases. This has become a more frequent phenomenon in most neurological and neurodegenerative diseases as well as in dementia. In recent years such an event of protein aggregation has been linked to other disease conditions, disorders or adverse health conditions. Interestingly, aggregation of protein also plays a role in development, growth or metabolism. Most often, physiological proteins are initially bio-synthesised in native or nascent geometrical forms or conformations, but later they undergo specific folding patterns and thereby acquire a stable configuration that is biologically relevant and active. It is highly important that these proteins remain in their biologically active configuration in order to exert their functional properties. Any alteration or change to this structural configuration can be detrimental to their specific functions and may cause pathological consequences leading to the onset of diseases or disorders. Several factors such as the action of chaperones, binding partners, physiological metal ions, pH level, temperature, ionic strength, interfacial exposure (solid-liquid, liquid-liquid, gas-liquid), mutation and post-translational modification, chemical changes, interaction with small molecules such as lipids, hormones, etc. and solvent environment have been either identified or proposed as important factors in conferring the ultimate status of protein structure and configuration.

Among many misfolding protein conformations, self-assembly or aggregation is the most significant. It leads to the formation of highly oligomeric self-aggregates that precipitate and interfere with many biochemical processes with serious pathological consequences. The most common implication of protein aggregation leading to the formation of deposits / plaques of various morphological types is the onset of neurological and neurodegenerative diseases that include Alzheimer’s, Parkinson’s, Huntington, ALS (Amyotrophic Lateral Sclerosis), CJD (Creutzfeldt Jakob Dementia), Prion diseases, Amyloidosis and other forms of dementia. However, increasing studies have revealed that protein aggregation may also be associated with other diseases such as cancer, type 2 diabetes, renal, corneal and cardiovascular diseases. Protein aggregation diseases are now considered as part of “Proteinopathy” which refers to conditions where proteins become structurally abnormal or fail to fold into stable normal configurations. In this review, we reflect on various aspects of protein self-aggregation, potential underlying causes, mechanism, role of secondary structures, pathological consequences and possible intervention strategies as reported in published literature.

Keywords: Protein folding, protein self-assembly, sheet structure, chaperone, neurotoxic, amyloid plaques, aggregation inhibitors, aggregation promoters, aggregation diseases, aggregation mechanism.

Graphical Abstract

[1]
Protein Misfolding, Aggregation and Conformational Diseases: Part A: Protein Aggregation and Conformational Diseases; Uversky, V.N.; Fink, A., Eds.; Springer International Publishing: Switzerland, 2006.
[http://dx.doi.org/10.1007/b136464]
[2]
Howlett, D.R. Protein Misfolding in Disease: Cause or Response? Curr. Med. Chem. Immunol. Endocr. Metab. Agents, 2003, 3, 371-383.
[http://dx.doi.org/10.2174/1568013033483285]
[3]
Buxbaum, J.N.; Morgan, G.J. Summary: FASEB Science Research Conference on Protein Aggregation in Health and Disease. FASEB J., 2018, 32(3), 1125-1129.
[http://dx.doi.org/10.1096/fj.201701266]
[4]
Zaman, M.; Khan, A.N. Wahiduzzaman, Zakariya, S.M.; Khan, R.H, Protein misfolding, aggregation and mechanism of amyloid cytotoxicity: An overview and therapeuticstrategies to inhibit aggregation. Int. J. Biol. Macromol., 2019, 134, 1022-1037.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.109] [PMID: 31128177]
[5]
Buxbau, E. Fundamentals of Protein Structure and Function; Springer International Publishing: Switzerland, 2015.
[http://dx.doi.org/10.1007/978-3-319-19920-7]
[6]
Bascos, N.A.D.; Landry, S.J. A History of Molecular Chaperone Structures in the Protein Data Bank. Int. J. Mol. Sci., 2019, 20(24), 6195-6213.
[http://dx.doi.org/10.3390/ijms20246195] [PMID: 31817979]
[7]
Wang, W.; Nema, S.; Teagarden, D. Protein aggregation- pathways and influencing factors. Int. J. Pharm., 2010, 390(2), 89-99.
[http://dx.doi.org/10.1016/j.ijpharm.2010.02.025] [PMID: 20188160]
[8]
Poulson, G.B.; Szczepski, K.; Lachowiczb, J.; Jaremko, L.; Emwas, A-H.; Jaremko, M. Aggregation of biologically important peptides and proteins: inhibition or acceleration depending on protein and metal ion concentrations. RSC Advances, 2020, 10, 215-227.
[http://dx.doi.org/10.1039/C9RA09350H]
[9]
Saibil, H. Chaperone machines for protein folding, unfolding and disaggregation. Nat. Rev. Mol. Cell Biol., 2013, 14(10), 630-642.
[http://dx.doi.org/10.1038/nrm3658] [PMID: 24026055]
[10]
Brehme, M.; Voisine, C. Model systems of protein-misfolding diseases reveal chaperone modifiers of proteotoxicity. Dis. Model. Mech., 2016, 9(8), 823-838.
[http://dx.doi.org/10.1242/dmm.024703] [PMID: 27491084]
[11]
Scheibel, T.; Buchner, J. Protein Aggregation as a Cause for Disease. Molecular Chaperones in Health and Disease; Starke, K.; Gaestel, M., Eds.; Handbook of Experimental PharmacologySpringer: Berlin, Heidelberg 2006, 172.
[http://dx.doi.org/10.1007/3-540-29717-0_9]
[12]
Gregersen, N.; Bolund, L.; Bross, P. Protein misfolding, aggregation, and degradation in disease. Methods Mol. Biol., 2003, 232, 3-16.
[http://dx.doi.org/10.1385/1-59259-394-1:3] [PMID: 12840535]
[13]
Chiti, F.; Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem., 2006, 75, 333-366.
[http://dx.doi.org/10.1146/annurev.biochem.75.101304.123901] [PMID: 16756495]
[14]
Kurouski, D.; Van Duyne, R.P.; Lednev, I.K. Exploring the structure and formation mechanism of amyloid fibrils by Raman spectroscopy: a review. Analyst (Lond.), 2015, 140(15), 4967-4980.
[http://dx.doi.org/10.1039/C5AN00342C] [PMID: 26042229]
[15]
Cheng, P-N.; Liu, C.; Zhao, M.; Eisenberg, D.; Nowick, J.S. Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity. Nat. Chem., 2012, 4(11), 927-933.
[http://dx.doi.org/10.1038/nchem.1433] [PMID: 23089868]
[16]
Pallarés, I.; Ventura, S. Advances in the Prediction of Protein Aggregation Propensity. Curr. Med. Chem., 2019, 26(21), 3911-3920.
[http://dx.doi.org/10.2174/0929867324666170705121754] [PMID: 28685682]
[17]
Ranjbar, B.; Gill, P. Circular dichroism techniques: biomolecular and nanostructural analyses- a review. Chem. Biol. Drug Des., 2009, 74(2), 101-120.
[http://dx.doi.org/10.1111/j.1747-0285.2009.00847.x] [PMID: 19566697]
[18]
Hiramatsu, H.; Kitagawa, T. FT-IR approaches on amyloid fibril structure. Biochim. Biophys. Acta, 2005, 1753(1), 100-107.
[http://dx.doi.org/10.1016/j.bbapap.2005.07.008] [PMID: 16084779]
[19]
Xing, Y.; Higuchi, K. Amyloid fibril proteins. Mech. Ageing Dev., 2002, 123(12), 1625-1636.
[http://dx.doi.org/10.1016/S0047-6374(02)00098-2] [PMID: 12470900]
[20]
Mahler, H.C.; Friess, W.; Grauschopf, U.; Kiese, S. Protein aggregation: pathways, induction factors and analysis. J. Pharm. Sci., 2009, 98(9), 2909-2934.
[http://dx.doi.org/10.1002/jps.21566] [PMID: 18823031]
[21]
Sha, Z. Important Factors in the Formation and Clearance of Protein Aggregation. J. Develop. Drugs, 2014, 3(1-4), 1000-136.
[22]
Zapadka, K.L.; Becher, F.J.; Gomes Dos Santos, A.L.; Jackson, S.E. Factors affecting the physical stability (aggregation) of peptide therapeutics. Interface Focus, 2017, 7(6), 20170030.
[http://dx.doi.org/10.1098/rsfs.2017.0030] [PMID: 29147559]
[23]
Sorret, L.L.; DeWinter, M.A.; Schwartz, D.K.; Randolph, T.W. Protein-protein interactions controlling interfacial aggregation of rhIL-1ra are not described by simple colloid models. Protein Sci., 2018, 27(7), 1191-1204.
[http://dx.doi.org/10.1002/pro.3382] [PMID: 29388282]
[24]
Santos, J.; Iglesias, V.; Santos-Suárez, J.; Mangiagalli, M.; Brocca, S.; Pallarès, I.; Ventura, S. pH-Dependent Aggregation in Intrinsically Disordered Proteins Is Determined by Charge and Lipophilicity. Cells, 2020, 9(1), 145-158.
[http://dx.doi.org/10.3390/cells9010145] [PMID: 31936201]
[25]
Li, R.; Wu, Z.; Wangb, Y.; Ding, L.; Wang, Y. Role of pH-induced structural change in protein aggregation in foam fractionation of bovine serum albumin. Biotechnol. Rep. (Amst.), 2016, 9, 46-52.
[http://dx.doi.org/10.1016/j.btre.2016.01.002] [PMID: 28352591]
[26]
Pfefferkorn, C.M.; McGlinchey, R.P.; Lee, J.C. Effects of pH on aggregation kinetics of the repeat domain of a functional amyloid, Pmel17. Proc. Natl. Acad. Sci. USA, 2010, 107(50), 21447-21452.
[http://dx.doi.org/10.1073/pnas.1006424107] [PMID: 21106765]
[27]
Li, Y.; Ogunnaike, B.A.; Roberts, C.J. Multi-variate approach to global protein aggregation behavior and kinetics: effects of pH, NaCl, and temperature for alpha-chymotrypsinogen A. J. Pharm. Sci., 2010, 99(2), 645-662.
[http://dx.doi.org/10.1002/jps.21869] [PMID: 19653264]
[28]
Atrián-Blasco, E.; Gonzalez, P.; Santoro, A.; Alies, B.; Faller, P.; Hureau, C. Cu and Zn coordination to amyloid peptides: From fascinating chemistry to debated pathological relevance. Coord. Chem. Rev., 2018, 375, 38-55.
[http://dx.doi.org/10.1016/j.ccr.2018.04.007] [PMID: 30262932]
[29]
Sheng, J.; Olrichs, N.K.; Geerts, W.J.; Kaloyanova, D.V.; Helms, J.B. Metal ions and redox balance regulate distinct amyloid-like aggregation pathways of GAPR-1. Sci. Rep., 2019, 9(1), 15048-15060.
[http://dx.doi.org/10.1038/s41598-019-51232-7] [PMID: 31636315]
[30]
Kim, A.C.; Lim, S.; Kim, Y.K. Metal Ion Effects on Aβ and Tau Aggregation. Int. J. Mol. Sci., 2018, 19(1), 1-15.
[http://dx.doi.org/10.3390/ijms19010128] [PMID: 29301328]
[31]
Navarra, G.; Tinti, A.; Leone, M.; Militello, V.; Torreggiani, A. Influence of metal ions on thermal aggregation of bovine serum albumin: aggregation kinetics and structural changes. J. Inorg. Biochem., 2009, 103(12), 1729-1738.
[http://dx.doi.org/10.1016/j.jinorgbio.2009.09.023] [PMID: 19853303]
[32]
Habchi, J.; Chia, S.; Galvagnion, C.; Michaels, T.C.T.; Bellaiche, M.M.J.; Ruggeri, F.S.; Sanguanini, M.; Idini, I.; Kumita, J.R.; Sparr, E.; Linse, S.; Dobson, C.M.; Knowles, T.P.J.; Vendruscolo, M. Cholesterol catalyses Aβ42 aggregation through a heterogeneous nucleation pathway in the presence of lipid membranes. Nat. Chem., 2018, 10(6), 673-683.
[http://dx.doi.org/10.1038/s41557-018-0031-x] [PMID: 29736006]
[33]
Banerjee, S.; Mukherjee, S. Cholesterol: A Key in the Pathogenesis of Alzheimer’s Disease. ChemMedChem, 2018, 13(17), 1742-1743.
[http://dx.doi.org/10.1002/cmdc.201800452] [PMID: 29981273]
[34]
Eriksson, I.; Nath, S.; Bornefall, P.; Giraldo, A.M.; Öllinger, K. Impact of high cholesterol in a Parkinson’s disease model: Prevention of lysosomal leakage versus stimulation of α-synuclein aggregation. Eur. J. Cell Biol., 2017, 96(2), 99-109.
[http://dx.doi.org/10.1016/j.ejcb.2017.01.002] [PMID: 28109635]
[35]
Campos-Ramírez, A.; Márquez, M.; Quintanar, L.; Rojas-Ochoa, L.F. Effect of ionic strength on the aggregation kinetics of the amidated amyloid beta peptide Aβ (1-40) in aqueous solutions. Biophys. Chem., 2017, 228, 98-107.
[http://dx.doi.org/10.1016/j.bpc.2017.05.004] [PMID: 28587777]
[36]
Arnaudov, L.N.; de Vries, R. Strong impact of ionic strength on the kinetics of fibrilar aggregation of bovine beta-lactoglobulin. Biomacromolecules, 2006, 7(12), 3490-3498.
[http://dx.doi.org/10.1021/bm060584i] [PMID: 17154479]
[37]
Kastelic, M.; Kalyuzhnyi, Y.V.; Hribar-Lee, B.; Dill, K.A.; Vlachy, V. Protein aggregation in salt solutions. Proc. Natl. Acad. Sci. USA, 2015, 112(21), 6766-6770.
[http://dx.doi.org/10.1073/pnas.1507303112] [PMID: 25964322]
[38]
Stege, G.J.J.; Kampinga, H.H.; Konings, A.W.T. Heat-induced intranuclear protein aggregation and thermal radiosensitization. Int. J. Radiat. Biol., 1995, 67(2), 203-209.
[http://dx.doi.org/10.1080/09553009514550251] [PMID: 7884289]
[39]
Yan, Y.B.; Wang, Q.; He, H-W.; Zhou, H-M. Protein thermal aggregation involves distinct regions: sequential events in the heat-induced unfolding and aggregation of hemoglobin. Biophys. J., 2004, 86(3), 1682-1690.
[http://dx.doi.org/10.1016/S0006-3495(04)74237-X] [PMID: 14990496]
[40]
Xu, Y.; Seeman, D.; Yan, Y.; Sun, L.; Post, J.; Dubin, P.L. Effect of heparin on protein aggregation: inhibition versus promotion. Biomacromolecules, 2012, 13(5), 1642-1651.
[http://dx.doi.org/10.1021/bm3003539] [PMID: 22497483]
[41]
Maïza, A.; Chantepie, S.; Vera, C.; Fifre, A.; Huynh, M.B.; Stettler, O.; Ouidja, M.O.; Papy-Garcia, D. The role of heparan sulfates in protein aggregation and their potential impact on neurodegeneration. FEBS Lett., 2018, 592(23), 3806-3818.
[http://dx.doi.org/10.1002/1873-3468.13082] [PMID: 29729013]
[42]
Reches, A.; Eldor, A.; Salomon, Y. The effects of dextran sulfate, heparin and PGE1 on adenylate cyclase activity and aggregation of human platelets. Thromb. Res., 1979, 16(1-2), 107-116.
[http://dx.doi.org/10.1016/0049-3848(79)90274-3] [PMID: 228444]
[43]
Nishitsuji, K.; Uchimura, K. Sulfated glycosaminoglycans in protein aggregation diseases. Glycoconj. J., 2017, 34(4), 453-466.
[http://dx.doi.org/10.1007/s10719-017-9769-4] [PMID: 28401373]
[44]
Semenyuk, P.I.; Moiseeva, E.V.; Stroylova, Y.Y.; Lotti, M.; Izumrudov, V.A.; Muronetz, V.I. Sulfated and sulfonated polymers are able to solubilize efficiently the protein aggregates of different nature. Arch. Biochem. Biophys., 2015, 567, 22-29.
[http://dx.doi.org/10.1016/j.abb.2014.12.021] [PMID: 25562403]
[45]
Means, J.C.; Gerdes, B.C.; Kaja, S.; Sumien, N.; Payne, A.J.; Stark, D.A.; Borden, P.K.; Price, J.L.; Koulen, P. Caspase-3-Dependent Proteolytic Cleavage of Tau Causes Neurofibrillary Tangles and Results in Cognitive Impairment During Normal Aging. Neurochem. Res., 2016, 41(9), 2278-2288.
[http://dx.doi.org/10.1007/s11064-016-1942-9] [PMID: 27220334]
[46]
Gamblin, T.C.; Chen, F.; Zambrano, A.; Abraha, A.; Lagalwar, S.; Guillozet, A.L.; Lu, M.; Fu, Y.; Garcia-Sierra, F.; LaPointe, N.; Miller, R.; Berry, R.W.; Binder, L.I.; Cryns, V.L. Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2003, 100(17), 10032-10037.
[http://dx.doi.org/10.1073/pnas.1630428100] [PMID: 12888622]
[47]
Zoghbi, H.Y.; Orr, H.T. Polyglutamine diseases: protein cleavage and aggregation. Curr. Opin. Neurobiol., 1999, 9(5), 566-570.
[http://dx.doi.org/10.1016/S0959-4388(99)00013-6] [PMID: 10508741]
[48]
Avila, J. Tau phosphorylation and aggregation in Alzheimer’s disease pathology. FEBS Lett., 2006, 580(12), 2922-2927.
[http://dx.doi.org/10.1016/j.febslet.2006.02.067] [PMID: 16529745]
[49]
Reyes, J.F.; Fu, Y.; Vana, L.; Kanaan, N.M.; Binder, L.I. Tyrosine nitration within the proline-rich region of Tau in Alzheimer’s disease. Am. J. Pathol., 2011, 178(5), 2275-2285.
[http://dx.doi.org/10.1016/j.ajpath.2011.01.030] [PMID: 21514440]
[50]
Pedro, L.; Pinho, R.; Marques, N. Amyloidosis - A review. Trends Med, 2019, 19, 1-6.
[http://dx.doi.org/10.15761/TiM.1000206]
[51]
Walsh, D.M.; Selkoe, D.J. A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration. Nat. Rev. Neurosci., 2016, 17(4), 251-260.
[http://dx.doi.org/10.1038/nrn.2016.13] [PMID: 26988744]
[52]
Dobson, C.M. Protein aggregation and its consequences for human disease. Protein Pept. Lett., 2006, 13(3), 219-227.
[http://dx.doi.org/10.2174/092986606775338362] [PMID: 16515449]
[53]
Gregersen, N.; Bolund, L.; Bross, P. Protein misfolding, aggregation, and degradation in disease. Mol. Biotechnol., 2005, 31(2), 141-150.
[http://dx.doi.org/10.1385/MB:31:2:141] [PMID: 16170215]
[54]
Invernizzi, G.; Papaleo, E.; Sabate, R.; Ventura, S. Protein aggregation: mechanisms and functional consequences. Int. J. Biochem. Cell Biol., 2012, 44(9), 1541-1554.
[http://dx.doi.org/10.1016/j.biocel.2012.05.023] [PMID: 22713792]
[55]
Golde, T.E.; Miller, V.M. Proteinopathy-induced neuronal senescence: a hypothesis for brain failure in Alzheimer’s and other neurodegenerative diseases. Alzheimers Res. Ther., 2009, 1(2), 5.
[http://dx.doi.org/10.1186/alzrt5] [PMID: 19822029]
[56]
Buxbaum, J.N. Diseases of protein conformation: what do in vitro experiments tell us about in vivo diseases? Trends Biochem. Sci., 2003, 28(11), 585-592.
[http://dx.doi.org/10.1016/j.tibs.2003.09.009] [PMID: 14607088]
[57]
Woerner, A.C.; Frottin, F.; Hornburg, D.; Feng, L.R.; Meissner, F.; Patra, M.; Tatzelt, J.; Mann, M.; Winklhofer, K.F.; Hartl, F.U.; Hipp, M.S. Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of protein and RNA. Science, 2016, 351(6269), 173-176.
[http://dx.doi.org/10.1126/science.aad2033] [PMID: 26634439]
[58]
von Mikecz, A. Protein Aggregation in the Cell Nucleus: Structure, Function and Topology. Open Biol. J., 2009, 2, 193-199.
[http://dx.doi.org/10.2174/1874196700902010193]
[59]
Brunger, A.F.; Nienhuis, H.L.A.; Bijzet, J.; Hazenberg, B.P.C. Causes of AA amyloidosis: a systematic review. Amyloid, 2020, 27(1), 1-12.
[http://dx.doi.org/10.1080/13506129.2019.1693359] [PMID: 31766892]
[60]
Foss, T.R.; Wiseman, R.L.; Kelly, J.W. The pathway by which the tetrameric protein transthyretin dissociates. Biochemistry, 2005, 44(47), 15525-15533.
[http://dx.doi.org/10.1021/bi051608t] [PMID: 16300401]
[61]
Zeldenrust, S.R.; Benson, M.D. Familial and senile amyloidosis caused by transthyretin. Protein misfolding diseases: current and emerging principles and therapies; Ramirez-Alvarado, M.; Kelly, J.W.; Dobson, C., Eds.; Wiley: New York, 2010, pp. 795-815.
[http://dx.doi.org/10.1002/9780470572702.ch36]
[62]
Westermark, P.; Sletten, K.; Johansson, B.; Cornwell, G.G., III Fibril in senile systemic amyloidosis is derived from normal transthyretin. Proc. Natl. Acad. Sci. USA, 1990, 87(7), 2843-2845.
[http://dx.doi.org/10.1073/pnas.87.7.2843] [PMID: 2320592]
[63]
Adams, D.; Cauquil, C.; Labeyrie, C. Familial amyloid polyneuropathy. Curr. Opin. Neurol., 2017, 30(5), 481-489.
[http://dx.doi.org/10.1097/WCO.0000000000000476] [PMID: 28678039]
[64]
Coelho, T. Familial amyloid polyneuropathy: new developments in genetics and treatment. Curr. Opin. Neurol., 1996, 9(5), 355-359.
[http://dx.doi.org/10.1097/00019052-199610000-00007] [PMID: 8894411]
[65]
Jacobson, D.R.; Pastore, R.D.; Yaghoubian, R.; Kane, I.; Gallo, G.; Buck, F.S.; Buxbaum, J.N. Variant-sequence transthyretin (isoleucine 122) in late-onset cardiac amyloidosis in black Americans. N. Engl. J. Med., 1997, 336(7), 466-473.
[http://dx.doi.org/10.1056/NEJM199702133360703] [PMID: 9017939]
[66]
Brito, R.M.M.; Damas, A.M.; Saraiva, M.J. Amyloid Formation by Transthyretin: From Protein Stability to Protein Aggregation. Curr. Med. Chem. Immunol. Endocr. Metab. Agents, 2003, 3(4), 349-360.
[http://dx.doi.org/10.2174/1568013033483230]
[67]
Pinney, J.H.; Whelan, C.J.; Petrie, A.; Dungu, J.; Banypersad, S.M.; Sattianayagam, P.; Wechalekar, A.; Gibbs, S.D.; Venner, C.P.; Wassef, N.; McCarthy, C.A.; Gilbertson, J.A.; Rowczenio, D.; Hawkins, P.N.; Gillmore, J.D.; Lachmann, H.J. Senile systemic amyloidosis: clinical features at presentation and outcome. J. Am. Heart Assoc., 2013, 2(2), e000098.
[http://dx.doi.org/10.1161/JAHA.113.000098] [PMID: 23608605]
[68]
Sekijima, Y.; Uchiyama, S.; Tojo, K.; Sano, K.; Shimizu, Y.; Imaeda, T.; Hoshii, Y.; Kato, H.; Ikeda, S. High prevalence of wild-type transthyretin deposition in patients with idiopathic carpal tunnel syndrome: a common cause of carpal tunnel syndrome in the elderly. Hum. Pathol., 2011, 42(11), 1785-1791.
[http://dx.doi.org/10.1016/j.humpath.2011.03.004] [PMID: 21733562]
[69]
Sekijima, Y. Transthyretin (ATTR) amyloidosis: clinical spectrum, molecular pathogenesis and disease-modifying treatments. J. Neurol. Neurosurg. Psychiatry, 2015, 86(9), 1036-1043.
[http://dx.doi.org/10.1136/jnnp-2014-308724] [PMID: 25604431]
[70]
Andrade, C. A peculiar form of peripheral neuropathy; familiar atypical generalized amyloidosis with special involvement of the peripheral nerves. Brain, 1952, 75(3), 408-427.
[http://dx.doi.org/10.1093/brain/75.3.408] [PMID: 12978172]
[71]
Banypersad, S.M.; Moon, J.C.; Whelan, C.; Hawkins, P.N.; Wechalekar, A.D. Updates in cardiac amyloidosis: a review. J. Am. Heart Assoc., 2012, 1(2), e000364.
[http://dx.doi.org/10.1161/JAHA.111.000364] [PMID: 23130126]
[72]
Planté-Bordeneuve, V.; Said, G. Familial amyloid polyneuropathy. Lancet Neurol., 2011, 10(12), 1086-1097.
[http://dx.doi.org/10.1016/S1474-4422(11)70246-0] [PMID: 22094129]
[73]
Lopes, R.A.; Coelho, T.; Barros, A.; Sousa, M. Corino de Andrade disease: mechanisms and impact on reproduction. JBRA Assist. Reprod., 2017, 21(2), 105-114.
[http://dx.doi.org/10.5935/1518-0557.20170025] [PMID: 28609277]
[74]
Ando, Y.; Ueda, M. Novel methods for detecting amyloidogenic proteins in transthyretin related amyloidosis. Front. Biosci., 2008, 13(13), 5548-5558.
[http://dx.doi.org/10.2741/3098] [PMID: 18508604]
[75]
Ruberg, F.L.; Berk, J.L. Transthyretin (TTR) cardiac amyloidosis. Circulation, 2012, 126(10), 1286-1300.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.078915] [PMID: 22949539]
[77]
Sun, X.; Dyson, H.J.; Wright, P.E. Kinetic analysis of the multistep aggregation pathway of human transthyretin. Proc. Natl. Acad. Sci. USA, 2018, 115(27), E6201-E6208.
[http://dx.doi.org/10.1073/pnas.1807024115] [PMID: 29915031]
[78]
Ng, B.; Connors, L.H.; Davidoff, R.; Skinner, M.; Falk, R.H. Senile systemic amyloidosis presenting with heart failure: a comparison with light chain-associated amyloidosis. Arch. Intern. Med., 2005, 165(12), 1425-1429.
[http://dx.doi.org/10.1001/archinte.165.12.1425] [PMID: 15983293]
[79]
Westermark, P.; Bergstrom, J.; Solomon, A.; Murphy, C.; Sletten, K. Suppl, 2003, 10(1), 48-54.
[80]
Ruberg, F.L.; Grogan, M.; Hanna, M.; Kelly, J.W.; Maurer, M.S. Transthyretin Amyloid Cardiomyopathy: JACC State-of-the-Art Review. J. Am. Coll. Cardiol., 2019, 73(22), 2872-2891.
[http://dx.doi.org/10.1016/j.jacc.2019.04.003] [PMID: 31171094]
[81]
Li, X.; Buxbaum, J.N. Transthyretin and the brain re-visited: is neuronal synthesis of transthyretin protective in Alzheimer’s disease? Mol. Neurodegener., 2011, 6(79), 79.
[http://dx.doi.org/10.1186/1750-1326-6-79] [PMID: 22112803]
[82]
Park, G.Y.; Jamerlan, A.; Shim, K.H.; An, S.S.A. Diagnostic and Treatment Approaches Involving Transthyretin in Amyloidogenic Diseases. Int. J. Mol. Sci., 2019, 20(12), 1-17.
[http://dx.doi.org/10.3390/ijms20122982] [PMID: 31216785]
[83]
Dugger, B.N.; Dickson, D.W. Pathology of Neurodegenerative Diseases. Cold Spring Harb. Perspect Biol., 2017, 9(7), 1-22.
[http://dx.doi.org/10.1101/cshperspect.a028035]
[84]
Przedborski, S.; Vila, M.; Jackson-Lewis, V. Neurodegeneration: what is it and where are we? J. Clin. Invest., 2003, 111(1), 3-10.
[http://dx.doi.org/10.1172/JCI200317522] [PMID: 12511579]
[85]
Checkoway, H.; Lundin, J.I.; Kelada, S.N. Neurodegenerative diseases. IARC Sci. Publ., 2011, 22(163), 407-419.
[PMID: 22997874]
[86]
Aguzzi, A.; Haass, C. Games played by rogue proteins in prion disorders and Alzheimer’s disease. Science, 2003, 302(5646), 814-818.
[http://dx.doi.org/10.1126/science.1087348] [PMID: 14593165]
[87]
Prusiner, S.B. Biology and genetics of prions causing neurodegeneration. Annu. Rev. Genet., 2013, 47, 601-623.
[http://dx.doi.org/10.1146/annurev-genet-110711-155524] [PMID: 24274755]
[88]
Collinge, J.; Clarke, A.R. A general model of prion strains and their pathogenicity. Science, 2007, 318(5852), 930-936.
[http://dx.doi.org/10.1126/science.1138718] [PMID: 17991853]
[89]
Brandner, S.; Jaunmuktane, Z. Prion disease: experimental models and reality. Acta Neuropathol., 2017, 133(2), 197-222.
[http://dx.doi.org/10.1007/s00401-017-1670-5] [PMID: 28084518]
[90]
Wulf, M.A.; Senatore, A.; Aguzzi, A. The biological function of the cellular prion protein: an update. BMC Biol., 2017, 15(1), 34.
[http://dx.doi.org/10.1186/s12915-017-0375-5] [PMID: 28464931]
[91]
Lantos, P.L. From slow virus to prion: a review of transmissible spongiform encephalopathies. Histopathology, 1992, 20(1), 1-11.
[http://dx.doi.org/10.1111/j.1365-2559.1992.tb00909.x] [PMID: 1531331]
[92]
Olivé, M.; Kley, R.A.; Goldfarb, L.G. Myofibrillar myopathies: new developments. Curr. Opin. Neurol., 2013, 26(5), 527-535.
[http://dx.doi.org/10.1097/WCO.0b013e328364d6b1] [PMID: 23995273]
[93]
Selcen, D.; Engel, A.G. Myofibrillar Myopathy. GeneReviews®; Seattle (WA): University of Washington, Seattle, 2005, pp. 1993-2020.
[94]
Fichna, J.P.; Maruszak, A.; Żekanowski, C. Myofibrillar myopathy in the genomic context. J. Appl. Genet., 2018, 59(4), 431-439.
[http://dx.doi.org/10.1007/s13353-018-0463-4] [PMID: 30203143]
[95]
Kanapathipillai, M. Treating p53 Mutant Aggregation-Associated Cancer. Cancers (Basel), 2018, 10(6), 154-161.
[http://dx.doi.org/10.3390/cancers10060154] [PMID: 29789497]
[96]
Costa, D.C.; de Oliveira, G.A.; Cino, E.A.; Soares, I.N.; Rangel, L.P.; Silva, J.L. Aggregation and Prion-Like Properties of Misfolded Tumor Suppressors: Is Cancer a Prion Disease? Cold Spring Harb. Perspect. Biol., 2016, 8(10), 1-21.
[http://dx.doi.org/10.1101/cshperspect.a023614] [PMID: 27549118]
[97]
Dai, C.; Sampson, S.B. HSF1: Guardian of Proteostasis in Cancer. Trends Cell Biol., 2016, 26(1), 17-28.
[http://dx.doi.org/10.1016/j.tcb.2015.10.011] [PMID: 26597576]
[98]
Akter, R.; Cao, P.; Noor, H.; Ridgway, Z.; Tu, L.H.; Wang, H.; Wong, A.G.; Zhang, X.; Abedini, A.; Schmidt, A.M.; Raleigh, D.P. Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology. J. Diabetes Res., 2016, 2016, 1-18.
[99]
Mukherjee, A.; Soto, C. Prion-Like Protein Aggregates and Type 2 Diabetes. Cold Spring Harb. Perspect. Med., 2017, 7(5), a024315.
[http://dx.doi.org/10.1101/cshperspect.a024315] [PMID: 28159831]
[100]
Ciin, L.C.H.; Barker, D.; Tymms, D.J. Unexpected finding of amyloidosis at the site of insulin injection. Pract. Diabetes Int., 2005, 22(4), 118-118.
[http://dx.doi.org/10.1002/pdi.778]
[101]
Brange, J.; Andersen, L.; Laursen, E.D.; Meyn, G.; Rasmussen, E. Toward understanding insulin fibrillation. J. Pharm. Sci., 1997, 86(5), 517-525.
[http://dx.doi.org/10.1021/js960297s] [PMID: 9145374]
[102]
Ecroyd, H.; Carver, J.A. Crystallin proteins and amyloid fibrils. Cell. Mol. Life Sci., 2009, 66(1), 62-81.
[http://dx.doi.org/10.1007/s00018-008-8327-4] [PMID: 18810322]
[103]
Rodrigues, M.M.; Krachmer, J.H.; Miller, S.D.; Newsome, D.A. Posterior corneal crystalline deposits in benign monoclonal gammopathy: a clinicopathologic case report. Arch. Ophthalmol., 1979, 97(1), 124-128.
[http://dx.doi.org/10.1001/archopht.1979.01020010058014] [PMID: 103517]
[104]
Moreau, K.L.; King, J.A. Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends Mol. Med., 2012, 18(5), 273-282.
[http://dx.doi.org/10.1016/j.molmed.2012.03.005] [PMID: 22520268]
[105]
Stix, B.; Leber, M.; Bingemer, P.; Gross, C.; Rüschoff, J.; Fändrich, M.; Schorderet, D.F.; Vorwerk, C.K.; Zacharias, M.; Roessner, A.; Röcken, C. Hereditary lattice corneal dystrophy is associated with corneal amyloid deposits enclosing C-terminal fragments of keratoepithelin. Invest. Ophthalmol. Vis. Sci., 2005, 46(4), 1133-1139.
[http://dx.doi.org/10.1167/iovs.04-1319] [PMID: 15790870]
[106]
Klintworth, G.K.; Valnickova, Z.; Kielar, R.A.; Baratz, K.H.; Campbell, R.J.; Enghild, J.J. Familial subepithelial corneal amyloidosis- a lactoferrin-related amyloidosis. Invest. Ophthalmol. Vis. Sci., 1997, 38(13), 2756-2763.
[PMID: 9418728]
[107]
Araki-Sasaki, K.; Ando, Y.; Nakamura, M.; Kitagawa, K.; Ikemizu, S.; Kawaji, T.; Yamashita, T.; Ueda, M.; Hirano, K.; Yamada, M.; Matsumoto, K.; Kinoshita, S.; Tanihara, H. Lactoferrin Glu561Asp facilitates secondary amyloidosis in the cornea. Br. J. Ophthalmol., 2005, 89(6), 684-688.
[http://dx.doi.org/10.1136/bjo.2004.056804] [PMID: 15923502]
[108]
Purcell, J.J., Jr; Rodrigues, M.; Chishti, M.I.; Riner, R.N.; Dooley, J.M. Lattice corneal dystrophy associated with familial systemic amyloidosis (Meretoja’s syndrome). Ophthalmology, 1983, 90(12), 1512-1517.
[http://dx.doi.org/10.1016/S0161-6420(83)34369-4] [PMID: 6610849]
[109]
Ursini, F.; Davies, K.J.; Maiorino, M.; Parasassi, T.; Sevanian, A. Atherosclerosis: another protein misfolding disease? Trends Mol. Med., 2002, 8(8), 370-374.
[http://dx.doi.org/10.1016/S1471-4914(02)02382-1] [PMID: 12127722]
[110]
Rull, A.; Ordóñez-Llanos, J. SánchezQuesada, J.L.The role of LDL-bound apoJ in the development of atherosclerosis. Clin. Lipidol., 2015, 10(4), 321-328.
[http://dx.doi.org/10.2217/clp.15.21]
[111]
Iadanza, M.G.; Silvers, R.; Boardman, J.; Smith, H.I.; Karamanos, T.K.; Debelouchina, G.T.; Su, Y.; Griffin, R.G.; Ranson, N.A.; Radford, S.E. The structure of a β2-microglobulin fibril suggests a molecular basis for its amyloid polymorphism. Nat. Commun., 2018, 9(1), 4517.
[http://dx.doi.org/10.1038/s41467-018-06761-6] [PMID: 30375379]
[112]
Zhang, J.; Zhang, R.; Wang, Y.; Li, H.; Han, Q.; Wu, Y.; Wang, T.; Liu, F. The Level of Serum Albumin Is Associated with Renal Prognosis in Patients with Diabetic Nephropathy. J. Diabetes Research, 2019, 9(4517), 1-10.
[http://dx.doi.org/10.1155/2019/7825804]
[113]
Khalighi, M.A.; Dean Wallace, W.; Palma-Diaz, M.F. Amyloid nephropathy. Clin. Kidney J., 2014, 7(2), 97-106.
[http://dx.doi.org/10.1093/ckj/sfu021] [PMID: 25852856]
[114]
Quinlan, R.A.; Brenner, M.; Goldman, J.E.; Messing, A. GFAP and its role in Alexander disease. Exp. Cell Res., 2007, 313(10), 2077-2087.
[http://dx.doi.org/10.1016/j.yexcr.2007.04.004] [PMID: 17498694]
[115]
Lee, S.H.; Nam, T.S.; Kim, K.H.; Kim, J.H.; Yoon, W.; Heo, S.H.; Kim, M.J.; Shin, B.A.; Perng, M.D.; Choy, H.E. Aggregation-prone GFAP mutation in Alexander disease validated using a zebrafish model. BMC Neurol., 2017, 17(1), 1-9.
[116]
Li, L.; Tian, E.; Chen, X.; Chao, J.; Klein, J.; Qu, Q.; Sun, G.; Sun, G.; Huang, Y.; Warden, C.D.; Ye, P.; Feng, L.; Li, X.; Cui, Q.; Sultan, A.; Douvaras, P.; Fossati, V.; Sanjana, N.E.; Riggs, A.D.; Shi, Y. GFAP Mutations in Astrocytes Impair Oligodendrocyte Progenitor Proliferation and Myelination in an hiPSC Model of Alexander Disease. Cell Stem Cell, 2018, 23(2), 239-251.e6.
[http://dx.doi.org/10.1016/j.stem.2018.07.009] [PMID: 30075130]
[117]
McGlinchey, R.P.; Shewmaker, F.; McPhie, P.; Monterroso, B.; Thurber, K.; Wickner, R.B. The repeat domain of the melanosome fibril protein Pmel17 forms the amyloid core promoting melanin synthesis. Proc. Natl. Acad. Sci. USA, 2009, 106(33), 13731-13736.
[http://dx.doi.org/10.1073/pnas.0906509106] [PMID: 19666488]
[118]
Guo, S.; Chen, R.; Xu, Y.; Mu, Y.; Chen, L. Ankyloblepharon-Ectodermal Defects-Cleft Lip/Palate Syndrome. J. Craniofac. Surg., 2017, 28(4), e349-e351.
[http://dx.doi.org/10.1097/SCS.0000000000003600] [PMID: 28230601]
[119]
Jeffery, P.K. Remodeling in asthma and chronic obstructive lung disease. Am. J. Respir. Crit. Care Med., 2001, 164(10 Pt 2), S28-S38.
[http://dx.doi.org/10.1164/ajrccm.164.supplement_2.2106061] [PMID: 11734464]
[120]
Ruano, M.L.; García-Verdugo, I.; Miguel, E.; Pérez-Gil, J.; Casals, C. Self-aggregation of surfactant protein A. Biochemistry, 2000, 39(21), 6529-6537.
[http://dx.doi.org/10.1021/bi000188z] [PMID: 10828969]
[121]
Eisele, Y.S.; Monteiro, C.; Fearns, C.; Encalada, S.E.; Wiseman, R.L.; Powers, E.T.; Kelly, J.W. Targeting protein aggregation for the treatment of degenerative diseases. Nat. Rev. Drug Discov., 2015, 14(11), 759-780.
[http://dx.doi.org/10.1038/nrd4593] [PMID: 26338154]
[122]
Giacomelli, C.; Trincavelli, M.L.; Daniele, S.; Martini, C.; Pietrobono, D. Inhibitors of protein aggregates as novel drugs in neurodegenerative diseases. Global Drugs and Therapeutics, 2015, 2(3), 1-5.
[123]
Amijee, H.; Madine, J.; Middleton, D.A.; Doig, A.J. Inhibitors of protein aggregation and toxicity. Biochem. Soc. Trans., 2009, 37(Pt 4), 692-696.
[http://dx.doi.org/10.1042/BST0370692] [PMID: 19614577]
[124]
Aguzzi, A.; O’Connor, T. Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat. Rev. Drug Discov., 2010, 9(3), 237-248.
[http://dx.doi.org/10.1038/nrd3050] [PMID: 20190788]
[125]
Jang, J.Y.; Rhim, H.; Kang, S. NABi, a novel β-sheet breaker, inhibits Aβ aggregation and neuronal toxicity: Therapeutic implications for Alzheimer’s disease. Biochim. Biophys. Acta, Gen. Subj., 2018, 1862(1), 71-80.
[http://dx.doi.org/10.1016/j.bbagen.2017.10.014] [PMID: 29107146]
[126]
Freyssin, A.; Page, G.; Fauconneau, B.; Rioux Bilan, A. Natural polyphenols effects on protein aggregates in Alzheimer’s and Parkinson’s prion-like diseases. Neural Regen. Res., 2018, 13(6), 955-961.
[http://dx.doi.org/10.4103/1673-5374.233432] [PMID: 29926816]
[127]
Sontag, E.M.; Lotz, G.P.; Agrawal, N.; Tran, A.; Aron, R.; Yang, G.; Necula, M.; Lau, A.; Finkbeiner, S.; Glabe, C.; Marsh, J.L.; Muchowski, P.J.; Thompson, L.M. Methylene blue modulates huntingtin aggregation intermediates and is protective in Huntington’s disease models. J. Neurosci., 2012, 32(32), 11109-11119.
[http://dx.doi.org/10.1523/JNEUROSCI.0895-12.2012] [PMID: 22875942]
[128]
Pérez, M.; Sadqi, M.; Muñoz, V.; Avila, J. Inhibition by Aplidine of the aggregation of the prion peptide PrP 106-126 into beta-sheet fibrils. Biochim. Biophys. Acta, 2003, 1639(2), 133-139.
[http://dx.doi.org/10.1016/j.bbadis.2003.08.003] [PMID: 14559120]
[129]
Kokkoni, N.; Stott, K.; Amijee, H.; Mason, J.M.; Doig, A.J. N-Methylated peptide inhibitors of beta-amyloid aggregation and toxicity. Optimization of the inhibitor structure. Biochemistry, 2006, 45(32), 9906-9918.
[http://dx.doi.org/10.1021/bi060837s] [PMID: 16893191]
[130]
Eenjes, E.; Dragich, J.M.; Kampinga, H.H.; Yamamoto, A. Distinguishing aggregate formation and aggregate clearance using cell-based assays. J. Cell Sci., 2016, 129(6), 1260-1270.
[http://dx.doi.org/10.1242/jcs.179978] [PMID: 26818841]
[131]
Sha, Z. Important Factors in the Formation and Clearance of Protein Aggregation. J. Dev. Drugs, 2014, 3(e136), 1-4.
[132]
Debnath, K.; Jana, N.R.; Jana, N.R. Designed Polymer Micelle for Clearing Amyloid Protein Aggregates via Up-Regulated Autophagy. ACS Biomater. Sci. Eng., 2019, 5(1), 390-401.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01196] [PMID: 33405873]
[133]
Eliezer, M.; Brian, S.; Edward, R.; Robert, M. Compounds for Reversing And Inhibiting Protein Aggregation, And Methods For Making And Using Them. Patent Application: 2010, WO 2010/037135., 2010.
[134]
Buchner, J. Molecular chaperones and protein quality control: an introduction to the JBC Reviews thematic series. J. Biol. Chem., 2019, 294(6), 2074-2075.
[http://dx.doi.org/10.1074/jbc.REV118.006739] [PMID: 30626733]
[135]
Harper, S.Q. Progress and challenges in RNA interference therapy for Huntington disease. Arch. Neurol., 2009, 66(8), 933-938.
[http://dx.doi.org/10.1001/archneurol.2009.180] [PMID: 19667213]
[136]
Yahara, M.; Kitamura, A.; Kinjo, M. U6 snRNA expression prevents toxicity in TDP-43-knockdown cells. PLoS One, 2017, 12(11), e0187813.
[http://dx.doi.org/10.1371/journal.pone.0187813] [PMID: 29125873]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy