Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Serum Uric Acid and Diabetes: From Pathophysiology to Cardiovascular Disease

Author(s): Niki Katsiki*, George D. Dimitriadis and Dimitri P. Mikhailidis

Volume 27, Issue 16, 2021

Published on: 04 January, 2021

Page: [1941 - 1951] Pages: 11

DOI: 10.2174/1381612827666210104124320

Price: $65

Abstract

Hyperuricemia, has been traditionally related to nephrolithiasis and gout. However, it has also been associated with the development of type 2 diabetes mellitus (T2DM) and cardiometabolic and cardiovascular diseases. Pathophysiologically, elevated serum uric acid (SUA) levels may be associated with abnormal lipid and glucose metabolism.

In this narrative review, we consider the associations between hyperuricemia, hyperglycemia, atherosclerosis and thrombosis. Furthermore, we comment on the available evidence linking elevated SUA levels with the incidence and outcomes of coronary heart disease, stroke, peripheral artery disease and non-alcoholic fatty liver in subjects with T2DM. The effects of antidiabetic drugs (e.g. metformin, pioglitazone, sulfonylureas, dipeptidyl peptidase 4 inhibitors, glucagon-like peptide-1 receptor agonists, sodium-glucose cotransporter 2 inhibitors and insulin) on SUA concentrations are also reviewed.

Keywords: Serum uric acid, type 2 diabetes mellitus, cardiovascular disease, non-alcoholic fatty liver, antidiabetic drugs.

[1]
Álvarez-Lario B, Macarrón-Vicente J. Uric acid and evolution. Rheumatology (Oxford) 2010; 49(11): 2010-5.
[http://dx.doi.org/10.1093/rheumatology/keq204] [PMID: 20627967]
[2]
Cicerello E. Uric acid nephrolithiasis: An update. Urologia 2018; 85(3): 93-8.
[http://dx.doi.org/10.1177/0391560318766823] [PMID: 29687761]
[3]
Bardin T, Richette P. Definition of hyperuricemia and gouty conditions. Curr Opin Rheumatol 2014; 26(2): 186-91.
[http://dx.doi.org/10.1097/BOR.0000000000000028] [PMID: 24419750]
[4]
Kanbay M, Jensen T, Solak Y, et al. Uric acid in metabolic syndrome: From an innocent bystander to a central player. Eur J Intern Med 2016; 29: 3-8.
[http://dx.doi.org/10.1016/j.ejim.2015.11.026] [PMID: 26703429]
[5]
King C, Lanaspa MA, Jensen T, Tolan DR, Sánchez-Lozada LG, Johnson RJ. Uric Acid as a Cause of the Metabolic Syndrome. Contrib Nephrol 2018; 192: 88-102.
[http://dx.doi.org/10.1159/000484283] [PMID: 29393133]
[6]
Katsiki N, Papanas N, Fonseca VA, Maltezos E, Mikhailidis DP. Uric acid and diabetes: Is there a link? Curr Pharm Des 2013; 19(27): 4930-7.
[http://dx.doi.org/10.2174/1381612811319270016] [PMID: 23278493]
[7]
Bhole V, Choi JW, Kim SW, de Vera M, Choi H. Serum uric acid levels and the risk of type 2 diabetes: a prospective study. Am J Med 2010; 123(10): 957-61.
[http://dx.doi.org/10.1016/j.amjmed.2010.03.027] [PMID: 20920699]
[8]
Kodama S, Saito K, Yachi Y, et al. Association between serum uric acid and development of type 2 diabetes. Diabetes Care 2009; 32(9): 1737-42.
[http://dx.doi.org/10.2337/dc09-0288] [PMID: 19549729]
[9]
Xu YL, Xu KF, Bai JL, et al. Elevation of serum uric acid and incidence of type 2 diabetes: A systematic review and meta-analysis. Chronic Dis Transl Med 2016; 2(2): 81-91.
[http://dx.doi.org/10.1016/j.cdtm.2016.09.003] [PMID: 29063028]
[10]
Lv Q, Meng XF, He FF, et al. High serum uric acid and increased risk of type 2 diabetes: a systemic review and meta-analysis of prospective cohort studies. PLoS One 2013; 8(2): e56864.
[http://dx.doi.org/10.1371/journal.pone.0056864] [PMID: 23437258]
[11]
Yan D, Wang J, Jiang F, et al. A causal relationship between uric acid and diabetic macrovascular disease in Chinese type 2 diabetes patients: A Mendelian randomization analysis. Int J Cardiol 2016; 214: 194-9.
[http://dx.doi.org/10.1016/j.ijcard.2016.03.206] [PMID: 27064641]
[12]
Kushiyama A, Tanaka K, Hara S, Kawazu S. Linking uric acid metabolism to diabetic complications. World J Diabetes 2014; 5(6): 787-95.
[http://dx.doi.org/10.4239/wjd.v5.i6.787] [PMID: 25512781]
[13]
Papanas N, Demetriou M, Katsiki N, et al. Increased serum levels of uric acid are associated with sudomotor dysfunction in subjects with type 2 diabetes mellitus. Exp Diabetes Res 2011; 2011: 346051.
[http://dx.doi.org/10.1155/2011/346051] [PMID: 21941527]
[14]
Papanas N, Katsiki N, Papatheodorou K, et al. Peripheral neuropathy is associated with increased serum levels of uric acid in type 2 diabetes mellitus. Angiology 2011; 62(4): 291-5.
[http://dx.doi.org/10.1177/0003319710394164] [PMID: 21306998]
[15]
Pafili K, Katsiki N, Mikhailidis DP, Papanas N. Serum uric acid as a predictor of vascular complications in diabetes: an additional case for neuropathy. Acta Diabetol 2014; 51(5): 893-4.
[http://dx.doi.org/10.1007/s00592-014-0631-x] [PMID: 25062616]
[16]
Xiong Q, Liu J, Xu Y. Effects of Uric Acid on Diabetes Mellitus and Its Chronic Complications. Int J Endocrinol 2019; 2019: 9691345.
[http://dx.doi.org/10.1155/2019/9691345] [PMID: 31737070]
[17]
Darmawan G, Hamijoyo L, Hasan I. Association between Serum Uric Acid and Non-Alcoholic Fatty Liver Disease: A Meta-Analysis. Acta Med Indones 2017; 49(2): 136-47.
[PMID: 28790228]
[18]
Huang F, Liu A, Fang H, Geng X. Serum uric acid levels in non-alcoholic steatosis patients: a meta-analysis. Asia Pac J Clin Nutr 2017; 26(2): 334-42.
[PMID: 28244714]
[19]
Katsiki N, Athyros VG, Karagiannis A, Mikhailidis DP. Hyperuricaemia and non-alcoholic fatty liver disease (NAFLD): a relationship with implications for vascular risk? Curr Vasc Pharmacol 2011; 9(6): 698-705.
[http://dx.doi.org/10.2174/157016111797484152] [PMID: 21388346]
[20]
Katsiki N, Purrello F, Tsioufis C, Mikhailidis DP. Cardiovascular disease prevention strategies for type 2 diabetes mellitus. Expert Opin Pharmacother 2017; 18(12): 1243-60.
[http://dx.doi.org/10.1080/14656566.2017.1351946] [PMID: 28685623]
[21]
Katsiki N, Perez-Martinez P, Anagnostis P, Mikhailidis DP, Karagiannis A. Is Nonalcoholic Fatty Liver Disease Indeed the Hepatic Manifestation of Metabolic Syndrome? Curr Vasc Pharmacol 2018; 16(3): 219-27.
[http://dx.doi.org/10.2174/1570161115666170621075619] [PMID: 28669328]
[22]
Katsiki N, Mikhailidis DP, Mantzoros CS. Non-alcoholic fatty liver disease and dyslipidemia: An update. Metabolism 2016; 65(8): 1109-23.
[http://dx.doi.org/10.1016/j.metabol.2016.05.003] [PMID: 27237577]
[23]
Katsiki N, Athyros VG, Karagiannis A, Wierzbicki AS, Mikhailidis DP. Should we expand the concept of coronary heart disease equivalents? Curr Opin Cardiol 2014; 29(4): 389-95.
[http://dx.doi.org/10.1097/HCO.0000000000000068] [PMID: 25029454]
[24]
Athyros VG, Alexandrides TK, Bilianou H, et al. The use of statins alone, or in combination with pioglitazone and other drugs, for the treatment of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis and related cardiovascular risk. An Expert Panel Statement. Metabolism 2017; 71: 17-32.
[http://dx.doi.org/10.1016/j.metabol.2017.02.014] [PMID: 28521870]
[25]
Katsiki N, Athyros VG, Mikhailidis DP. Non-alcoholic fatty liver disease in patients with type 2 diabetes mellitus: Effects of statins and antidiabetic drugs. J Diabetes Complications 2017; 31(3): 521-2.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.12.006] [PMID: 28089090]
[26]
Lima WG, Martins-Santos ME, Chaves VE. Uric acid as a modulator of glucose and lipid metabolism. Biochimie 2015; 116: 17-23.
[http://dx.doi.org/10.1016/j.biochi.2015.06.025] [PMID: 26133655]
[27]
Quiñones Galvan A, Natali A, Baldi S, et al. Effect of insulin on uric acid excretion in humans. Am J Physiol 1995; 268(1 Pt. 1): E1-5.
[PMID: 7840165]
[28]
Bobulescu IA, Moe OW. Renal transport of uric acid: evolving concepts and uncertainties. Adv Chronic Kidney Dis 2012; 19(6): 358-71.
[http://dx.doi.org/10.1053/j.ackd.2012.07.009] [PMID: 23089270]
[29]
Hayden MR, Tyagi SC. Uric acid: A new look at an old risk marker for cardiovascular disease, metabolic syndrome, and type 2 diabetes mellitus: The urate redox shuttle. Nutr Metab (Lond) 2004; 1(1): 10.
[http://dx.doi.org/10.1186/1743-7075-1-10] [PMID: 15507132]
[30]
van der Schaft N, Brahimaj A, Wen KX, Franco OH, Dehghan A. The association between serum uric acid and the incidence of prediabetes and type 2 diabetes mellitus: The Rotterdam Study. PLoS One 2017; 12(6): e0179482.
[http://dx.doi.org/10.1371/journal.pone.0179482] [PMID: 28632742]
[31]
Binh TQ, Tran Phuong P, Thanh Chung N, et al. First Report on Association of Hyperuricemia with Type 2 Diabetes in a Vietnamese Population. Int J Endocrinol 2019; 2019: 5275071.
[http://dx.doi.org/10.1155/2019/5275071] [PMID: 31565055]
[32]
Wang H, Zhang H, Sun L, Guo W. Roles of hyperuricemia in metabolic syndrome and cardiac-kidney-vascular system diseases. Am J Transl Res 2018; 10(9): 2749-63.
[PMID: 30323864]
[33]
Ndrepepa G. Uric acid and cardiovascular disease. Clin Chim Acta 2018; 484: 150-63.
[http://dx.doi.org/10.1016/j.cca.2018.05.046] [PMID: 29803897]
[34]
Nakagawa T, Hu H, Zharikov S, et al. A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Renal Physiol 2006; 290(3): F625-31.
[http://dx.doi.org/10.1152/ajprenal.00140.2005] [PMID: 16234313]
[35]
Lanaspa MA, Cicerchi C, Garcia G, et al. Counteracting roles of AMP deaminase and AMP kinase in the development of fatty liver. PLoS One 2012; 7(11): e48801.
[http://dx.doi.org/10.1371/journal.pone.0048801] [PMID: 23152807]
[36]
Zhu Y, Hu Y, Huang T, et al. High uric acid directly inhibits insulin signalling and induces insulin resistance. Biochem Biophys Res Commun 2014; 447(4): 707-14.
[http://dx.doi.org/10.1016/j.bbrc.2014.04.080] [PMID: 24769205]
[37]
Lanaspa MA, Sanchez-Lozada LG, Choi YJ, et al. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver. J Biol Chem 2012; 287(48): 40732-44.
[http://dx.doi.org/10.1074/jbc.M112.399899] [PMID: 23035112]
[38]
Cicerchi C, Li N, Kratzer J, et al. Uric acid-dependent inhibition of AMP kinase induces hepatic glucose production in diabetes and starvation: evolutionary implications of the uricase loss in hominids. FASEB J 2014; 28(8): 3339-50.
[http://dx.doi.org/10.1096/fj.13-243634] [PMID: 24755741]
[39]
Yu MA, Sánchez-Lozada LG, Johnson RJ, Kang DH. Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J Hypertens 2010; 28(6): 1234-42.
[http://dx.doi.org/10.1097/HJH.0b013e328337da1d] [PMID: 20486275]
[40]
Robles-Cervantes JA, Ramos-Zavala MG, González-Ortiz M, et al. Relationship between Serum Concentration of Uric Acid and Insulin Secretion among Adults with Type 2 Diabetes Mellitus. Int J Endocrinol 2011; 2011: 107904.
[http://dx.doi.org/10.1155/2011/107904] [PMID: 22216028]
[41]
Tang W, Fu Q, Zhang Q, et al. The association between serum uric acid and residual β -cell function in type 2 diabetes. J Diabetes Res 2014; 2014: 709691.
[http://dx.doi.org/10.1155/2014/709691] [PMID: 24971368]
[42]
Jia L, Xing J, Ding Y, et al. Hyperuricemia causes pancreatic β-cell death and dysfunction through NF-κB signaling pathway. PLoS One 2013; 8(10): e78284.
[http://dx.doi.org/10.1371/journal.pone.0078284] [PMID: 24205181]
[43]
Cortese F, Scicchitano P, Meliota G, Giordano P, Ciccone MM. Uric acid in metabolic and cerebrovascular disorders: a review. Curr Vasc Pharmacol 2020; 18(6): 610-8.
[http://dx.doi.org/10.2174/1570161118666191217123930] [PMID: 31845632]
[44]
Simão AN, Lozovoy MA, Dichi I. The uric acid metabolism pathway as a therapeutic target in hyperuricemia related to metabolic syndrome. Expert Opin Ther Targets 2012; 16(12): 1175-87.
[http://dx.doi.org/10.1517/14728222.2012.723694] [PMID: 23020656]
[45]
Rich MW. Uric acid: is it a risk factor for cardiovascular disease? Am J Cardiol 2000; 85(8): 1018-21.
[http://dx.doi.org/10.1016/S0002-9149(99)00922-4] [PMID: 10760347]
[46]
Mu Z, Wang J, Wang W, et al. Blood glucose fluctuations detected by continuous glucose monitoring system in gout patients with normal glucose tolerance and the effect of urate-lowering therapy. Int J Rheum Dis 2020; 23(9): 1145-51.
[http://dx.doi.org/10.1111/1756-185X.13862] [PMID: 32483927]
[47]
Suzuki Y, Kido J, Matsumoto S, Shimizu K, Nakamura K. Associations among amino acid, lipid, and glucose metabolic profiles in childhood obesity. BMC Pediatr 2019; 19(1): 273.
[http://dx.doi.org/10.1186/s12887-019-1647-8] [PMID: 31387549]
[48]
Wang X, Chen H, Shao X, et al. Association of Lipid Parameters with the Risk of Chronic Kidney Disease: A Longitudinal Study Based on Populations in Southern China. Diabetes Metab Syndr Obes 2020; 13: 663-70.
[http://dx.doi.org/10.2147/DMSO.S229362] [PMID: 32184645]
[49]
Liu XZ, Xu X, Zhu JQ, Zhao DB. Association between three non-insulin-based indexes of insulin resistance and hyperuricemia. Clin Rheumatol 2019; 38(11): 3227-33.
[http://dx.doi.org/10.1007/s10067-019-04671-6] [PMID: 31300980]
[50]
Rathmann W, Hauner H, Dannehl K, Gries FA. Association of elevated serum uric acid with coronary heart disease in diabetes mellitus. Diabete Metab 1993; 19(1 Pt 2): 159-66.
[PMID: 8314420]
[51]
Ito H, Abe M, Mifune M, et al. Hyperuricemia is independently associated with coronary heart disease and renal dysfunction in patients with type 2 diabetes mellitus. PLoS One 2011; 6(11): e27817.
[http://dx.doi.org/10.1371/journal.pone.0027817] [PMID: 22125626]
[52]
Jayashankar CA, Andrews HP. Vijayasarathi, Serum uric acid and low-density lipoprotein cholesterol levels are independent predictors of coronary artery disease in Asian Indian patients with type 2 diabetes mellitus. J Nat Sci Biol Med 2016; 7(2): 161-5.
[http://dx.doi.org/10.4103/0976-9668.184703] [PMID: 27433067]
[53]
Chuengsamarn S, Rattanamongkolgul S, Jirawatnotai S. Association between serum uric acid level and microalbuminuria to chronic vascular complications in Thai patients with type 2 diabetes. J Diabetes Complications 2014; 28(2): 124-9.
[http://dx.doi.org/10.1016/j.jdiacomp.2013.12.002] [PMID: 24412514]
[54]
Ren Y, Jin N, Hong T, et al. Interactive effect of serum uric acid and total bilirubin for cardiovascular disease in Chinese patients with type 2 diabetes. Sci Rep 2016; 6: 36437.
[http://dx.doi.org/10.1038/srep36437] [PMID: 27805038]
[55]
Cao JY, Waldman B, O’Connell R, et al. FIELD investigators. Uric acid predicts long-term cardiovascular risk in type 2 diabetes but does not mediate the benefits of fenofibrate: The FIELD study. Diabetes Obes Metab 2020; 22(8): 1388-96.
[http://dx.doi.org/10.1111/dom.14046] [PMID: 32243036]
[56]
Lyu J, Li Z, Wei H, et al. A potent risk model for predicting new-onset acute coronary syndrome in patients with type 2 diabetes mellitus in Northwest China. Acta Diabetol 2020; 57(6): 705-13.
[http://dx.doi.org/10.1007/s00592-020-01484-x] [PMID: 32008161]
[57]
Dayan A, Narin B, Biteker M, Aksoy S, Fotbolcu H, Duman D. Coronary calcium score, albuminuria and inflammatory markers in type 2 diabetic patients: associations and prognostic implications. Diabetes Res Clin Pract 2012; 98(1): 98-103.
[http://dx.doi.org/10.1016/j.diabres.2012.04.012] [PMID: 22595190]
[58]
Mineoka Y, Fukui M, Tanaka M, et al. Relationship between cardio-ankle vascular index (CAVI) and coronary artery calcification (CAC) in patients with type 2 diabetes mellitus. Heart Vessels 2012; 27(2): 160-5.
[http://dx.doi.org/10.1007/s00380-011-0138-0] [PMID: 21476051]
[59]
Valbusa F, Bertolini L, Bonapace S, et al. Relation of elevated serum uric acid levels to incidence of atrial fibrillation in patients with type 2 diabetes mellitus. Am J Cardiol 2013; 112(4): 499-504.
[http://dx.doi.org/10.1016/j.amjcard.2013.04.012] [PMID: 23672990]
[60]
Verdoia M, Barbieri L, Schaffer A, et al. Novara Atherosclerosis Study Group (NAS). Impact of diabetes on uric acid and its relationship with the extent of coronary artery disease and platelet aggregation: a single-centre cohort study. Metabolism 2014; 63(5): 640-6.
[http://dx.doi.org/10.1016/j.metabol.2014.01.010] [PMID: 24606806]
[61]
Shao Y, Shao H, Sawhney MS, Shi L. Serum uric acid as a risk factor of all-cause mortality and cardiovascular events among type 2 diabetes population: Meta-analysis of correlational evidence. J Diabetes Complications 2019; 33(10): 107409.
[http://dx.doi.org/10.1016/j.jdiacomp.2019.07.006] [PMID: 31439471]
[62]
Mazza A, Zamboni S, Rizzato E, et al. Serum uric acid shows a J-shaped trend with coronary mortality in non-insulin-dependent diabetic elderly people. The CArdiovascular STudy in the ELderly (CASTEL). Acta Diabetol 2007; 44(3): 99-105.
[http://dx.doi.org/10.1007/s00592-007-0249-3] [PMID: 17721747]
[63]
Ilundain-González AI, Gimeno-Orna JA, Sáenz-Abad D, Pons-Dolset J, Cebollada-Del Hoyo J, Lahoza-Pérez MDC. Impact of uric acid levels on the risk of long-term cardiovascular mortality in patients with type 2 diabetes mellitus. Endocrinol Diabetes Nutr 2018; 65(6): 335-41.
[http://dx.doi.org/10.1016/j.endien.2018.01.005] [PMID: 29525370]
[64]
Ndrepepa G, Braun S, King L, et al. Prognostic value of uric acid in patients with Type 2 diabetes mellitus and coronary artery disease. Clin Sci (Lond) 2013; 124(4): 259-68.
[http://dx.doi.org/10.1042/CS20120336] [PMID: 22974091]
[65]
Ong G, Davis WA, Davis TM. Serum uric acid does not predict cardiovascular or all-cause mortality in type 2 diabetes: the Fremantle Diabetes Study. Diabetologia 2010; 53(7): 1288-94.
[http://dx.doi.org/10.1007/s00125-010-1735-7] [PMID: 20349345]
[66]
Panero F, Gruden G, Perotto M, et al. Uric acid is not an independent predictor of cardiovascular mortality in type 2 diabetes: a population-based study. Atherosclerosis 2012; 221(1): 183-8.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.11.042] [PMID: 22239868]
[67]
Lehto S, Niskanen L, Rönnemaa T, Laakso M. Serum uric acid is a strong predictor of stroke in patients with non-insulin-dependent diabetes mellitus. Stroke 1998; 29(3): 635-9.
[http://dx.doi.org/10.1161/01.STR.29.3.635] [PMID: 9506605]
[68]
Seghieri G, Moruzzo D, Fascetti S, et al. Increase in serum uric acid is selectively associated with stroke in type 2 diabetes. Diabetes Care 2002; 25(6): 1095.
[http://dx.doi.org/10.2337/diacare.25.6.1095] [PMID: 12032120]
[69]
Tanaka K, Hara S, Kushiyama A, et al. Risk of macrovascular disease stratified by stage of chronic kidney disease in type 2 diabetic patients: critical level of the estimated glomerular filtration rate and the significance of hyperuricemia. Clin Exp Nephrol 2011; 15(3): 391-7.
[http://dx.doi.org/10.1007/s10157-011-0420-6] [PMID: 21331740]
[70]
Wang L, Hu W, Miao D, et al. Relationship between serum uric acid and ischemic stroke in a large type 2 diabetes population in China: A cross-sectional study. J Neurol Sci 2017; 376: 176-80.
[http://dx.doi.org/10.1016/j.jns.2017.03.023] [PMID: 28431608]
[71]
Newman EJ, Rahman FS, Lees KR, Weir CJ, Walters MR. Elevated serum urate concentration independently predicts poor outcome following stroke in patients with diabetes. Diabetes Metab Res Rev 2006; 22(1): 79-82.
[http://dx.doi.org/10.1002/dmrr.585] [PMID: 16088970]
[72]
Zhang B, Gao C, Hou Q, et al. The potent different risk factors for cerebral infarction in young patients with and without type 2 diabetes: subanalysis of the Young Cerebral Infarction Study (YCIS). Atherosclerosis 2012; 221(1): 215-20.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.12.019] [PMID: 22245036]
[73]
Du L, Ma J, Zhang X. Higher Serum Uric Acid May Contribute to Cerebral Infarction in Patients with Type 2 Diabetes Mellitus: a Meta-Analysis. J Mol Neurosci 2017; 61(1): 25-31.
[http://dx.doi.org/10.1007/s12031-016-0848-y] [PMID: 27696108]
[74]
Tseng CH. Independent association of uric acid levels with peripheral arterial disease in Taiwanese patients with Type 2 diabetes. Diabet Med 2004; 21(7): 724-9.
[http://dx.doi.org/10.1111/j.1464-5491.2004.01239.x] [PMID: 15209765]
[75]
Bianchi C, Penno G, Pancani F, et al. Non-traditional cardiovascular risk factors contribute to peripheral arterial disease in patients with type 2 diabetes. Diabetes Res Clin Pract 2007; 78(2): 246-53.
[http://dx.doi.org/10.1016/j.diabres.2007.03.020] [PMID: 17498833]
[76]
Yamasaki S, Izawa A, Koshikawa M, et al. Association between estimated glomerular filtration rate and peripheral arterial disease. J Cardiol 2015; 66(5): 430-4.
[http://dx.doi.org/10.1016/j.jjcc.2015.01.011] [PMID: 25881730]
[77]
Magri CJ, Calleja N, Buhagiar G, Fava S, Vassallo J. Ankle-brachial index in a type 2 diabetic population with proliferative retinopathy: associated risk factors and complications. Int Angiol 2012; 31(2): 134-41.
[PMID: 22466978]
[78]
Li X, Wang YZ, Yang XP, Xu ZR. Prevalence of and risk factors for abnormal ankle-brachial index in patients with type 2 diabetes. J Diabetes 2012; 4(2): 140-6.
[http://dx.doi.org/10.1111/j.1753-0407.2011.00171.x] [PMID: 22078109]
[79]
Tseng CH. Sex difference in the distribution of atherosclerotic risk factors and their association with peripheral arterial disease in Taiwanese type 2 diabetic patients. Circ J 2007; 71(7): 1131-6.
[http://dx.doi.org/10.1253/circj.71.1131] [PMID: 17587723]
[80]
Zhang L, Zhou J, Li Q, et al. Association between serum uric acid level and peripheral vascular disease of lower extremities in type 2 diabetes mellitus subjects. Zhonghua Yi Xue Za Zhi 2010; 90(10): 653-7.
[PMID: 20450721]
[81]
Wu D, Liu H, Li SH. Association of elevated uric acid with metabolic disorders and analysis of the risk factors of hyperuricemia in type 2 diabetes mellitus. Nan Fang Yi Ke Da Xue Xue Bao 2011; 31(3): 544-7.
[PMID: 21421503]
[82]
Li Q, Yang Z, Lu B, et al. Serum uric acid level and its association with metabolic syndrome and carotid atherosclerosis in patients with type 2 diabetes. Cardiovasc Diabetol 2011; 10: 72.
[http://dx.doi.org/10.1186/1475-2840-10-72] [PMID: 21816063]
[83]
Singh K, Kumar P, Joshi A, et al. Study of association of serum uric acid with albuminuria and carotid atherosclerosis in type 2 diabetes mellitus patients. J Family Med Prim Care 2019; 8(12): 4027-31.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_777_19] [PMID: 31879654]
[84]
Li LX, Wang AP, Zhang R, et al. Decreased urine uric acid excretion is an independent risk factor for chronic kidney disease but not for carotid atherosclerosis in hospital-based patients with type 2 diabetes: a cross-sectional study. Cardiovasc Diabetol 2015; 14: 36.
[http://dx.doi.org/10.1186/s12933-015-0199-y] [PMID: 25889178]
[85]
Wijnands JM, Boonen A, van Sloten TT, et al. Association between serum uric acid, aortic, carotid and femoral stiffness among adults aged 40-75 years without and with type 2 diabetes mellitus: The Maastricht Study. J Hypertens 2015; 33(8): 1642-50.
[http://dx.doi.org/10.1097/HJH.0000000000000593] [PMID: 26136069]
[86]
Li H, Guo M, An Z, et al. Prevalence and Risk Factors of Metabolic Associated Fatty Liver Disease in Xinxiang, China. Int J Environ Res Public Health 2020; 17(6): 1818.
[http://dx.doi.org/10.3390/ijerph17061818] [PMID: 32168920]
[87]
Ding X, Xu Y, Wang Y, et al. Nonalcoholic Fatty Liver Disease and Associated Metabolic Risks of Hypertension in Type 2 Diabetes: A Cross-Sectional Community-Based Study. Int J Endocrinol 2017; 2017: 5262560.
[http://dx.doi.org/10.1155/2017/5262560] [PMID: 28458689]
[88]
Li YL, Xie H, Musha H, et al. The Risk Factor Analysis for Type 2 Diabetes Mellitus Patients with Nonalcoholic Fatty Liver Disease and Positive Correlation with Serum Uric Acid. Cell Biochem Biophys 2015; 72(3): 643-7.
[http://dx.doi.org/10.1007/s12013-014-0346-1] [PMID: 27352181]
[89]
Xu L, Li T, Yin J, et al. Association between serum uric acid and nonalcoholic fatty liver disease in community patients with type 2 diabetes mellitus. PeerJ 2019; 7: e7563.
[http://dx.doi.org/10.7717/peerj.7563] [PMID: 31523513]
[90]
Fan N, Zhang L, Xia Z, Peng L, Wang Y, Peng Y. Sex-Specific Association between Serum Uric Acid and Nonalcoholic Fatty Liver Disease in Type 2 Diabetic Patients. J Diabetes Res 2016; 2016: 3805372.
[http://dx.doi.org/10.1155/2016/3805372] [PMID: 27382573]
[91]
Zhao CC, Wang AP, Li LX, et al. Urine uric acid excretion is associated with nonalcoholic fatty liver disease in patients with type 2 diabetes. J Diabetes Complications 2016; 30(6): 1074-80.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.04.017] [PMID: 27161518]
[92]
Katsiki N, Dimitriadis G, Mikhailidis DP. Perirenal Adiposity and Other Excessive Intra- and Peri-Organ Fat Depots: What Is the Connection? Angiology 2019; 70(7): 581-3.
[http://dx.doi.org/10.1177/0003319719848204] [PMID: 31064196]
[93]
Gruzdeva O, Borodkina D, Uchasova E, Dyleva Y, Barbarash O. Localization of fat depots and cardiovascular risk. Lipids Health Dis 2018; 17(1): 218.
[http://dx.doi.org/10.1186/s12944-018-0856-8] [PMID: 30219068]
[94]
Katsiki N, Mikhailidis DP, Wierzbicki AS. Epicardial fat and vascular risk: a narrative review. Curr Opin Cardiol 2013; 28(4): 458-63.
[http://dx.doi.org/10.1097/HCO.0b013e3283605fba] [PMID: 23591557]
[95]
Lim S. Ectopic fat assessment focusing on cardiometabolic and renal risk. Endocrinol Metab (Seoul) 2014; 29(1): 1-4.
[http://dx.doi.org/10.3803/EnM.2014.29.1.1] [PMID: 24741447]
[96]
Katsiki N, Mikhailidis DP. Excessive “orthotopic” fat accumulation: Links with cardiometabolic diseases and potential drug treatment. J Cell Physiol 2020; 235(9): 6321-2.
[http://dx.doi.org/10.1002/jcp.29573] [PMID: 31975373]
[97]
Katsiki N, Mikhailidis DP. Abnormal Peri-Organ or Intra-Organ Fat Deposition and Vascular Risk. Angiology 2018; 69(10): 841-2.
[http://dx.doi.org/10.1177/0003319718776528] [PMID: 29783853]
[98]
Katsiki N, Athyros VG, Mikhailidis DP. Abnormal Peri-Organ or Intra-organ Fat (APIFat) Deposition: An Underestimated Predictor of Vascular Risk? Curr Vasc Pharmacol 2016; 14(5): 432-41.
[http://dx.doi.org/10.2174/1570161114666160722112738] [PMID: 27456108]
[99]
Neeland IJ, Ross R, Després JP, et al. International Atherosclerosis Society; International Chair on Cardiometabolic Risk Working Group on Visceral Obesity. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. Lancet Diabetes Endocrinol 2019; 7(9): 715-25.
[http://dx.doi.org/10.1016/S2213-8587(19)30084-1] [PMID: 31301983]
[100]
Rubio-Guerra AF, Benítez-Maldonado DR, Lozano-Nuevo JJ, Arana-Pazos KC, Huerta-Ramirez S, Narváez-Rivera JL. Correlation between epicardial fat thickness and biochemical markers of metabolic risk. Med Clin (Barc) 2018; 151(6): 236-8.
[http://dx.doi.org/10.1016/j.medcli.2018.01.019] [PMID: 29501440]
[101]
Monti M, Monti A, Murdolo G, et al. Correlation between epicardial fat and cigarette smoking: CT imaging in patients with metabolic syndrome. Scand Cardiovasc J 2014; 48(5): 317-22.
[http://dx.doi.org/10.3109/14017431.2014.942872] [PMID: 25022871]
[102]
D’Marco L, Salazar J, Cortez M, et al. Perirenal fat thickness is associated with metabolic risk factors in patients with chronic kidney disease. Kidney Res Clin Pract 2019; 38(3): 365-72.
[http://dx.doi.org/10.23876/j.krcp.18.0155] [PMID: 31357262]
[103]
Seidell JC, Björntorp P, Sjöström L, Sannerstedt R, Krotkiewski M, Kvist H. Regional distribution of muscle and fat mass in men-new insight into the risk of abdominal obesity using computed tomography. Int J Obes 1989; 13(3): 289-303.
[PMID: 2767882]
[104]
Sotoudehmanesh R, Tahmasbi A, Sadeghi A, Hosseini H, Mohamadnejad M. The Prevalence of Nonalcoholic Fatty Pancreas by Endoscopic Ultrasonography. Pancreas 2019; 48(9): 1220-4.
[http://dx.doi.org/10.1097/MPA.0000000000001396] [PMID: 31593012]
[105]
Hussain A, Latiwesh OB, Ali F, Younis MYG, Alammari JA. Effects of Body Mass Index, Glycemic Control, and Hypoglycemic Drugs on Serum Uric Acid Levels in Type 2 Diabetic Patients. Cureus 2018; 10(8): e3158.
[http://dx.doi.org/10.7759/cureus.3158] [PMID: 30349765]
[106]
Iliadis F, Kadoglou NP, Hatzitolios A, Karamouzis M, Alevizos M, Karamitsos D. Metabolic effects of rosiglitazone and metformin in Greek patients with recently diagnosed type 2 diabetes. In Vivo 2007; 21(6): 1107-14.
[PMID: 18210765]
[107]
Zhang G, Ma Y, Xi D, Rao Z, Sun X, Wu X. Effect of high uric acid on the disposition of metformin: in vivo and in vitro studies. Biopharm Drug Dispos 2019; 40(1): 3-11.
[http://dx.doi.org/10.1002/bdd.2164] [PMID: 30488476]
[108]
Kilo C, Dudley J, Kalb B. Evaluation of the efficacy and safety of Diamicron in non-insulin-dependent diabetic patients. Diabetes Res Clin Pract 1991; 14(Suppl. 2): S79-82.
[http://dx.doi.org/10.1016/0168-8227(91)90012-3] [PMID: 1794270]
[109]
Rizos CV, Liberopoulos EN, Mikhailidis DP, Elisaf MS. Pleiotropic effects of thiazolidinediones. Expert Opin Pharmacother 2008; 9(7): 1087-108.
[http://dx.doi.org/10.1517/14656566.9.7.1087] [PMID: 18422468]
[110]
Kutoh E, Hori T. Effect of Pioglitazone on Serum Uric Acid Levels in Newly Diagnosed, Drug-Naïve Patients with Type 2 Diabetes. Endocr Res 2013; 38(3): 151-9.
[http://dx.doi.org/10.3109/07435800.2012.745128] [PMID: 23216460]
[111]
Maalouf NM, Poindexter JR, Adams-Huet B, Moe OW, Sakhaee K. Increased production and reduced urinary buffering of acid in uric acid stone formers is ameliorated by pioglitazone. Kidney Int 2019; 95(5): 1262-8.
[http://dx.doi.org/10.1016/j.kint.2018.11.024] [PMID: 30795852]
[112]
Kanbara A, Seyama I. Effect of urine pH on uric acid excretion by manipulating food materials. Nucleosides Nucleotides Nucleic Acids 2011; 30(12): 1066-71.
[http://dx.doi.org/10.1080/15257770.2011.596498] [PMID: 22132958]
[113]
Kubota A, Maeda H, Kanamori A, et al. Pleiotropic effects of sitagliptin in the treatment of type 2 diabetes mellitus patients. J Clin Med Res 2012; 4(5): 309-13.
[http://dx.doi.org/10.4021/jocmr1061w] [PMID: 23024732]
[114]
Matsushima Y, Takeshita Y, Kita Y, et al. Pleiotropic effects of sitagliptin versus voglibose in patients with type 2 diabetes inadequately controlled via diet and/or a single oral antihyperglycemic agent: a multicenter, randomized trial. BMJ Open Diabetes Res Care 2016; 4(1): e000190.
[http://dx.doi.org/10.1136/bmjdrc-2015-000190] [PMID: 27110370]
[115]
Kutoh E, Wada A, Hayashi J. REGULATION OF FREE FATTY ACID BY SITAGLIPTIN MONOTHERAPY IN DRUG-NAÏVE SUBJECTS WITH TYPE 2 DIABETES. Endocr Pract 2018; 24(12): 1063-72.
[http://dx.doi.org/10.4158/EP-2018-0287] [PMID: 30289315]
[116]
Fuchigami A, Shigiyama F, Kitazawa T, et al. Efficacy of dapagliflozin versus sitagliptin on cardiometabolic risk factors in Japanese patients with type 2 diabetes: a prospective, randomized study (DIVERSITY-CVR). Cardiovasc Diabetol 2020; 19(1): 1.
[http://dx.doi.org/10.1186/s12933-019-0977-z] [PMID: 31910850]
[117]
Avci D. Dipeptidyl Peptidase-4 Inhibitors and Inflammation: Dpp-4 Inhibitors Improve Mean Pleatelet Volume and Gamma Glutamyl Transferase Level. J Biosci Med 2019; 7(2)
[118]
Tojikubo M, Tajiri Y. Different effects of linagliptin and sitagliptin on blood pressure and renal function in Japanese patients with type 2 diabetes mellitus. Diabetol Int 2017; 8(4): 397-401.
[http://dx.doi.org/10.1007/s13340-017-0320-4] [PMID: 30603346]
[119]
Shimodaira M, Niwa T, Nakajima K, Kobayashi M. Beneficial Effects of Vildagliptin on Metabolic Parameters in Patients with Type 2 Diabetes. Endocr Metab Immune Disord Drug Targets 2015; 15(3): 223-8.
[http://dx.doi.org/10.2174/1871530315666150324114149] [PMID: 25809193]
[120]
Muskiet MHA, Bunck MC, Heine RJ, et al. Exenatide twice-daily does not affect renal function or albuminuria compared to titrated insulin glargine in patients with type 2 diabetes mellitus: A post-hoc analysis of a 52-week randomised trial. Diabetes Res Clin Pract 2019; 153: 14-22.
[http://dx.doi.org/10.1016/j.diabres.2019.05.001] [PMID: 31078666]
[121]
Hirai K, Imamura S, Ookawara S, Hirai A, Morishita Y. Effects of Once-Weekly Dulaglutide on Glycemic Control and Renal Function in Patients with Advanced-Stage Diabetic Nephropathy. Nephro- Urology Monthly 2017; 9(5): ee55058.
[122]
Tonneijck L, Muskiet MHA, Smits MM, et al. Effect of immediate and prolonged GLP-1 receptor agonist administration on uric acid and kidney clearance: Post-hoc analyses of four clinical trials. Diabetes Obes Metab 2018; 20(5): 1235-45.
[http://dx.doi.org/10.1111/dom.13223] [PMID: 29341461]
[123]
Bailey CJ. Uric acid and the cardio-renal effects of SGLT2 inhibitors. Diabetes Obes Metab 2019; 21(6): 1291-8.
[http://dx.doi.org/10.1111/dom.13670] [PMID: 30762288]
[124]
Chino Y, Samukawa Y, Sakai S, et al. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria. Biopharm Drug Dispos 2014; 35(7): 391-404.
[http://dx.doi.org/10.1002/bdd.1909] [PMID: 25044127]
[125]
Yaribeygi H, Butler AE, Atkin SL, Katsiki N, Sahebkar A. Sodium-glucose cotransporter 2 inhibitors and inflammation in chronic kidney disease: Possible molecular pathways. J Cell Physiol 2018; 234(1): 223-30.
[http://dx.doi.org/10.1002/jcp.26851] [PMID: 30076706]
[126]
Katsiki N, Mikhailidis DP, Theodorakis MJ. Sodium-glucose Cotransporter 2 Inhibitors (SGLT2i): Their Role in Cardiometabolic Risk Management. Curr Pharm Des 2017; 23(10): 1522-32.
[http://dx.doi.org/10.2174/1381612823666170113152742] [PMID: 28088910]
[127]
Katsiki N, Papanas N, Mikhailidis DP. Dapagliflozin: more than just another oral glucose-lowering agent? Expert Opin Investig Drugs 2010; 19(12): 1581-9.
[http://dx.doi.org/10.1517/13543784.2011.539558] [PMID: 21105857]
[128]
Ahmadieh H, Azar S. Effects of Sodium Glucose Cotransporter-2 Inhibitors on Serum Uric Acid in Type 2 Diabetes Mellitus. Diabetes Technol Ther 2017; 19(9): 507-12.
[http://dx.doi.org/10.1089/dia.2017.0070] [PMID: 28749169]
[129]
Kusunoki M, Natsume Y, Miyata T, Tsutsumi K, Oshida Y. Effects of Concomitant Administration of a Dipeptidyl Peptidase-4 Inhibitor in Japanese Patients with Type 2 Diabetes Showing Relatively Good Glycemic Control Under Treatment with a Sodium Glucose Co-Transporter 2 Inhibitor. Drug Res (Stuttg) 2018; 68(12): 704-9.
[http://dx.doi.org/10.1055/a-0585-0145] [PMID: 29966149]
[130]
Zhao D, Liu H, Dong P. Empagliflozin reduces blood pressure and uric acid in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. J Hum Hypertens 2019; 33(4): 327-39.
[http://dx.doi.org/10.1038/s41371-018-0134-2] [PMID: 30443007]
[131]
Hao Z, Huang X, Shao H, Tian F. Effects of dapagliflozin on serum uric acid levels in hospitalized type 2 diabetic patients with inadequate glycemic control: a randomized controlled trial. Ther Clin Risk Manag 2018; 14: 2407-13.
[http://dx.doi.org/10.2147/TCRM.S186347] [PMID: 30587997]
[132]
Yanai H, Hakoshima M, Adachi H, et al. Effects of Six Kinds of Sodium-Glucose Cotransporter 2 Inhibitors on Metabolic Parameters, and Summarized Effect and Its Correlations With Baseline Data. J Clin Med Res 2017; 9(7): 605-12.
[http://dx.doi.org/10.14740/jocmr3046w] [PMID: 28611861]
[133]
Scholtes RA, van Raalte DH, Correa-Rotter R, et al. The effects of dapagliflozin on cardio-renal risk factors in patients with type 2 diabetes with or without renin-angiotensin system inhibitor treatment: a post hoc analysis. Diabetes Obes Metab 2020; 22(4): 549-56.
[http://dx.doi.org/10.1111/dom.13923] [PMID: 31742881]
[134]
Davies MJ, Trujillo A, Vijapurkar U, Damaraju CV, Meininger G. Effect of canagliflozin on serum uric acid in patients with type 2 diabetes mellitus. Diabetes Obes Metab 2015; 17(4): 426-9.
[http://dx.doi.org/10.1111/dom.12439] [PMID: 25600248]
[135]
Kutoh E, Wada A, Murayama T, Hayashi J. Two Glucose-Lowering Mechanisms of Canagliflozin Depending on Body Weight Changes in Drug-Naïve Subjects with Type 2 Diabetes. Drugs R D 2018; 18(4): 309-15.
[http://dx.doi.org/10.1007/s40268-018-0250-z] [PMID: 30324549]
[136]
Kutoh E, Wada A, Kuto AN, Hayashi J. Regulation of serum uric acid with canagliflozin monotherapy in type 2 diabetes: A potential link between uric acid and pancreatic β-cell function
. Int J Clin Pharmacol Ther 2019; 57(12): 590-5.
[http://dx.doi.org/10.5414/CP203513] [PMID: 31587751]
[137]
Zhao Y, Xu L, Tian D, et al. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: A meta-analysis of randomized controlled trials. Diabetes Obes Metab 2018; 20(2): 458-62.
[http://dx.doi.org/10.1111/dom.13101] [PMID: 28846182]
[138]
Xin Y, Guo Y, Li Y, Ma Y, Li L, Jiang H. Effects of sodium glucose cotransporter-2 inhibitors on serum uric acid in type 2 diabetes mellitus: A systematic review with an indirect comparison meta-analysis. Saudi J Biol Sci 2019; 26(2): 421-6.
[http://dx.doi.org/10.1016/j.sjbs.2018.11.013] [PMID: 31485187]
[139]
van Raalte DH, Bjornstad P, Persson F, et al. The Impact of Sotagliflozin on Renal Function, Albuminuria, Blood Pressure, and Hematocrit in Adults With Type 1 Diabetes. Diabetes Care 2019; 42(10): 1921-9.
[http://dx.doi.org/10.2337/dc19-0937] [PMID: 31371432]
[140]
Sheu WH. Lowering the Risk of Gout: Another Benefits from Use of SGLT2 Inhibitors. J Diabetes Investig 2020; 11(5): 1115-6.
[http://dx.doi.org/10.1111/jdi.13254]
[141]
Fralick M, Chen SK, Patorno E, Kim SC. Assessing the Risk for Gout With Sodium-Glucose Cotransporter-2 Inhibitors in Patients With Type 2 Diabetes: A Population-Based Cohort Study. Ann Intern Med 2020; 172(3): 186-94.
[http://dx.doi.org/10.7326/M19-2610] [PMID: 31931526]
[142]
Kleber ME, Delgado G, Grammer TB, et al. Uric Acid and Cardiovascular Events: A Mendelian Randomization Study. J Am Soc Nephrol 2015; 26(11): 2831-8.
[http://dx.doi.org/10.1681/ASN.2014070660] [PMID: 25788527]
[143]
Braga F, Pasqualetti S, Ferraro S, Panteghini M. Hyperuricemia as risk factor for coronary heart disease incidence and mortality in the general population: a systematic review and meta-analysis. Clin Chem Lab Med 2016; 54(1): 7-15.
[http://dx.doi.org/10.1515/cclm-2015-0523] [PMID: 26351943]
[144]
Mazidi M, Katsiki N, Mikhailidis DP, Banach M. Lipid and Blood Pressure Meta-Analysis Collaboration (LBPMC) Group. Associations of serum uric acid with total and cause-specific mortality: Findings from individuals and pooling prospective studies. Atherosclerosis 2020; 296: 49-58.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.07.019] [PMID: 32032905]
[145]
Katsiki N, Karagiannis A, Athyros VG, Mikhailidis DP. Hyperuricaemia: more than just a cause of gout? J Cardiovasc Med (Hagerstown) 2013; 14(6): 397-402.
[http://dx.doi.org/10.2459/JCM.0b013e3283595adc] [PMID: 23032963]
[146]
Katsiki N, Dimitriadis G, Hahalis G, et al. Sodium-glucose co-transporter-2 inhibitors (SGLT2i) use and risk of amputation: an expert panel overview of the evidence. Metabolism 2019; 96: 92-100.
[http://dx.doi.org/10.1016/j.metabol.2019.04.008] [PMID: 30980838]
[147]
Woo VC. Cardiovascular effects of sodium-glucose cotransporter-2 inhibitors in adults with type 2 diabetes. Can J Diabetes 2020; 44(1): 61-7.
[http://dx.doi.org/10.1016/j.jcjd.2019.09.004] [PMID: 31839265]
[148]
Evans M, Morgan AR, Yousef Z. What Next After Metformin? Thinking Beyond Glycaemia: Are SGLT2 Inhibitors the Answer? Diabetes Ther 2019; 10(5): 1719-31.
[http://dx.doi.org/10.1007/s13300-019-00678-z] [PMID: 31410711]
[149]
Silva Dos Santos D, Polidoro JZ, Borges-Júnior FA, Girardi ACC. Cardioprotection conferred by sodium-glucose cotransporter 2 inhibitors: a renal proximal tubule perspective. Am J Physiol Cell Physiol 2020; 318(2): C328-36.
[http://dx.doi.org/10.1152/ajpcell.00275.2019] [PMID: 31721613]
[150]
Inzucchi SE, Zinman B, Fitchett D, et al. How Does Empagliflozin Reduce Cardiovascular Mortality? Insights From a Mediation Analysis of the EMPA-REG OUTCOME Trial. Diabetes Care 2018; 41(2): 356-63.
[http://dx.doi.org/10.2337/dc17-1096] [PMID: 29203583]
[151]
Verma S, Ji Q, Bhatt DL, et al. Association between uric acid levels and cardio-renal outcomes and death in patients with type 2 diabetes: A subanalysis of EMPA-REG OUTCOME. Diabetes Obes Metab 2020; 22(7): 1207-14.
[http://dx.doi.org/10.1111/dom.13991] [PMID: 32030863]
[152]
MacFarlane LA, Liu CC, Solomon DH. The effect of initiating pharmacologic insulin on serum uric acid levels in patients with diabetes: a matched cohort analysis. Semin Arthritis Rheum 2015; 44(5): 592-6.
[http://dx.doi.org/10.1016/j.semarthrit.2014.10.008] [PMID: 25455681]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy