Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Metabolism and Mechanism of Human Cytochrome P450 Enzyme 1A2

Author(s): Jingchao Guo, Xiaohui Zhu, Sara Badawy, Awais Ihsan, Zhenli Liu, Changqing Xie and Xu Wang*

Volume 22, Issue 1, 2021

Published on: 01 January, 2021

Page: [40 - 49] Pages: 10

DOI: 10.2174/1389200221999210101233135

Price: $65

Abstract

Human cytochrome P450 enzyme 1A2 (CYP1A2) is one of the most important cytochrome P450 (CYP) enzymes in the liver, accounting for 13% to 15% of hepatic CYP enzymes. CYP1A2 metabolises many clinical drugs, such as phenacetin, caffeine, clozapine, tacrine, propranolol, and mexiletine. CYP1A2 also metabolises certain precarcinogens such as aflatoxins, mycotoxins, nitrosamines, and endogenous substances such as steroids. The regulation of CYP1A2 is influenced by many factors. The transcription of CYP1A2 involves not only the aromatic hydrocarbon receptor pathway but also many additional transcription factors, and CYP1A2 expression may be affected by transcription coactivators and compression factors. Degradation of CYP1A2 mRNA and protein, alternative splicing, RNA stability, regulatory microRNAs, and DNA methylation are also known to affect the regulation of CYP1A2. Many factors can lead to changes in the activity of CYP1A2. Smoking, polycyclic aromatic hydrocarbon ingestion, and certain drugs (e.g., omeprazole) increase its activity, while many clinical drugs such as theophylline, fluvoxamine, quinolone antibiotics, verapamil, cimetidine, and oral contraceptives can inhibit CYP1A2 activity. Here, we review the drugs metabolised by CYP1A2, the metabolic mechanism of CYP1A2, and various factors that influence CYP1A2 metabolism. The metabolic mechanism of CYP1A2 is of great significance in the development of personalised medicine and CYP1A2 target-based drugs.

Keywords: CYP450, CYP1A2, metabolic mechanism, metabolic substrate, P450 enzyme, human cytochrome.

Graphical Abstract

[1]
Nelson, D.R.; Zeldin, D.C.; Hoffman, S.M.; Maltais, L.J.; Wain, H.M.; Nebert, D.W. Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics, 2004, 14(1), 1-18.
[http://dx.doi.org/10.1097/00008571-200401000-00001] [PMID: 15128046]
[2]
Estabrook, R.W.; Faulkner, K.M.; Shet, M.S.; Fisher, C.W. Application of electrochemistry for P450-catalyzed reactions. Methods Enzymol., 1996, 272, 44-51.
[http://dx.doi.org/10.1016/S0076-6879(96)72007-4] [PMID: 8791761]
[3]
Zhou, S.F.; Chan, E.; Zhou, Z.W.; Xue, C.C.; Lai, X.; Duan, W. Insights into the structure, function, and regulation of human cytochrome P450 1A2. Curr. Drug Metab., 2009, 10(7), 713-729.
[http://dx.doi.org/10.2174/138920009789895552] [PMID: 19702529]
[4]
Granfors, M.T.; Backman, J.T.; Neuvonen, M.; Ahonen, J.; Neuvonen, P.J. Fluvoxamine drastically increases concentrations and effects of tizanidine: a potentially hazardous interaction. Clin. Pharmacol. Ther., 2004, 75(4), 331-341.
[http://dx.doi.org/10.1016/j.clpt.2003.12.005] [PMID: 15060511]
[5]
Gu, L.; Gonzalez, F.J.; Kalow, W.; Tang, B.K. Biotransformation of caffeine, paraxanthine, theobromine and theophylline by cDNA-expressed human CYP1A2 and CYP2E1. Pharmacogenetics, 1992, 2(2), 73-77.
[http://dx.doi.org/10.1097/00008571-199204000-00004] [PMID: 1302044]
[6]
Carrillo, J.A.; Christensen, M.; Ramos, S.I. Evaluation of caffeine as an in vivo probe for CYP1A2 using measurements in plasma, saliva, and urine. 2000, 22(4), 409-417.
[http://dx.doi.org/10.1097/00007691-200008000-00008]
[7]
Ha, H.R.; Chen, J.; Krahenbuhl, S.; Follath, F. Biotransformation of caffeine by cDNA-expressed human cytochromes P-450. Eur. J. Clin. Pharmacol., 1996, 49(4), 309-315.
[http://dx.doi.org/10.1007/BF00226333] [PMID: 8857078]
[8]
Kot, M.; Daniel, W.a.a.A. The relative contribution of human cytochrome P450 isoforms to the four caffeine oxidation pathways: An in vitro comparative study with cDNA-expressed P450s including CYP2C isoforms. 76(4), 543-551.
[9]
Berthou, F.; Guillois, B.; Riche, C.; Dreano, Y.; Jacqz-Aigrain, E.; Beaune, P.H. Interspecies variations in caffeine metabolism related to cytochrome P4501A enzymes. Xenobiotica, 1992, 22(6), 671-680.
[http://dx.doi.org/10.3109/00498259209053129] [PMID: 1441590]
[10]
Begas, E.; Kouvaras, E.; Tsakalof, A.; Papakosta, S.; Asprodini, E.K. In vivo evaluation of CYP1A2, CYP2A6, NAT-2 and xanthine oxidase activities in a Greek population sample by the RP-HPLC monitoring of caffeine metabolic ratios. Biomed. Chromatogr., 2007, 21(2), 190-200.
[http://dx.doi.org/10.1002/bmc.736] [PMID: 17221922]
[11]
Chen, Z.Q.; Kang, Y.; Zhang, C.H. Metabolic mechanisms of caffeine catalyzed by cytochrome P450 isoenzyme 1A2: a theoretical study. Theor. Chem. Acc., 2015, 134(9)
[http://dx.doi.org/10.1007/s00214-015-1690-y]
[12]
Campbell, M.E.; Grant, D.M.; Inaba, T.; Kalow, W. Biotransformation of caffeine, paraxanthine, theophylline, and theobromine by polycyclic aromatic hydrocarbon-inducible cytochrome(s) P-450 in human liver microsomes. Drug Metab. Dispos., 1987, 15(2), 237-249.
[PMID: 2882985]
[13]
Tao, J.; Kang, Y.; Xue, Z.; Wang, Y.; Zhang, Y.; Chen, Q.; Chen, Z.; Xue, Y. Theoretical study on the N-demethylation mechanism of theobromine catalyzed by P450 isoenzyme 1A2. J. Mol. Graph. Model., 2015, 61, 123-132.
[http://dx.doi.org/10.1016/j.jmgm.2015.06.017] [PMID: 26218892]
[14]
Olesen, O.V.; Linnet, K. Contributions of five human cytochrome P450 isoforms to the N-demethylation of clozapine in vitro at low and high concentrations. J. Clin. Pharmacol., 2001, 41(8), 823-832.
[http://dx.doi.org/10.1177/00912700122010717] [PMID: 11504269]
[15]
Kobayashi, Y.; Fukami, T.; Higuchi, R.; Nakajima, M.; Yokoi, T. Metabolic activation by human arylacetamide deacetylase, CYP2E1, and CYP1A2 causes phenacetin-induced methemoglobinemia. Biochem. Pharmacol., 2012, 84(9), 1196-1206.
[http://dx.doi.org/10.1016/j.bcp.2012.08.015] [PMID: 22940574]
[16]
Eiermann, B.; Engel, G.; Johansson, I.; Zanger, U.M.; Bertilsson, L. The involvement of CYP1A2 and CYP3A4 in the metabolism of clozapine. Br. J. Clin. Pharmacol., 1997, 44(5), 439-446.
[http://dx.doi.org/10.1046/j.1365-2125.1997.t01-1-00605.x] [PMID: 9384460]
[17]
Aitchison, K.J.; Jann, M.W.; Zhao, J.H.; Sakai, T.; Zaher, H.; Wolff, K.; Collier, D.A.; Kerwin, R.W.; Gonzalez, F.J. Clozapine pharmacokinetics and pharmacodynamics studied with Cyp1A2-null mice. J. Psychopharmacol., 2000, 14(4), 353-359.
[http://dx.doi.org/10.1177/026988110001400403] [PMID: 11198052]
[18]
Dailly, E.; Urien, S.; Chanut, E.; Claudel, B.; Guerra, N.; Femandez, C.; Jolliet, P.; Bourin, M. Evidence from a population pharmacokinetics analysis for a major effect of CYP1A2 activity on inter- and intraindividual variations of clozapine clearance. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2002, 26(4), 699-703.
[http://dx.doi.org/10.1016/S0278-5846(01)00320-7] [PMID: 12188102]
[19]
Bartoli, A.; Xiaodong, S.; Gatti, G.; Cipolla, G.; Marchiselli, R.; Perucca, E. The influence of ethnic factors and gender on CYP1A2-mediated drug disposition: a comparative study in Caucasian and Chinese subjects using phenacetin as a marker substrate. Ther. Drug Monit., 1996, 18(5), 586-591.
[http://dx.doi.org/10.1097/00007691-199610000-00011] [PMID: 8885124]
[20]
Murayama, N.; Soyama, A.; Saito, Y.; Nakajima, Y.; Komamura, K.; Ueno, K.; Kamakura, S.; Kitakaze, M.; Kimura, H.; Goto, Y.; Saitoh, O.; Katoh, M.; Ohnuma, T.; Kawai, M.; Sugai, K.; Ohtsuki, T.; Suzuki, C.; Minami, N.; Ozawa, S.; Sawada, J. Six novel nonsynonymous CYP1A2 gene polymorphisms: catalytic activities of the naturally occurring variant enzymes. J. Pharmacol. Exp. Ther., 2004, 308(1), 300-306.
[http://dx.doi.org/10.1124/jpet.103.055798] [PMID: 14563787]
[21]
Ma, L.N.; Du, Z.Z.; Lian, P.; Wei, D.Q. A theoretical study on the mechanism of a superficial mutation inhibiting the enzymatic activity of CYP1A2. Interdiscip. Sci., 2014, 6(1), 25-31.
[http://dx.doi.org/10.1007/s12539-014-0184-2] [PMID: 24464701]
[22]
Huang, Q.; Szklarz, G.D. Significant increase in phenacetin oxidation on L382V substitution in human cytochrome P450 1A2. Drug Metab. Dispos., 2010, 38(7), 1039-1045.
[http://dx.doi.org/10.1124/dmd.109.030767] [PMID: 20335269]
[23]
Huang, Q.; Szklarz, G.D. Increased Phenacetin Oxidation upon the L382V Substitution in Cytochrome P450 1A2 is Associated with Altered Substrate Binding Orientation. Int. J. Mol. Sci., 2018, 19(6), E1580.
[http://dx.doi.org/10.3390/ijms19061580] [PMID: 29799514]
[24]
Xue, Z.Y.; Zhang, Y.; Tao, J. Theoretical elucidation of the metabolic mechanisms of phenothiazine neuroleptic chlorpromazine catalyzed by cytochrome P450 isoenzyme 1A2. Theor. Chem. Acc., 2016, 135(9), 218.
[http://dx.doi.org/10.1007/s00214-016-1943-4]
[25]
Kwon, S.S.; Kim, J.H.; Jeong, H.U.; Ahn, K.S.; Oh, S.R.; Lee, H.S. Role of cytochrome P450 and UDP-glucuronosyltransferases in metabolic pathway of homoegonol in human liver microsomes. Drug Metab. Pharmacokinet., 2015, 30(4), 305-313.
[http://dx.doi.org/10.1016/j.dmpk.2015.05.005] [PMID: 26163112]
[26]
Nemoto, N.; Sakurai, J. Elevated expression of the Cyp1a2 gene in the presence of nicotinamide by adult mouse hepatocytes in primary culture. Arch. Biochem. Biophys., 1994, 308(1), 292-298.
[http://dx.doi.org/10.1006/abbi.1994.1041] [PMID: 7508708]
[27]
Nobilis, M.; Mikušek, J.; Szotáková, B.; Jirásko, R.; Holčapek, M.; Chamseddin, C.; Jira, T.; Kučera, R.; Kuneš, J.; Pour, M. Analytical power of LLE-HPLC-PDA-MS/MS in drug metabolism studies: identification of new nabumetone metabolites. J. Pharm. Biomed. Anal., 2013, 80, 164-172.
[http://dx.doi.org/10.1016/j.jpba.2013.03.006] [PMID: 23584048]
[28]
Matsumoto, K.; Nemoto, E.; Hasegawa, T.; Akimoto, M.; Sugibayashi, K. in vitro characterization of the cytochrome P450 isoforms involved in the metabolism of 6-methoxy-2-napthylacetic acid, an active metabolite of the prodrug nabumetone. Biol. Pharm. Bull., 2011, 34(5), 734-739.
[http://dx.doi.org/10.1248/bpb.34.734] [PMID: 21532165]
[29]
Turpeinen, M.; Hofmann, U.; Klein, K.; Mürdter, T.; Schwab, M.; Zanger, U.M. A predominate role of CYP1A2 for the metabolism of nabumetone to the active metabolite, 6-methoxy-2-naphthylacetic acid, in human liver microsomes. Drug Metab. Dispos., 2009, 37(5), 1017-1024.
[http://dx.doi.org/10.1124/dmd.108.025700] [PMID: 19204080]
[30]
Chaugai, S.; Dickson, A.L.; Shuey, M.M.; Feng, Q.; Barker, K.A.; Wei, W.Q.; Luther, J.M.; Stein, C.M.; Chung, C.P. Co-prescription of strong CYP1A2 inhibitors and the risk of tizanidine-associated hypotension: a retrospective cohort study. Clin. Pharmacol. Ther., 2019, 105(3), 703-709.
[http://dx.doi.org/10.1002/cpt.1233] [PMID: 30223305]
[31]
Granfors, M.T.; Backman, J.T.; Laitila, J.; Neuvonen, P.J. Tizanidine is mainly metabolized by cytochrome p450 1A2 in vitro. Br. J. Clin. Pharmacol., 2004, 57(3), 349-353.
[http://dx.doi.org/10.1046/j.1365-2125.2003.02028.x] [PMID: 14998432]
[32]
Koch, P.; Hirst, DR.; von Wartburg, BR. Biological fate of sirdalud in animals and man. Xenobiotica, 1989, 19(11), 1255-1265.
[http://dx.doi.org/10.3109/00498258909043177]
[33]
Hutchinson, D.R. Modified release tizanidine: a review. J. Int. Med. Res., 1989, 17(6), 565-573.
[http://dx.doi.org/10.1177/030006058901700611] [PMID: 2697626]
[34]
Roberts, R.C.; Part, N.J.; Pokorny, R.; Muir, C.; Leslie, G.C.; Emre, M. Pharmacokinetics and pharmacodynamics of tizanidine. Neurology, 1994, 44(11)(Suppl. 9), S29-S31.
[PMID: 7970008]
[35]
Granfors, M.T.; Backman, J.T.; Neuvonen, M.; Neuvonen, P.J. Ciprofloxacin greatly increases concentrations and hypotensive effect of tizanidine by inhibiting its cytochrome P450 1A2-mediated presystemic metabolism. Clin. Pharmacol. Ther., 2004, 76(6), 598-606.
[http://dx.doi.org/10.1016/j.clpt.2004.08.018] [PMID: 15592331]
[36]
Deng, J.; Zhao, L.; Zhang, N.Y.; Karrow, N.A.; Krumm, C.S.; Qi, D.S.; Sun, L.H. Aflatoxin B1 metabolism: regulation by phase I and II metabolizing enzymes and chemoprotective agents. Mutat. Res., 2018, 778, 79-89.
[http://dx.doi.org/10.1016/j.mrrev.2018.10.002] [PMID: 30454686]
[37]
Wu, J.; Zhu, S.; Wu, Y.; Jiang, T.; Wang, L.; Jiang, J.; Wen, J.; Deng, Y. Multiple CH/π interactions maintain the binding of aflatoxin B in the active cavity of human cytochrome P450 1A2. Toxins (Basel), 2019, 11(3), E158.
[http://dx.doi.org/10.3390/toxins11030158] [PMID: 30871064]
[38]
Zhu, S.; Wu, J.; Liu, S.; Jiang, T.; Deng, Y. Phe-125 and Phe-226 of pig cytochrome P450 1A2 stabilize the binding of aflatoxin B1 and 7-ethoxyresorufin through the key CH/π interactions. Biochem. Pharmacol., 2019, 166, 292-299.
[http://dx.doi.org/10.1016/j.bcp.2019.05.031] [PMID: 31173723]
[39]
Masubuchi, Y.; Nakano, T.; Ose, A.; Horie, T. Differential selectivity in carbamazepine-induced inactivation of cytochrome P450 enzymes in rat and human liver. Arch. Toxicol., 2001, 75(9), 538-543.
[http://dx.doi.org/10.1007/s002040100270] [PMID: 11760814]
[40]
Masubuchi, Y.; Horie, T. Dihydralazine-induced inactivation of cytochrome P450 enzymes in rat liver microsomes. Drug Metab. Dispos., 1998, 26(4), 338-342.
[PMID: 9531521]
[41]
Wen, X.; Wang, J.S.; Neuvonen, P.J.; Backman, J.T. Isoniazid is a mechanism-based inhibitor of cytochrome P450 1A2, 2A6, 2C19 and 3A4 isoforms in human liver microsomes. Eur. J. Clin. Pharmacol., 2002, 57(11), 799-804.
[http://dx.doi.org/10.1007/s00228-001-0396-3] [PMID: 11868802]
[42]
Karjalainen, M.J.; Neuvonen, P.J.; Backman, J.T. Rofecoxib is a potent, metabolism-dependent inhibitor of CYP1A2: implications for in vitro prediction of drug interactions. Drug Metab. Dispos., 2006, 34(12), 2091-2096.
[http://dx.doi.org/10.1124/dmd.106.011965] [PMID: 16985100]
[43]
Wójcikowski, J.; Pichard-Garcia, L.; Maurel, P.; Daniel, W.A. Perazine as a potent inhibitor of human CYP1A2 but not CYP3A4. Pol. J. Pharmacol., 2002, 54(4), 407-410.
[PMID: 12523495]
[44]
Sorich, M.J.; Mutlib, F.; van Dyk, M.; Hopkins, A.M.; Polasek, T.M.; Marshall, J.C.; Rodrigues, A.D.; Rowland, A. Use of physiologically based pharmacokinetic modeling to identify physiological and molecular characteristics driving variability in axitinib exposure: a fresh approach to precision dosing in oncology. J. Clin. Pharmacol., 2019, 59(6), 872-879.
[http://dx.doi.org/10.1002/jcph.1377] [PMID: 30633368]
[45]
Gu, R.; Hibbs, D.E.; Ong, J.A.; Edwards, R.J.; Murray, M. The multikinase inhibitor axitinib is a potent inhibitor of human CYP1A2. Biochem. Pharmacol., 2014, 88(2), 245-252.
[http://dx.doi.org/10.1016/j.bcp.2014.01.016] [PMID: 24462920]
[46]
Kunze, K.L.; Trager, W.F. Isoform-selective mechanism-based inhibition of human cytochrome P450 1A2 by furafylline. Chem. Res. Toxicol., 1993, 6(5), 649-656.
[http://dx.doi.org/10.1021/tx00035a009] [PMID: 8292742]
[47]
Eagling, V.A.; Tjia, J.F.; Back, D.J. Differential selectivity of cytochrome P450 inhibitors against probe substrates in human and rat liver microsomes. Br. J. Clin. Pharmacol., 1998, 45(2), 107-114.
[http://dx.doi.org/10.1046/j.1365-2125.1998.00679.x] [PMID: 9491822]
[48]
Tarrus, E.; Cami, J.; Roberts, D.J.; Spickett, R.G.; Celdran, E.; Segura, J. Accumulation of caffeine in healthy volunteers treated with furafylline. Br. J. Clin. Pharmacol., 1987, 23(1), 9-18.
[http://dx.doi.org/10.1111/j.1365-2125.1987.tb03003.x] [PMID: 3814465]
[49]
Lee, M.Y.; Shi, C.S.; Hsu, Y.C.; Huang, K.J.; Chen, S.H.; Zhao, P.W.; Chung, H.C.; Huang, Y.C.; Lee, Y.R. Honokiol is a potential therapeutic agent and has a synergistic effect with 5-FU in human urothelial cell carcinoma cells. Anticancer Res., 2019, 39(12), 6555-6565.
[http://dx.doi.org/10.21873/anticanres.13871] [PMID: 31810921]
[50]
Huang, Y.; Liu, C.; Liu, S.; Liu, Z.; Li, S.; Wang, Y. In vitro metabolism of magnolol and honokiol in rat liver microsomes and their interactions with seven cytochrome P substrates. Rapid Commun. Mass Spectrom., 2019, 33(2), 229-238.
[http://dx.doi.org/10.1002/rcm.8314] [PMID: 30343517]
[51]
Li, J.; Li, M.R.; Sun, B.; Liu, C.M.; Ren, J.; Zhi, W.Q.; Zhang, P.Y.; Qiao, H.L.; Gao, N. Inhibition of rat CYP1A2 and CYP2C11 by honokiol, a component of traditional Chinese medicine. Eur. J. Drug Metab. Pharmacokinet., 2019, 44(6), 787-796.
[http://dx.doi.org/10.1007/s13318-019-00565-9] [PMID: 31175627]
[52]
Karjalainen, M.J.; Neuvonen, P.J.; Backman, J.T. Celecoxib is a CYP1A2 inhibitor in vitro but not in vivo. Eur. J. Clin. Pharmacol., 2008, 64(5), 511-519.
[http://dx.doi.org/10.1007/s00228-007-0456-4] [PMID: 18197403]
[53]
Slaughter, D.; Takenaga, N.; Lu, P.; Assang, C.; Walsh, D.J.; Arison, B.H.; Cui, D.; Halpin, R.A.; Geer, L.A.; Vyas, K.P.; Baillie, T.A. Metabolism of rofecoxib in vitro using human liver subcellular fractions. Drug Metab. Dispos., 2003, 31(11), 1398-1408.
[http://dx.doi.org/10.1124/dmd.31.11.1398] [PMID: 14570773]
[54]
Bachmann, K.; White, D.; Jauregui, L.; Schwartz, J.I.; Agrawal, N.G.; Mazenko, R.; Larson, P.J.; Porras, A.G. An evaluation of the dose-dependent inhibition of CYP1A2 by rofecoxib using theophylline as a CYP1A2 probe. J. Clin. Pharmacol., 2003, 43(10), 1082-1090.
[http://dx.doi.org/10.1177/0091270003257454] [PMID: 14517190]
[55]
Backman, J.T.; Karjalainen, M.J.; Neuvonen, M.; Laitila, J.; Neuvonen, P.J. Rofecoxib is a potent inhibitor of cytochrome P450 1A2: studies with tizanidine and caffeine in healthy subjects. Br. J. Clin. Pharmacol., 2006, 62(3), 345-357.
[http://dx.doi.org/10.1111/j.1365-2125.2006.02653.x] [PMID: 16934051]
[56]
Wójcikowski, J.; Daniel, W.A. Perazine at therapeutic drug concentrations inhibits human cytochrome P450 isoenzyme 1A2 (CYP1A2) and caffeine metabolism-an in vitro study. Pharmacol. Rep., 2009, 61(5), 851-858.
[http://dx.doi.org/10.1016/S1734-1140(09)70141-0] [PMID: 19904008]
[57]
Obach, R.S. Inhibition of human cytochrome P450 enzymes by constituents of St. John’s Wort, an herbal preparation used in the treatment of depression. J. Pharmacol. Exp. Ther., 2000, 294(1), 88-95.
[PMID: 10871299]
[58]
von Moltke, L.L.; Weemhoff, J.L.; Bedir, E.; Khan, I.A.; Harmatz, J.S.; Goldman, P.; Greenblatt, D.J. Inhibition of human cytochromes P450 by components of Ginkgo biloba. J. Pharm. Pharmacol., 2004, 56(8), 1039-1044.
[http://dx.doi.org/10.1211/0022357044021] [PMID: 15285849]
[59]
Peng, W.X.; Li, H.D.; Zhou, H.H. Effect of daidzein on CYP1A2 activity and pharmacokinetics of theophylline in healthy volunteers. Eur. J. Clin. Pharmacol., 2003, 59(3), 237-241.
[http://dx.doi.org/10.1007/s00228-003-0596-0] [PMID: 12756512]
[60]
Manda Vk, A.B. Inhibition of CYP3A4 and CYP1A2 by aegle marmelos and its constituents. Xenobiotica, 2016, 46(2), 117-125.
[61]
Kim, H.; Choi, HK.; Jeong, TC. Selective inhibitory effects of mollugin on CYP1A2 in human liver microsomes. Food Chem. Toxicol., 2013, 51, 33-37.
[http://dx.doi.org/10.1016/j.fct.2012.09.013]
[62]
Gao, N.; Qi, B.; Liu, F.J.; Fang, Y.; Zhou, J.; Jia, L.J.; Qiao, H.L. Inhibition of baicalin on metabolism of phenacetin, a probe of CYP1A2, in human liver microsomes and in rats. PLoS One, 2014, 9(2), e89752.
[http://dx.doi.org/10.1371/journal.pone.0089752] [PMID: 24587011]
[63]
Cojocaru, V.; Winn, P.J.; Wade, R.C. The ins and outs of cytochrome P450s. Biochim. Biophys. Acta, 2007, 1770(3), 390-401.
[http://dx.doi.org/10.1016/j.bbagen.2006.07.005] [PMID: 16920266]
[64]
Miyajima, A.; Furihata, T.; Chiba, K. Functional analysis of GC Box and its CpG methylation in the regulation of CYP1A2 gene expression. Drug Metab. Pharmacokinet., 2009, 24(3), 269-276.
[http://dx.doi.org/10.2133/dmpk.24.269] [PMID: 19571439]
[65]
Shertzer, H.G.; Clay, C.D.; Genter, M.B.; Schneider, S.N.; Nebert, D.W.; Dalton, T.P. Cyp1a2 protects against reactive oxygen production in mouse liver microsomes. Free Radic. Biol. Med., 2004, 36(5), 605-617.
[http://dx.doi.org/10.1016/j.freeradbiomed.2003.11.013] [PMID: 14980704]
[66]
Ma, Q.; Lu, A.Y. CYP1A induction and human risk assessment: an evolving tale of in vitro and in vivo studies. Drug Metab. Dispos., 2007, 35(7), 1009-1016.
[http://dx.doi.org/10.1124/dmd.107.015826] [PMID: 17431034]
[67]
Ogiso, H.; Kagi, N.; Matsumoto, E.; Nishimoto, M.; Arai, R.; Shirouzu, M.; Mimura, J.; Fujii-Kuriyama, Y.; Yokoyama, S. Phosphorylation analysis of 90 kDa heat shock protein within the cytosolic arylhydrocarbon receptor complex. Biochemistry, 2004, 43(49), 15510-15519.
[http://dx.doi.org/10.1021/bi048736m] [PMID: 15581363]
[68]
Hollingshead, B.D.; Patel, R.D.; Perdew, G.H. Endogenous hepatic expression of the hepatitis B virus X-associated protein 2 is adequate for maximal association with aryl hydrocarbon receptor-90-kDa heat shock protein complexes. Mol. Pharmacol., 2006, 70(6), 2096-2107.
[http://dx.doi.org/10.1124/mol.106.029215] [PMID: 16988012]
[69]
Kubota, M.; Sogawa, K.; Kaizu, Y.; Sawaya, T.; Watanabe, J.; Kawajiri, K.; Gotoh, O.; Fujii-Kuriyama, Y. Xenobiotic responsive element in the 5′-upstream region of the human P-450c gene. J. Biochem., 1991, 110(2), 232-236.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a123562] [PMID: 1761516]
[70]
Yueh, M.F.; Huang, Y.H.; Hiller, A.; Chen, S.; Nguyen, N.; Tukey, R.H. Involvement of the xenobiotic response element (XRE) in Ah receptor-mediated induction of human UDP-glucuronosyltransferase 1A1. J. Biol. Chem., 2003, 278(17), 15001-15006.
[http://dx.doi.org/10.1074/jbc.M300645200] [PMID: 12566446]
[71]
Ghotbi, R.; Gomez, A.; Milani, L.; Tybring, G.; Syvänen, A.C.; Bertilsson, L.; Ingelman-Sundberg, M.; Aklillu, E. Allele-specific expression and gene methylation in the control of CYP1A2 mRNA level in human livers. Pharmacogenomics J., 2009, 9(3), 208-217.
[http://dx.doi.org/10.1038/tpj.2009.4] [PMID: 19274061]
[72]
Awortwe, C.; Manda, VK.; Avonto, C. Echinacea purpurea up-regulates CYP1A2, CYP3A4 and MDR1 gene expression by activation of pregnane X receptor pathway. Xenobiotica, 2015, 45(3), 218-229.
[73]
Yoshinari, K.; Yoda, N.; Toriyabe, T.; Yamazoe, Y. Constitutive androstane receptor transcriptionally activates human CYP1A1 and CYP1A2 genes through a common regulatory element in the 5′-flanking region. Biochem. Pharmacol., 2010, 79(2), 261-269.
[http://dx.doi.org/10.1016/j.bcp.2009.08.008] [PMID: 19682433]
[74]
Soyama, A.; Saito, Y.; Hanioka, N.; Maekawa, K.; Komamura, K.; Kamakura, S.; Kitakaze, M.; Tomoike, H.; Ueno, K.; Goto, Y.; Kimura, H.; Katoh, M.; Sugai, K.; Saitoh, O.; Kawai, M.; Ohnuma, T.; Ohtsuki, T.; Suzuki, C.; Minami, N.; Kamatani, N.; Ozawa, S.; Sawada, J. Single nucleotide polymorphisms and haplotypes of CYP1A2 in a Japanese population. Drug Metab. Pharmacokinet., 2005, 20(1), 24-33.
[http://dx.doi.org/10.2133/dmpk.20.24] [PMID: 15770072]
[75]
Obase, Y.; Shimoda, T.; Kawano, T.; Saeki, S.; Tomari, S.Y.; Mitsuta-Izaki, K.; Matsuse, H.; Kinoshita, M.; Kohno, S. Polymorphisms in the CYP1A2 gene and theophylline metabolism in patients with asthma. Clin. Pharmacol. Ther., 2003, 73(5), 468-474.
[http://dx.doi.org/10.1016/S0009-9236(03)00013-4] [PMID: 12732846]
[76]
Yim, E.Y.; Kang, H.R.; Jung, J.W.; Sohn, S.W.; Cho, S.H. CYP1A2 polymorphism and theophylline clearance in Korean non-smoking asthmatics. Asia Pac. Allergy, 2013, 3(4), 231-240.
[http://dx.doi.org/10.5415/apallergy.2013.3.4.231] [PMID: 24260728]
[77]
Ghotbi, R.; Christensen, M.; Roh, H.K.; Ingelman-Sundberg, M.; Aklillu, E.; Bertilsson, L. Comparisons of CYP1A2 genetic polymorphisms, enzyme activity and the genotype-phenotype relationship in Swedes and Koreans. Eur. J. Clin. Pharmacol., 2007, 63(6), 537-546.
[http://dx.doi.org/10.1007/s00228-007-0288-2] [PMID: 17370067]
[78]
Fontana, R.J.; Lown, K.S.; Paine, M.F.; Fortlage, L.; Santella, R.M.; Felton, J.S.; Knize, M.G.; Greenberg, A.; Watkins, P.B. Effects of a chargrilled meat diet on expression of CYP3A, CYP1A, and P-glycoprotein levels in healthy volunteers. Gastroenterology, 1999, 117(1), 89-98.
[http://dx.doi.org/10.1016/S0016-5085(99)70554-8] [PMID: 10381914]
[79]
Lampe, J.W.; King, I.B.; Li, S.; Grate, M.T.; Barale, K.V.; Chen, C.; Feng, Z.; Potter, J.D. Brassica vegetables increase and apiaceous vegetables decrease cytochrome P450 1A2 activity in humans: changes in caffeine metabolite ratios in response to controlled vegetable diets. Carcinogenesis, 2000, 21(6), 1157-1162.
[http://dx.doi.org/10.1093/carcin/21.6.1157] [PMID: 10837004]
[80]
Meyer, U.A. Metabolic interactions of the proton-pump inhibitors lansoprazole, omeprazole and pantoprazole with other drugs. Eur. J. Gastroenterol. Hepatol., 1996, 8(Suppl. 1), S21-S25.
[http://dx.doi.org/10.1097/00042737-199610001-00005] [PMID: 8930576]
[81]
Kotake, A.N.; Schoeller, D.A.; Lambert, G.H.; Baker, A.L.; Schaffer, D.D.; Josephs, H. The caffeine CO2 breath test: dose response and route of N-demethylation in smokers and nonsmokers. Clin. Pharmacol. Ther., 1982, 32(2), 261-269.
[http://dx.doi.org/10.1038/clpt.1982.157] [PMID: 6807598]
[82]
Sesardic, D.; Boobis, A.R.; Edwards, R.J.; Davies, D.S. A form of cytochrome P450 in man, orthologous to form d in the rat, catalyses the O-deethylation of phenacetin and is inducible by cigarette smoking. Br. J. Clin. Pharmacol., 1988, 26(4), 363-372.
[http://dx.doi.org/10.1111/j.1365-2125.1988.tb03393.x] [PMID: 3190986]
[83]
Parker, A.C.; Pritchard, P.; Preston, T.; Choonara, I. Induction of CYP1A2 activity by carbamazepine in children using the caffeine breath test. Br. J. Clin. Pharmacol., 1998, 45(2), 176-178.
[http://dx.doi.org/10.1046/j.1365-2125.1998.00684.x] [PMID: 9491835]
[84]
Yoshinari, K.; Ueda, R.; Kusano, K.; Yoshimura, T.; Nagata, K.; Yamazoe, Y. Omeprazole transactivates human CYP1A1 and CYP1A2 expression through the common regulatory region containing multiple xenobiotic-responsive elements. Biochem. Pharmacol., 2008, 76(1), 139-145.
[http://dx.doi.org/10.1016/j.bcp.2008.04.005] [PMID: 18502397]
[85]
Tang, J.; Ji, H.; Shi, J.; Wu, L. Ephedra water decoction and cough tablets containing ephedra and liquorice induce CYP1A2 but not CYP2E1 hepatic enzymes in rats. Xenobiotica, 2016, 46(2), 141-146.
[http://dx.doi.org/10.3109/00498254.2015.1060371] [PMID: 26153439]
[86]
Li, X.Y.; Qu, N.; Wang, X.J.; Yang, J.X.; Xin, Y.Y.; Zhu, J.B.; Bai, X.; Duan, Y.B. Regulation of X-ray irradiation on the activity and expression levels of CYP1A2 and CYP2E1 in rats. Front. Pharmacol., 2020, 10, 1575.
[http://dx.doi.org/10.3389/fphar.2019.01575] [PMID: 32047430]
[87]
Liu, S.; Cheng, Y.; Rao, M.; Tang, M.; Dong, Z. Muscone induces CYP1A2 and CYP3A4 enzyme expression in L02 human liver cells and CYP1A2 and CYP3A11 Enzyme Expression in Kunming mice. Pharmacology, 2017, 99(5-6), 205-215.
[http://dx.doi.org/10.1159/000455154] [PMID: 28110334]
[88]
Liu, H.; Narayanan, R.; Hoffmann, M.; Surapaneni, S. The uremic toxin indoxyl-3-sulfate induces CYP1A2 in primary human hepatocytes. Drug Metab. Lett., 2016, 10(3), 195-199.
[http://dx.doi.org/10.2174/1872312810666160719143703] [PMID: 27449409]
[89]
Denden, S.; Bouden, B.; Haj Khelil, A.; Ben Chibani, J.; Hamdaoui, M.H. Gender and ethnicity modify the association between the CYP1A2 rs762551 polymorphism and habitual coffee intake: evidence from a meta-analysis. Genet. Mol. Res., 2016, 15(2) , 10.4238/gmr.15027487.
[http://dx.doi.org/10.4238/gmr.15027487] [PMID: 27173183]
[90]
Shelepova, T.; Nafziger, A.N.; Victory, J.; Kashuba, A.D.; Rowland, E.; Zhang, Y.; Sellers, E.; Kearns, G.; Leeder, J.S.; Gaedigk, A.; Bertino, J.S., Jr. Effect of a triphasic oral contraceptive on drug-metabolizing enzyme activity as measured by the validated Cooperstown 5+1 cocktail. J. Clin. Pharmacol., 2005, 45(12), 1413-1421.
[http://dx.doi.org/10.1177/0091270005280851] [PMID: 16291717]
[91]
Tracy, T.S.; Venkataramanan, R.; Glover, D.D.; Caritis, S.N. National Institute for Child Health and Human Development Network of Maternal-fetal-medicine Units. Temporal changes in drug metabolism (CYP1A2, CYP2D6 and CYP3A activity) during pregnancy. Am. J. Obstet. Gynecol., 2005, 192(2), 633-639.
[http://dx.doi.org/10.1016/j.ajog.2004.08.030] [PMID: 15696014]
[92]
Tsiokou, V.; Kilindris, T.; Begas, E.; Kouvaras, E.; Kouretas, D.; Asprodini, E.K. Altered activity of xenobiotic detoxifying enzymes at menopause - A cross-sectional study. Environ. Res., 2020, 182, 109074.
[http://dx.doi.org/10.1016/j.envres.2019.109074] [PMID: 31923849]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy