Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Identification of a Novel 4-gene Diagnostic Model for Atrial Fibrillation Risk Based on Integrated Analysis Across Independent Data Sets

Author(s): Pei Zhang, Qiang Miao, Xiao Wang, Yong Zhang* and Yinglong Hou*

Volume 25, Issue 2, 2022

Published on: 20 January, 2021

Page: [229 - 240] Pages: 12

DOI: 10.2174/1386207324666210121103304

Price: $65

Abstract

Background: Atrial fibrillation (AF) is the most common persistent arrhythmia and an important factor leading to cardiovascular morbidity and mortality. Several key genes and diagnostic markers have been discovered with the development of advanced modern molecular biology techniques, but the etiology and pathogenesis of AF remained unknown.

Methods: In this study, three-chip-seq data sets and an RNA-seq data set were integrated as a comprehensive network for pathway analysis of the biological functions of related genes in AF, hoping to provide a better understanding of the etiology and pathogenesis of AF.

Results: Differential co-expression analysis identified 360 genes with specific expression in AF, and functional enrichment analysis further revealed that these genes were significantly correlated with focal expression (p <0.01), autophagy (p <0.01), and thyroid cancer. In addition, Af-specific proteinprotein interaction (PPI) networks were constructed based on AF-specific expression genes. Network topology analysis identified PLEKHA7, YWHAQ, PPP1CB, WDR1, AKT1, IGF1R, CANX, MAPK1, SRPK2 and SRSF10 genes as hub genes of the networks, and they were considered as potential biomarkers of AF because they were found to participate in the development of AF through Oocyte meiosis and focal expression. Finally, a diagnostic model for AF established with a support vector machine (SVM) demonstrated excellent predictive performance in internal and external data sets (AUC>0.9) and different platform data sets (mean AUC>0.75).

Conclusion: Finally, a diagnostic model for AF was established, thus showing its potential in the early identification and prediction of AF.

Keywords: Biomarker, support vector machine, atrial fibrillation, bioinformatics, risk factors, diagnostic model

Graphical Abstract

[1]
Benjamin, E.J.; Wolf, P.A.; D’Agostino, R.B.; Silbershatz, H.; Kannel, W.B.; Levy, D. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation, 1998, 98(10), 946-952.
[http://dx.doi.org/10.1161/01.CIR.98.10.946] [PMID: 9737513]
[2]
Wolf, P.A.; Abbott, R.D.; Kannel, W.B. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke, 1991, 22(8), 983-988.
[http://dx.doi.org/10.1161/01.STR.22.8.983] [PMID: 1866765]
[3]
De Souza, A.I.; Cardin, S.; Wait, R.; Chung, Y.L.; Vijayakumar, M.; Maguy, A.; Camm, A.J.; Nattel, S. Proteomic and metabolomic analysis of atrial profibrillatory remodelling in congestive heart failure. J. Mol. Cell. Cardiol., 2010, 49(5), 851-863.
[http://dx.doi.org/10.1016/j.yjmcc.2010.07.008] [PMID: 20655923]
[4]
Murgatroyd, F.D.; Camm, A.J. Atrial arrhythmias. Lancet, 1993, 341(8856), 1317-1322.
[http://dx.doi.org/10.1016/0140-6736(93)90824-Z] [PMID: 7684105]
[5]
Khaji, A.; Kowey, P.R. Update on atrial fibrillation. Trends Cardiovasc. Med., 2017, 27(1), 14-25.
[http://dx.doi.org/10.1016/j.tcm.2016.06.007] [PMID: 27520496]
[6]
Shotan, A.; Garty, M.; Blondhein, D.S.; Meisel, S.R.; Lewis, B.S.; Shochat, M.; Grossman, E.; Porath, A.; Boyko, V.; Zimlichman, R.; Caspi, A.; Gottlieb, S.; Committee, H.S. HFSIS Steering Committee and Investigators. Atrial fibrillation and long-term prognosis in patients hospitalized for heart failure: results from heart failure survey in Israel (HFSIS). Eur. Heart J., 2010, 31(3), 309-317.
[http://dx.doi.org/10.1093/eurheartj/ehp422] [PMID: 19837682]
[7]
Kirchhof, P.; Bax, J.; Blomstrom-Lundquist, C.; Calkins, H.; Camm, A.J.; Cappato, R.; Cosio, F.; Crijns, H.; Diener, H.C.; Goette, A.; Israel, C.W.; Kuck, K.H.; Lip, G.Y.; Nattel, S.; Page, R.L.; Ravens, U.; Schotten, U.; Steinbeck, G.; Vardas, P.; Waldo, A.; Wegscheider, K.; Willems, S.; Breithardt, G. Early and comprehensive management of atrial fibrillation: proceedings from the 2nd AFNET/EHRA consensus conference on atrial fibrillation entitled ‘research perspectives in atrial fibrillation’. Europace, 2009, 11(7), 860-885.
[http://dx.doi.org/10.1093/europace/eup124] [PMID: 19531542]
[8]
Tucker, N.R.; Clauss, S.; Ellinor, P.T. Common variation in atrial fibrillation: navigating the path from genetic association to mechanism. Cardiovasc. Res., 2016, 109(4), 493-501.
[http://dx.doi.org/10.1093/cvr/cvv283] [PMID: 26733238]
[9]
Paludan-Müller, C.; Svendsen, J.H.; Olesen, M.S. The role of common genetic variants in atrial fibrillation. J. Electrocardiol., 2016, 49(6), 864-870.
[http://dx.doi.org/10.1016/j.jelectrocard.2016.08.012] [PMID: 27624063]
[10]
Li, Y.; Tan, W.; Ye, F.; Xue, F.; Gao, S.; Huang, W.; Wang, Z. Identification of microRNAs and genes as biomarkers of atrial fibrillation using a bioinformatics approach. J. Int. Med. Res., 2019, 47(8), 3580-3589.
[http://dx.doi.org/10.1177/0300060519852235] [PMID: 31218935]
[11]
Mayr, M.; Yusuf, S.; Weir, G.; Chung, Y.L.; Mayr, U.; Yin, X.; Ladroue, C.; Madhu, B.; Roberts, N.; De Souza, A.; Fredericks, S.; Stubbs, M.; Griffiths, J.R.; Jahangiri, M.; Xu, Q.; Camm, A.J. Combined metabolomic and proteomic analysis of human atrial fibrillation. J. Am. Coll. Cardiol., 2008, 51(5), 585-594.
[http://dx.doi.org/10.1016/j.jacc.2007.09.055] [PMID: 18237690]
[12]
Ma, Y.; Pu, Y.; Peng, L.; Luo, X.; Xu, J.; Peng, Y.; Tang, X. Identification of potential hub genes associated with the pathogenesis and prognosis of pancreatic duct adenocarcinoma using bioinformatics meta-analysis of multi-platform datasets. Oncol. Lett., 2019, 18(6), 6741-6751.
[http://dx.doi.org/10.3892/ol.2019.11042] [PMID: 31807183]
[13]
Irizarry, R.A.; Bolstad, B.M.; Collin, F.; Cope, L.M.; Hobbs, B.; Speed, T.P. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res., 2003, 31(4), e15.
[http://dx.doi.org/10.1093/nar/gng015] [PMID: 12582260]
[14]
Robinson, M.D.; Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol., 2010, 11(3), R25.
[http://dx.doi.org/10.1186/gb-2010-11-3-r25] [PMID: 20196867]
[15]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[16]
Zou, R.; Zhang, D.; Lv, L.; Shi, W.; Song, Z.; Yi, B.; Lai, B.; Chen, Q.; Yang, S.; Hua, P. Bioinformatic gene analysis for potential biomarkers and therapeutic targets of atrial fibrillation-related stroke. J. Transl. Med., 2019, 17(1), 45.
[http://dx.doi.org/10.1186/s12967-019-1790-x] [PMID: 30760287]
[17]
Langfelder, P.; Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9, 559.
[http://dx.doi.org/10.1186/1471-2105-9-559] [PMID: 19114008]
[18]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[19]
Walter, W.; Sánchez-Cabo, F.; Ricote, M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics, 2015, 31(17), 2912-2914.
[http://dx.doi.org/10.1093/bioinformatics/btv300] [PMID: 25964631]
[20]
Alanis-Lobato, G.; Andrade-Navarro, M.A.; Schaefer, M.H. HIPPIE v2.0: enhancing meaningfulness and reliability of protein-protein interaction networks. Nucleic Acids Res., 2017, 45(D1), D408-D414.
[http://dx.doi.org/10.1093/nar/gkw985] [PMID: 27794551]
[21]
Stark, C.; Breitkreutz, B.J.; Reguly, T.; Boucher, L.; Breitkreutz, A.; Tyers, M. BioGRID: a general repository for interaction datasets. Nucleic Acids Res., 2006, 34(Database issue), D535-D539.
[http://dx.doi.org/10.1093/nar/gkj109] [PMID: 16381927]
[22]
Huttlin, E.L.; Ting, L.; Bruckner, R.J.; Gebreab, F.; Gygi, M.P.; Szpyt, J.; Tam, S.; Zarraga, G.; Colby, G.; Baltier, K.; Dong, R.; Guarani, V.; Vaites, L.P.; Ordureau, A.; Rad, R.; Erickson, B.K.; Wühr, M.; Chick, J.; Zhai, B.; Kolippakkam, D.; Mintseris, J.; Obar, R.A.; Harris, T.; Artavanis-Tsakonas, S.; Sowa, M.E.; De Camilli, P.; Paulo, J.A.; Harper, J.W.; Gygi, S.P. The BioPlex network: a systematic exploration of the human interactome. Cell, 2015, 162(2), 425-440.
[http://dx.doi.org/10.1016/j.cell.2015.06.043] [PMID: 26186194]
[23]
Das, J.; Yu, H. HINT: High-quality protein interactomes and their applications in understanding human disease. BMC Syst. Biol., 2012, 6, 92.
[http://dx.doi.org/10.1186/1752-0509-6-92] [PMID: 22846459]
[24]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[25]
Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol., 2014, 8(Suppl. 4), S11.
[http://dx.doi.org/10.1186/1752-0509-8-S4-S11] [PMID: 25521941]
[26]
Sanz, H.; Valim, C.; Vegas, E.; Oller, J.M.; Reverter, F. SVM-RFE: selection and visualization of the most relevant features through non-linear kernels. BMC Bioinformatics, 2018, 19(1), 432.
[http://dx.doi.org/10.1186/s12859-018-2451-4] [PMID: 30453885]
[27]
Zou, R.; Yang, M.; Shi, W.; Zheng, C.; Zeng, H.; Lin, X.; Zhang, D.; Yang, S.; Hua, P. Analysis of genes involved in persistent atrial fibrillation: comparisons of ‘trigger’ and ‘substrate’ differences. Cell. Physiol. Biochem., 2018, 47(3), 1299-1309.
[28]
Zhang, H.; Liu, L.; Hu, J.; Song, L. MicroRNA regulatory network revealing the mechanism of inflammation in atrial fibrillation. Med. Sci. Monit., 2015, 21, 3505-3513.
[http://dx.doi.org/10.12659/MSM.895982] [PMID: 26567235]
[29]
Pajamäki, N.; Metso, S.; Hakala, T.; Ebeling, T.; Huhtala, H.; Ryödi, E.; Sand, J.; Jukkola-Vuorinen, A.; Kellokumpu-Lehtinen, P.L.; Jaatinen, P. Long-term cardiovascular morbidity and mortality in patients treated for differentiated thyroid cancer. Clin. Endocrinol. (Oxf.), 2018, 88(2), 303-310.
[http://dx.doi.org/10.1111/cen.13519] [PMID: 29154445]
[30]
Zhang, P.; Wang, W.; Wang, X.; Wang, X.; Song, Y.; Zhang, J.; Zhao, H. Focal adhesion kinase mediates atrial fibrosis via the AKT/S6K signaling pathway in chronic atrial fibrillation patients with rheumatic mitral valve disease. Int. J. Cardiol., 2013, 168(4), 3200-3207.
[http://dx.doi.org/10.1016/j.ijcard.2013.04.113] [PMID: 23639457]
[31]
Li, J.; Zhang, D.; Wiersma, M.; Brundel, B.J.J.M. Role of autophagy in proteostasis: friend and foe in cardiac diseases. Cells, 2018, 7(12), E279.
[http://dx.doi.org/10.3390/cells7120279] [PMID: 30572675]
[32]
Ke, L.; Qi, X.Y.; Dijkhuis, A.J.; Chartier, D.; Nattel, S.; Henning, R.H.; Kampinga, H.H.; Brundel, B.J. Calpain mediates cardiac troponin degradation and contractile dysfunction in atrial fibrillation. J. Mol. Cell. Cardiol., 2008, 45(5), 685-693.
[http://dx.doi.org/10.1016/j.yjmcc.2008.08.012] [PMID: 18823990]
[33]
Lee, S.P.; Ashley, E.A.; Homburger, J.; Caleshu, C.; Green, E.M.; Jacoby, D.; Colan, S.D.; Arteaga-Fernández, E.; Day, S.M.; Girolami, F.; Olivotto, I.; Michels, M.; Ho, C.Y.; Perez, M.V.; Investigators, S.H. SHaRe Investigators. Incident atrial fibrillation is associated with MYH7 sarcomeric gene variation in hypertrophic cardiomyopathy. Circ Heart Fail, 2018, 11(9), e005191.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.118.005191] [PMID: 30354366]
[34]
Düzen, I.V.; Yavuz, F.; Vuruskan, E.; Saracoglu, E.; Poyraz, F.; Cekici, Y.; Alıcı, H.; Göksülük, H.; Candemir, B.; Sucu, M.; Demiryürek, A.T. Investigation of leukocyte RHO/ROCK gene expressions in patients with non-valvular atrial fibrillation. Exp. Ther. Med., 2019, 18(4), 2777-2782.
[PMID: 31572525]
[35]
Tucker, N.R.; Ellinor, P.T. Emerging directions in the genetics of atrial fibrillation. Circ. Res., 2014, 114(9), 1469-1482.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302225] [PMID: 24763465]
[36]
Lin, R.; Wu, S.; Zhu, D.; Qin, M.; Liu, X. Osteopontin induces atrial fibrosis by activating Akt/GSK-3β/β-catenin pathway and suppressing autophagy. Life Sci., 2020, 245, 117328.
[http://dx.doi.org/10.1016/j.lfs.2020.117328] [PMID: 31954162]
[37]
Castañeda, D.; Gabani, M.; Choi, S.K.; Nguyen, Q.M.; Chen, C.; Mapara, A.; Kassan, A.; Gonzalez, A.A.; Ait-Aissa, K.; Kassan, M. Targeting autophagy in obesity-associated heart disease. Obesity (Silver Spring), 2019, 27(7), 1050-1058.
[PMID: 30938942]
[38]
Ren, S.Y.; Xu, X. Role of autophagy in metabolic syndrome-associated heart disease. Biochim. Biophys. Acta, 2015, 1852(2), 225-231.
[http://dx.doi.org/10.1016/j.bbadis.2014.04.029] [PMID: 24810277]
[39]
Chen, D.B.; Zhao, Y.J.; Wang, X.Y.; Liao, W.J.; Chen, P.; Deng, K.J.; Cong, X.; Fei, R.; Wu, X.; Shao, Q.X.; Wei, L.; Xie, X.W.; Chen, H.S. Regulatory factor X5 promotes hepatocellular carcinoma progression by transactivating tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein theta and suppressing apoptosis. Chin. Med. J. (Engl.), 2019, 132(13), 1572-1581.
[http://dx.doi.org/10.1097/CM9.0000000000000296] [PMID: 31188160]
[40]
Richard, M.A.; Huan, T.; Ligthart, S.; Gondalia, R.; Jhun, M.A.; Brody, J.A.; Irvin, M.R.; Marioni, R.; Shen, J.; Tsai, P.C.; Montasser, M.E.; Jia, Y.; Syme, C.; Salfati, E.L.; Boerwinkle, E.; Guan, W.; Mosley, T.H., Jr; Bressler, J.; Morrison, A.C.; Liu, C.; Mendelson, M.M.; Uitterlinden, A.G.; van Meurs, J.B.; Franco, O.H.; Zhang, G.; Li, Y.; Stewart, J.D.; Bis, J.C.; Psaty, B.M.; Chen, Y.I.; Kardia, S.L.R.; Zhao, W.; Turner, S.T.; Absher, D.; Aslibekyan, S.; Starr, J.M.; McRae, A.F.; Hou, L.; Just, A.C.; Schwartz, J.D.; Vokonas, P.S.; Menni, C.; Spector, T.D.; Shuldiner, A.; Damcott, C.M.; Rotter, J.I.; Palmas, W.; Liu, Y.; Paus, T.; Horvath, S.; O’Connell, J.R.; Guo, X.; Pausova, Z.; Assimes, T.L.; Sotoodehnia, N.; Smith, J.A.; Arnett, D.K.; Deary, I.J.; Baccarelli, A.A.; Bell, J.T.; Whitsel, E.; Dehghan, A.; Levy, D.; Fornage, M.; Fornage, M. BIOS Consortium. DNA methylation analysis identifies loci for blood pressure regulation. Am. J. Hum. Genet., 2017, 101(6), 888-902.
[http://dx.doi.org/10.1016/j.ajhg.2017.09.028] [PMID: 29198723]
[41]
Pérusse, L.; Rankinen, T.; Hagberg, J.M.; Loos, R.J.; Roth, S.M.; Sarzynski, M.A.; Wolfarth, B.; Bouchard, C. Advances in exercise, fitness, and performance genomics in 2012. Med. Sci. Sports Exerc., 2013, 45(5), 824-831.
[http://dx.doi.org/10.1249/MSS.0b013e31828b28a3] [PMID: 23470294]
[42]
Mao, C.; Howard, T.D.; Sullivan, D.; Fu, Z.; Yu, G.; Parker, S.J.; Will, R.; Vander Heide, R.S.; Wang, Y.; Hixson, J.; Van Eyk, J.; Herrington, D.M. Bioinformatic analysis of coronary disease associated snps and genes to identify proteins potentially involved in the pathogenesis of atherosclerosis. J. Proteom. Genom. Res., 2017, 2(1), 1-12.
[http://dx.doi.org/10.14302/issn.2326-0793.jpgr-17-1447] [PMID: 29367937]
[43]
Yang, F.; Diao, X.; Wang, F.; Wang, Q.; Sun, J.; Zhou, Y.; Xie, J. Identification of key regulatory genes and pathways in prefrontal cortex of alzheimer’s disease. Interdiscip. Sci., 2020, 12(1), 90-98.
[http://dx.doi.org/10.1007/s12539-019-00353-8] [PMID: 32006383]
[44]
Jacobsen, K.K.; Kleppe, R.; Johansson, S.; Zayats, T.; Haavik, J. Epistatic and gene wide effects in YWHA and aromatic amino hydroxylase genes across ADHD and other common neuropsychiatric disorders: Association with YWHAE. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2015, 168(6), 423-432.
[http://dx.doi.org/10.1002/ajmg.b.32339] [PMID: 26172220]
[45]
Ma, L.; Bayram, Y.; McLaughlin, H.M.; Cho, M.T.; Krokosky, A.; Turner, C.E.; Lindstrom, K.; Bupp, C.P.; Mayberry, K.; Mu, W.; Bodurtha, J.; Weinstein, V.; Zadeh, N.; Alcaraz, W.; Powis, Z.; Shao, Y.; Scott, D.A.; Lewis, A.M.; White, J.J.; Jhangiani, S.N.; Gulec, E.Y.; Lalani, S.R.; Lupski, J.R.; Retterer, K.; Schnur, R.E.; Wentzensen, I.M.; Bale, S.; Chung, W.K. De novo missense variants in PPP1CB are associated with intellectual disability and congenital heart disease. Hum. Genet., 2016, 135(12), 1399-1409.
[http://dx.doi.org/10.1007/s00439-016-1731-1] [PMID: 27681385]
[46]
Gripp, K.W.; Aldinger, K.A.; Bennett, J.T.; Baker, L.; Tusi, J.; Powell-Hamilton, N.; Stabley, D.; Sol-Church, K.; Timms, A.E.; Dobyns, W.B. A novel rasopathy caused by recurrent de novo missense mutations in PPP1CB closely resembles Noonan syndrome with loose anagen hair. Am. J. Med. Genet. A., 2016, 170(9), 2237-2247.
[http://dx.doi.org/10.1002/ajmg.a.37781] [PMID: 27264673]
[47]
Liu, R.; Correll, R.N.; Davis, J.; Vagnozzi, R.J.; York, A.J.; Sargent, M.A.; Nairn, A.C.; Molkentin, J.D. Cardiac-specific deletion of protein phosphatase 1β promotes increased myofilament protein phosphorylation and contractile alterations. J. Mol. Cell. Cardiol., 2015, 87, 204-213.
[http://dx.doi.org/10.1016/j.yjmcc.2015.08.018] [PMID: 26334248]
[48]
Hers, I.; Vincent, E.E.; Tavaré, J.M. Akt signalling in health and disease. Cell. Signal., 2011, 23(10), 1515-1527.
[http://dx.doi.org/10.1016/j.cellsig.2011.05.004] [PMID: 21620960]
[49]
Chen, B.; Chen, X.; Liu, C.; Li, J.; Liu, F.; Huang, Y. Co-expression of Akt1 and Wnt11 promotes the proliferation and cardiac differentiation of mesenchymal stem cells and attenuates hypoxia/reoxygenation-induced cardiomyocyte apoptosis. Biomed. Pharmacother., 2018, 108, 508-514.
[50]
Chang, Z.; Zhang, Q.; Feng, Q.; Xu, J.; Teng, T.; Luan, Q.; Shan, C.; Hu, Y.; Hemmings, B.A.; Gao, X.; Yang, Z. Deletion of Akt1 causes heart defects and abnormal cardiomyocyte proliferation. Dev. Biol., 2010, 347(2), 384-391.
[http://dx.doi.org/10.1016/j.ydbio.2010.08.033] [PMID: 20816796]
[51]
Ock, S.; Lee, W.S.; Kim, H.M.; Park, K.S.; Kim, Y.K.; Kook, H.; Park, W.J.; Lee, T.J.; Abel, E.D.; Kim, J. Connexin43 and zonula occludens-1 are targets of Akt in cardiomyocytes that correlate with cardiac contractile dysfunction in Akt deficient hearts. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(4 Pt A), 1183-1191.
[http://dx.doi.org/10.1016/j.bbadis.2018.01.022] [PMID: 29378301]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy