Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Mini-Review Article

Dental Pulp from Human Exfoliated Deciduous Teeth-derived Stromal Cells Demonstrated Neuronal Potential: In Vivo and In Vitro Studies

Author(s): Agner H.D. Hochuli, Alexandra C. Senegaglia*, Ana H. Selenko, Letícia Fracaro and Paulo R.S. Brofman

Volume 16, Issue 5, 2021

Published on: 15 February, 2021

Page: [495 - 506] Pages: 12

DOI: 10.2174/1574888X16666210215160402

Price: $65

Abstract

Background: Mesenchymal Stromal Cells (MSC) have the potential for self-renewal and differentiation in different tissues, characteristics that encourage their use in regenerative medicine. Dental tissue MSCs are easy to collect, have the same embryonic origin as neurons and have neuronal markers that allow their use in treating neurodegenerative diseases. Human Exfoliated Deciduous teeth (SHED)-derived stromal cells are considered immature and present positive expression of pluripotency and neuronal markers. Studies have shown that after the induction of neuronal differentiation in vitro, SHED increased the expression of neuronal markers, such as βIIItubulin, nestin, GFAP, NeuN, and NFM, demonstrating the potential use of these cells in preclinical studies. The results of this review reflect the consensus that in diseases such as spinal cord injury, cerebral ischaemia, and Alzheimer’s and Parkinson’s disease, SHED could function in the suppression of the inflammatory response, neuroprotection, and neuronal replacement.

Conclusion: For these cells to be used in large-scale clinical trials, standardization of the isolation techniques and theneuronal induction medium are necessary. The potential of SHED to induce neuronal differentiation is evident, demonstrating that this resource is promising and shows great potential for use in future preclinical and clinical trials of neurodegenerative diseases.

Keywords: Mesenchymal stromal cells, dental tissue, SHED, neural differentiation, neuronal markers, neurons.

[1]
Caplan AI. Why are MSCs therapeutic? New data: New insight. J Pathol 2009; 217(2): 318-24.
[http://dx.doi.org/10.1002/path.2469] [PMID: 19023885]
[2]
Daley GQ. Stem cells and the evolving notion of cellular identity. Philos Trans R Soc Lond B Biol Sci 2015; 370(1680): 20140376.
[http://dx.doi.org/10.1098/rstb.2014.0376] [PMID: 26416685]
[3]
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315-7.
[http://dx.doi.org/10.1080/14653240600855905] [PMID: 16923606]
[4]
Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med 2019; 4: 22.
[http://dx.doi.org/10.1038/s41536-019-0083-6] [PMID: 31815001]
[5]
Bydlowski SP, Debes AA, Maselli LMF, Janz FL. Biological characteristics of mesenchymal stem cells. Rev Bras Hematol Hemoter 2009; 31: 25-35.
[http://dx.doi.org/10.1590/S1516-84842009005000038]
[6]
Caplan AI. All MSCs are pericytes? Cell Stem Cell 2008; 3(3): 229-30.
[http://dx.doi.org/10.1016/j.stem.2008.08.008] [PMID: 18786406]
[7]
Kumar R, Sharma A, Pattnaik AK, Varadwaj PK. Stem cells: An overview with respect to cardiovascular and renal disease. J Nat Sci Biol Med 2010; 1(1): 43-52.
[http://dx.doi.org/10.4103/0976-9668.71674] [PMID: 22096336]
[8]
Salehi H, Amirpour N, Niapour A, Razavi S. An overview of neural differentiation potential of human adipose derived stem cells. Stem Cell Rev Rep 2016; 12(1): 26-41.
[http://dx.doi.org/10.1007/s12015-015-9631-7] [PMID: 26490462]
[9]
Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 2004; 95(1): 9-20.
[http://dx.doi.org/10.1161/01.RES.0000135902.99383.6f] [PMID: 15242981]
[10]
Väänänen HK. Mesenchymal stem cells. Ann Med 2005; 37(7): 469-79.
[http://dx.doi.org/10.1080/07853890500371957] [PMID: 16278160]
[11]
Bianco P. Mesenchymal stem cells. Tissue Eng Princ Pract 2014; 30: 677-704.
[http://dx.doi.org/10.1146/annurev-cellbio-100913-013132]
[12]
Baer PC, Geiger H. Adipose-derived mesenchymal stromal/stem cells: Tissue localization, characterization, and heterogeneity. Stem Cells Int 2012; 2012: 812693.
[http://dx.doi.org/10.1155/2012/812693] [PMID: 22577397]
[13]
Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 1999; 181(1): 67-73.
[http://dx.doi.org/10.1002/(SICI)1097-4652(199910)181:1<67::AID-JCP7>3.0.CO;2-C] [PMID: 10457354]
[14]
Stocchero IN, Stocchero GF. Isolation of stem cells from human adipose tissue: Technique, problems, and pearls. In: Illouz Y-G, Sterodimas AA, Eds. Adipose stem cells and regenerative medicine. Heidelberg: Springer 2011; pp. 13-8.
[15]
Bianco P, Cossu G. Uno, nessuno e centomila: Searching for the identity of mesodermal progenitors. Exp Cell Res 1999; 251(2): 257-63.
[http://dx.doi.org/10.1006/excr.1999.4592] [PMID: 10471311]
[16]
Kerkis I, Caplan AI. Stem cells in dental pulp of deciduous teeth. Tissue Eng Part B Rev 2012; 18(2): 129-38.
[http://dx.doi.org/10.1089/ten.teb.2011.0327] [PMID: 22032258]
[17]
Mushahary D, Spittler A, Kasper C, Weber V, Charwat V. Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry A 2018; 93(1): 19-31.
[http://dx.doi.org/10.1002/cyto.a.23242] [PMID: 29072818]
[18]
Stanko P, Kaiserova K, Altanerova V, Altaner C. Comparison of human mesenchymal stem cells derived from dental pulp, bone marrow, adipose tissue, and umbilical cord tissue by gene expression. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2014; 158(3): 373-7.
[http://dx.doi.org/10.5507/bp.2013.078] [PMID: 24145770]
[19]
Li J, Xu SQ, Zhao YM, Yu S, Ge LH, Xu BH. Comparison of the biological characteristics of human mesenchymal stem cells derived from exfoliated deciduous teeth, bone marrow, gingival tissue, and umbilical cord. Mol Med Rep 2018; 18(6): 4969-77.
[http://dx.doi.org/10.3892/mmr.2018.9501] [PMID: 30272340]
[20]
Kunimatsu R, Nakajima K, Awada T, et al. Comparative characterization of stem cells from human exfoliated deciduous teeth, dental pulp, and bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun 2018; 501(1): 193-8.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.213] [PMID: 29730288]
[21]
Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S. The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res 2005; 8(3): 191-9.
[http://dx.doi.org/10.1111/j.1601-6343.2005.00331.x] [PMID: 16022721]
[22]
Gronthos S, Brahim J, Li W, et al. Stem cell properties of human dental pulp stem cells. J Dent Res 2002; 81(8): 531-5.
[http://dx.doi.org/10.1177/154405910208100806] [PMID: 12147742]
[23]
Krivanek J, Adameyko I, Fried K. Heterogeneity and developmental connections between cell types inhabiting teeth. Front Physiol 2017; 8: 376.
[http://dx.doi.org/10.3389/fphys.2017.00376] [PMID: 28638345]
[24]
Kulesa PM, Bailey CM, Kasemeier-Kulesa JC, McLennan R. Cranial neural crest migration: new rules for an old road. Dev Biol 2010; 344(2): 543-54.
[http://dx.doi.org/10.1016/j.ydbio.2010.04.010] [PMID: 20399765]
[25]
Marinkovic M, Dybdal-Hargreaves NF, Block TJ, Dean DD, Yeh C-K, Chen X-D. Oral and Craniofacial Stem Cells: An Untapped Source for Neural Tissue Regeneration. Tissue Eng Part A 2020; 26(17-18): 935-8.
[http://dx.doi.org/10.1089/ten.tea.2020.0023] [PMID: 32164476]
[26]
Sharpe PT. Dental mesenchymal stem cells. Development 2016; 143(13): 2273-80.
[http://dx.doi.org/10.1242/dev.134189] [PMID: 27381225]
[27]
Xiao L, Ide R, Saiki C, Kumazawa Y, Okamura H. Human dental pulp cells differentiate toward neuronal cells and promote neuroregeneration in adult organotypic hippocampal slices in vitro. Int J Mol Sci 2017; 18(8): 1745.
[http://dx.doi.org/10.3390/ijms18081745] [PMID: 28800076]
[28]
Morsczeck C, Völlner F, Saugspier M, et al. Comparison of human dental follicle cells (DFCs) and stem cells from human exfoliated deciduous teeth (SHED) after neural differentiation in vitro. Clin Oral Investig 2010; 14(4): 433-40.
[http://dx.doi.org/10.1007/s00784-009-0310-4] [PMID: 19590907]
[29]
Ibarretxe G, Crende O, Aurrekoetxea M, García-Murga V, Etxaniz J, Unda F. Neural crest stem cells from dental tissues: A new hope for dental and neural regeneration. Stem Cells Int 2012; 2012: 103503.
[http://dx.doi.org/10.1155/2012/103503] [PMID: 23093977]
[30]
Zaehres H, Lensch MW, Daheron L, Stewart SA, Itskovitz-Eldor J, Daley GQ. High-efficiency RNA interference in human embryonic stem cells. Stem Cells 2005; 23(3): 299-305.
[http://dx.doi.org/10.1634/stemcells.2004-0252] [PMID: 15749924]
[31]
Botelho J, Cavacas MA, Machado V, Mendes JJ. Dental stem cells: Recent progresses in tissue engineering and regenerative medicine. Ann Med 2017; 49(8): 644-51.
[http://dx.doi.org/10.1080/07853890.2017.1347705] [PMID: 28649865]
[32]
Tamaki Y, Nakahara T, Ishikawa H, Sato S. In vitro analysis of mesenchymal stem cells derived from human teeth and bone marrow. Odontology 2013; 101(2): 121-32.
[http://dx.doi.org/10.1007/s10266-012-0075-0] [PMID: 22772774]
[33]
Victor AK, Reiter LT. Dental pulp stem cells for the study of neurogenetic disorders. Hum Mol Genet 2017; 26(R2): R166-71.
[http://dx.doi.org/10.1093/hmg/ddx208] [PMID: 28582499]
[34]
Zeitlin BD. Banking on teeth-Stem cells and the dental office. Biomed J 2020; 43(2): 124-33.
[http://dx.doi.org/10.1016/j.bj.2020.02.003] [PMID: 32381462]
[35]
Ducret M, Fabre H, Degoul O, et al. Immunophenotyping reveals the diversity of human dental pulp mesenchymal stromal cells in vivo and their evolution upon in vitro amplification. Front Physiol 2016; 7: 512.
[http://dx.doi.org/10.3389/fphys.2016.00512] [PMID: 27877132]
[36]
Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 2000; 97(25): 13625-30.
[http://dx.doi.org/10.1073/pnas.240309797] [PMID: 11087820]
[37]
Kashyap R. SHED-Basic Structure for Stem Cell Research. J Clin Diagn Res 2015; 9(3): ZE07-9.
[http://dx.doi.org/10.7860/JCDR/2015/9871.5636] [PMID: 25954717]
[38]
Mikami Y, Ishii Y, Watanabe N, et al. CD271/p75(NTR) inhibits the differentiation of mesenchymal stem cells into osteogenic, adipogenic, chondrogenic, and myogenic lineages. Stem Cells Dev 2011; 20(5): 901-13.
[http://dx.doi.org/10.1089/scd.2010.0299] [PMID: 21142793]
[39]
Wang X, Sha XJ, Li GH, et al. Comparative characterization of stem cells from human exfoliated deciduous teeth and dental pulp stem cells. Arch Oral Biol 2012; 57(9): 1231-40.
[http://dx.doi.org/10.1016/j.archoralbio.2012.02.014] [PMID: 22455989]
[40]
Wang H, Zhong Q, Yang T, et al. Comparative characterization of SHED and DPSCs during extended cultivation in vitro. Mol Med Rep 2018; 17(5): 6551-9.
[http://dx.doi.org/10.3892/mmr.2018.8725] [PMID: 29532869]
[41]
Yoon JH, Roh EY, Shin S, et al. Comparison of explant-derived and enzymatic digestion-derived MSCs and the growth factors from Wharton’s jelly. BioMed Res Int 2013; 2013: 428726.
[http://dx.doi.org/10.1155/2013/428726] [PMID: 23653895]
[42]
Jing W, Xiao J, Xiong Z, et al. Explant culture: An efficient method to isolate adipose-derived stromal cells for tissue engineering. Artif Organs 2011; 35(2): 105-12.
[http://dx.doi.org/10.1111/j.1525-1594.2010.01054.x] [PMID: 20946305]
[43]
Shah FS, Wu X, Dietrich M, Rood J, Gimble JM. A non-enzymatic method for isolating human adipose tissue-derived stromal stem cells. Cytotherapy 2013; 15(8): 979-85.
[http://dx.doi.org/10.1016/j.jcyt.2013.04.001] [PMID: 23725689]
[44]
Jeon M, Song JS, Choi BJ, et al. In vitro and in vivo characteristics of stem cells from human exfoliated deciduous teeth obtained by enzymatic disaggregation and outgrowth. Arch Oral Biol 2014; 59(10): 1013-23.
[http://dx.doi.org/10.1016/j.archoralbio.2014.06.002] [PMID: 24960116]
[45]
Lv F-J, Tuan RS, Cheung KMC, Leung VYL. Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 2014; 32(6): 1408-19.
[http://dx.doi.org/10.1002/stem.1681] [PMID: 24578244]
[46]
Barkhordarian A, Sison J, Cayabyab R, Mahanian N, Chiappelli F. Epigenetic regulation of osteogenesis: Human embryonic palatal mesenchymal cells. Bioinformation 2011; 5(7): 278-81.
[http://dx.doi.org/10.6026/97320630005278] [PMID: 21364834]
[47]
Shi G, Jin Y. Role of Oct4 in maintaining and regaining stem cell pluripotency. Stem Cell Res Ther 2010; 1(5): 39.
[http://dx.doi.org/10.1186/scrt39] [PMID: 21156086]
[48]
Pan GJ, Chang ZYI, Schöler HR, Pei D. Stem cell pluripotency and transcription factor Oct4. Cell Res 2002; 12(5-6): 321-9.
[http://dx.doi.org/10.1038/sj.cr.7290134] [PMID: 12528890]
[49]
Kozlowska U, Krawczenko A, Futoma K, et al. Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues. World J Stem Cells 2019; 11(6): 347-74.
[http://dx.doi.org/10.4252/wjsc.v11.i6.347] [PMID: 31293717]
[50]
Covas DT, Panepucci RA, Fontes AM, et al. Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol 2008; 36(5): 642-54.
[http://dx.doi.org/10.1016/j.exphem.2007.12.015] [PMID: 18295964]
[51]
Sivasankar V, Ranganathan K. Growth characteristics and expression of CD73 and CD146 in cells cultured from dental pulp. J Investig Clin Dent 2016; 7(3): 278-85.
[http://dx.doi.org/10.1111/jicd.12155] [PMID: 26037281]
[52]
Gazarian KG, Ramírez-García LR. Human deciduous teeth stem cells (SHED) display neural crest signature characters. PLoS One 2017; 12(1): e0170321.
[http://dx.doi.org/10.1371/journal.pone.0170321] [PMID: 28125654]
[53]
Barilani M, Banfi F, Sironi S, et al. Low-affinity nerve growth factor receptor (CD271) heterogeneous expression in adult and fetal mesenchymal stromal cells. Sci Rep 2018; 8(1): 9321.
[http://dx.doi.org/10.1038/s41598-018-27587-8] [PMID: 29915318]
[54]
Nam H, Lee G. Identification of novel epithelial stem cell-like cells in human deciduous dental pulp. Biochem Biophys Res Commun 2009; 386(1): 135-9.
[http://dx.doi.org/10.1016/j.bbrc.2009.05.141] [PMID: 19501569]
[55]
Bernardi L, Luisi SB, Fernandes R, et al. The isolation of stem cells from human deciduous teeth pulp is related to the physiological process of resorption. J Endod 2011; 37(7): 973-9.
[http://dx.doi.org/10.1016/j.joen.2011.04.010] [PMID: 21689554]
[56]
Feng X, Xing J, Feng G, et al. Age-dependent impaired neurogenic differentiation capacity of dental stem cell is associated with Wnt/β-catenin signaling. Cell Mol Neurobiol 2013; 33(8): 1023-31.
[http://dx.doi.org/10.1007/s10571-013-9965-0] [PMID: 24043508]
[57]
Lee RTH, Nagai H, Nakaya Y, et al. Cell delamination in the mesencephalic neural fold and its implication for the origin of ectomesenchyme. Development 2013; 140(24): 4890-902.
[http://dx.doi.org/10.1242/dev.094680] [PMID: 24198279]
[58]
Majumdar D, Kanafi M, Bhonde R, Gupta P, Datta I. Differential neuronal plasticity of dental pulp stem cells from exfoliated deciduous and permanent teeth towards dopaminergic neurons. J Cell Physiol 2016; 231(9): 2048-63.
[http://dx.doi.org/10.1002/jcp.25314] [PMID: 26773559]
[59]
Miura M, Gronthos S, Zhao M, et al. SHED: Stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 2003; 100(10): 5807-12.
[http://dx.doi.org/10.1073/pnas.0937635100] [PMID: 12716973]
[60]
Arthur A, Rychkov G, Shi S, Koblar SA, Gronthos S. Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells 2008; 26(7): 1787-95.
[http://dx.doi.org/10.1634/stemcells.2007-0979] [PMID: 18499892]
[61]
Janebodin K, Horst OV, Ieronimakis N, et al. Isolation and characterization of neural crest-derived stem cells from dental pulp of neonatal mice. PLoS One 2011; 6(11): e27526.
[http://dx.doi.org/10.1371/journal.pone.0027526] [PMID: 22087335]
[62]
Thesleff I, Åberg T. Molecular regulation of tooth development. Bone 1999; 25(1): 123-5.
[http://dx.doi.org/10.1016/S8756-3282(99)00119-2] [PMID: 10423036]
[63]
Wang J, Wang X, Sun Z, et al. Stem cells from human-exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells. Stem Cells Dev 2010; 19(9): 1375-83.
[http://dx.doi.org/10.1089/scd.2009.0258] [PMID: 20131979]
[64]
Nourbakhsh N, Soleimani M, Taghipour Z, et al. Induced in vitro differentiation of neural-like cells from human exfoliated deciduous teeth-derived stem cells. Int J Dev Biol 2011; 55(2): 189-95.
[http://dx.doi.org/10.1387/ijdb.103090nn] [PMID: 21671222]
[65]
Esmaeili A, Alifarja S, Nourbakhsh N, Talebi A. Messenger RNA expression patterns of neurotrophins during transdifferentiation of stem cells from human-exfoliated deciduous teeth into neural-like cells. Avicenna J Med Biotechnol 2014; 6(1): 21-6.
[PMID: 24551431]
[66]
Jarmalavičiūtė A, Tunaitis V, Strainienė E, et al. A new experimental model for neuronal and glial differentiation using stem cells derived from human exfoliated deciduous teeth. J Mol Neurosci 2013; 51: 307-17.
[http://dx.doi.org/10.1007/s12031-013-0046-0] [PMID: 23797732]
[67]
Su W-T, Shih Y-A, Ko C-S. Effect of chitosan conduit under a dynamic culture on the proliferation and neural differentiation of human exfoliated deciduous teeth stem cells. J Tissue Eng Regen Med 2016; 10(6): 507-17.
[http://dx.doi.org/10.1002/term.1783] [PMID: 24130037]
[68]
Fujii H, Matsubara K, Sakai K, et al. Dopaminergic differentiation of stem cells from human deciduous teeth and their therapeutic benefits for Parkinsonian rats. Brain Res 2015; 1613: 59-72.
[http://dx.doi.org/10.1016/j.brainres.2015.04.001] [PMID: 25863132]
[69]
Zhang N, Chen B, Wang W, et al. Isolation, characterization and multi-lineage differentiation of stem cells from human exfoliated deciduous teeth. Mol Med Rep 2016; 14(1): 95-102.
[http://dx.doi.org/10.3892/mmr.2016.5214] [PMID: 27151462]
[70]
Sunil PM, Manikandan R, Muthumurugan , Yoithapprabhunath TR, Sivakumar M. Harvesting dental stem cells-Overview. J Pharm Bioallied Sci 2015; 7(Suppl. 2): S384-6.
[http://dx.doi.org/10.4103/0975-7406.163461] [PMID: 26538883]
[71]
Turakhia H, Nayyar AS, Chawla S. Dental stem cell banking, the future is here : A Case Report. J Dent Oral Heal 2016; 2: 2-5.
[72]
Moore R, Theveneau E, Pozzi S, et al. Par3 controls neural crest migration by promoting microtubule catastrophe during contact inhibition of locomotion. Development 2013; 140(23): 4763-75.
[http://dx.doi.org/10.1242/dev.098509] [PMID: 24173803]
[73]
Chacon J, Rogers CD. Early expression of Tubulin Beta-III in avian cranial neural crest cells. Gene Expr Patterns 2019; 34: 119067.
[http://dx.doi.org/10.1016/j.gep.2019.119067] [PMID: 31369820]
[74]
Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H. GABA and GABA receptors in the central nervous system and other organs. Int Rev Cytol 2002; 213: 1-47.
[http://dx.doi.org/10.1016/S0074-7696(02)13011-7] [PMID: 11837891]
[75]
Herculano-Houzel S, Lent R. Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J Neurosci 2005; 25(10): 2518-21.
[http://dx.doi.org/10.1523/JNEUROSCI.4526-04.2005] [PMID: 15758160]
[76]
Jacque CM, Vinner C, Kujas M, Raoul M, Racadot J, Baumann NA. Determination of glial fibrillary acidic protein (GFAP) in human brain tumors. J Neurol Sci 1978; 35(1): 147-55.
[http://dx.doi.org/10.1016/0022-510X(78)90107-7] [PMID: 624958]
[77]
Yuan A, Rao MV, Veeranna , Nixon RA. Neurofilaments at a glance. J Cell Sci 2012; 125(Pt 14): 3257-63.
[http://dx.doi.org/10.1242/jcs.104729] [PMID: 22956720]
[78]
Yum SW, Zhang J, Mo K, Li J, Scherer SS. A novel recessive Nefl mutation causes a severe, early-onset axonal neuropathy. Ann Neurol 2009; 66(6): 759-70.
[http://dx.doi.org/10.1002/ana.21728] [PMID: 20039262]
[79]
Hinman JD, Chen C-D, Oh S-Y, Hollander W, Abraham CR. Age-dependent accumulation of ubiquitinated 2′,3′-cyclic nucleotide 3′-phosphodiesterase in myelin lipid rafts. Glia 2008; 56(1): 118-33.
[http://dx.doi.org/10.1002/glia.20595] [PMID: 17963267]
[80]
Dahlstrand J, Zimmerman LB, McKay RDG, Lendahl U. Characterization of the human nestin gene reveals a close evolutionary relationship to neurofilaments. J Cell Sci 1992; 103(Pt 2): 589-97.
[PMID: 1478958]
[81]
Wiese C, Rolletschek A, Kania G, et al. Nestin expression-a property of multi-lineage progenitor cells? Cell Mol Life Sci 2004; 61(19-20): 2510-22.
[http://dx.doi.org/10.1007/s00018-004-4144-6] [PMID: 15526158]
[82]
Prosser J, van Heyningen V. PAX6 mutations reviewed. Hum Mutat 1998; 11(2): 93-108.
[http://dx.doi.org/10.1002/(SICI)1098-1004(1998)11:2<93::AID-HUMU1>3.0.CO;2-M] [PMID: 9482572]
[83]
Aloe L, Rocco ML, Balzamino BO, Micera A. Nerve growth factor: A focus on neuroscience and therapy. Curr Neuropharmacol 2015; 13(3): 294-303.
[http://dx.doi.org/10.2174/1570159X13666150403231920] [PMID: 26411962]
[84]
Acheson A, Conover JC, Fandl JP, et al. A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 1995; 374(6521): 450-3.
[http://dx.doi.org/10.1038/374450a0] [PMID: 7700353]
[85]
Huang EJ, Reichardt LF. Neurotrophins: Roles in neuronal development and function. Annu Rev Neurosci 2001; 24: 677-736.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.677] [PMID: 11520916]
[86]
Kalcheim C, Carmeli C, Rosenthal A. Neurotrophin 3 is a mitogen for cultured neural crest cells. Proc Natl Acad Sci USA 1992; 89(5): 1661-5.
[http://dx.doi.org/10.1073/pnas.89.5.1661] [PMID: 1542658]
[87]
Cremer H, Chazal G, Lledo PM, et al. PSA-NCAM: an important regulator of hippocampal plasticity. Int J Dev Neurosci 2000; 18(2-3): 213-20.
[http://dx.doi.org/10.1016/S0736-5748(99)00090-8] [PMID: 10715576]
[88]
Quartu M, Serra MP, Boi M, Ibba V, Melis T, Del Fiacco M. Polysialylated-neural cell adhesion molecule (PSA-NCAM) in the human trigeminal ganglion and brainstem at prenatal and adult ages. BMC Neurosci 2008; 9: 108.
[http://dx.doi.org/10.1186/1471-2202-9-108] [PMID: 18990213]
[89]
Isgrò MA, Bottoni P, Scatena R. Neuron-Specific Enolase as a biomarker: Biochemical and clinical aspects. Adv Exp Med Biol 2015; 867: 125-43.
[http://dx.doi.org/10.1007/978-94-017-7215-0_9] [PMID: 26530364]
[90]
Hernández F, Pérez M, de Barreda EG, Goñi-Oliver P, Avila J. Tau as a molecular marker of development, aging and neurodegenerative disorders. Curr Aging Sci 2008; 1(1): 56-61.
[http://dx.doi.org/10.2174/1874609810801010056] [PMID: 20021373]
[91]
Reynolds B, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992; 255(5052): 1707-10.
[http://dx.doi.org/10.1126/science.1553558]
[92]
Kohyama J, Tokunaga A, Fujita Y, et al. Visualization of spatiotemporal activation of Notch signaling: live monitoring and significance in neural development. Dev Biol 2005; 286(1): 311-25.
[http://dx.doi.org/10.1016/j.ydbio.2005.08.003] [PMID: 16153632]
[93]
Kato-Negishi M, Tsuda Y, Onoe H, Takeuchi S. A neurospheroid network-stamping method for neural transplantation to the brain. Biomaterials 2010; 31(34): 8939-45.
[http://dx.doi.org/10.1016/j.biomaterials.2010.08.008] [PMID: 20850180]
[94]
Shofuda T, Fukusumi H, Kanematsu D, et al. A method for efficiently generating neurospheres from human-induced pluripotent stem cells using microsphere arrays. Neuroreport 2013; 24(2): 84-90.
[http://dx.doi.org/10.1097/WNR.0b013e32835cb677] [PMID: 23238165]
[95]
Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA. “Stemness”: Transcriptional profiling of embryonic and adult stem cells. Science 2002; 298: 597-600.
[96]
Ivanova NB. A Stem Cell Molecular Signature. Science 2002; 298: 601-4.
[http://dx.doi.org/10.1126/science.1073823]
[97]
Marshall GP II, Scott EW, Zheng T, Laywell ED, Steindler DA. Ionizing radiation enhances the engraftment of transplanted in vitro-derived multipotent astrocytic stem cells. Stem Cells 2005; 23(9): 1276-85.
[http://dx.doi.org/10.1634/stemcells.2005-0073] [PMID: 16051984]
[98]
Enwere E, Shingo T, Gregg C, Fujikawa H, Ohta S, Weiss S. Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J Neurosci 2004; 24(38): 8354-65.
[http://dx.doi.org/10.1523/JNEUROSCI.2751-04.2004] [PMID: 15385618]
[99]
Luo L, He Y, Wang X, et al. Potential roles of dental pulp stem cells in neural regeneration and repair. Stem Cells Int 2018; 2018: 1731289.
[http://dx.doi.org/10.1155/2018/1731289] [PMID: 29853908]
[100]
Rosa V, Dubey N, Islam I, Min KS, Nör JE. Pluripotency of stem cells from human exfoliated deciduous teeth for tissue engineering. Stem Cells Int 2016; 2016: 5957806.
[http://dx.doi.org/10.1155/2016/5957806] [PMID: 27313627]
[101]
Sakai K, Yamamoto A, Matsubara K, et al. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest 2012; 122(1): 80-90.
[http://dx.doi.org/10.1172/JCI59251.80] [PMID: 22133879]
[102]
Asadi-Golshan R, Razban V, Mirzaei E, et al. Sensory and motor behavior evidences supporting the usefulness of conditioned medium from dental pulp-derived stem cells in spinal cord injury in rats. Asian Spine J 2018; 12(5): 785-93.
[http://dx.doi.org/10.31616/asj.2018.12.5.785] [PMID: 30213159]
[103]
Nicola FDC, Marques MR, Odorcyk F, et al. Neuroprotector effect of stem cells from human exfoliated deciduous teeth transplanted after traumatic spinal cord injury involves inhibition of early neuronal apoptosis. Brain Res 2017; 1663: 95-105.
[http://dx.doi.org/10.1016/j.brainres.2017.03.015] [PMID: 28322752]
[104]
Inoue T, Sugiyama M, Hattori H, Wakita H, Wakabayashi T, Ueda M. Stem cells from human exfoliated deciduous tooth-derived conditioned medium enhance recovery of focal cerebral ischemia in rats. Tissue Eng Part A 2013; 19(1-2): 24-9.
[http://dx.doi.org/10.1089/ten.tea.2011.0385] [PMID: 22839964]
[105]
Zhu S, Min D, Zeng J, Ju Y, Liu Y, Chen X. Transplantation of stem cells from human exfoliated deciduous teeth decreases cognitive impairment from chronic cerebral ischemia by reducing neuronal apoptosis in rats. Stem Cells Int 2020; 2020: 6393075.
[http://dx.doi.org/10.1155/2020/6393075] [PMID: 32215019]
[106]
Mita T, Furukawa-Hibi Y, Takeuchi H, et al. Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer’s disease. Behav Brain Res 2015; 293: 189-97.
[http://dx.doi.org/10.1016/j.bbr.2015.07.043] [PMID: 26210934]
[107]
Zhang N, Lu X, Wu S, et al. Intrastriatal transplantation of stem cells from human exfoliated deciduous teeth reduces motor defects in Parkinsonian rats. Cytotherapy 2018; 20(5): 670-86.
[http://dx.doi.org/10.1016/j.jcyt.2018.02.371] [PMID: 29576501]
[108]
Chen L, Tredget EE, Wu PYG, Wu Y, Wu Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 2008; 3(4): e1886.
[http://dx.doi.org/10.1371/journal.pone.0001886] [PMID: 18382669]
[109]
Kinnaird T, Stabile E, Burnett MS, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 2004; 109(12): 1543-9.
[http://dx.doi.org/10.1161/01.CIR.0000124062.31102.57] [PMID: 15023891]
[110]
Hiraki T, Kunimatsu R, Nakajima K, et al. Stem cell-derived conditioned media from human exfoliated deciduous teeth promote bone regeneration. Oral Dis 2020; 26(2): 381-90.
[http://dx.doi.org/10.1111/odi.13244] [PMID: 31808229]
[111]
Shimojima C, Takeuchi H, Jin S, et al. Conditioned medium from the stem cells of human exfoliated deciduous teeth ameliorates experimental autoimmune encephalomyelitis. J Immunol 2016; 196(10): 4164-71.
[http://dx.doi.org/10.4049/jimmunol.1501457] [PMID: 27053763]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy