Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Cell Free DNA as an Evolving Liquid Biopsy Biomarker for Initial Diagnosis and Therapeutic Nursing in Cancer- An Evolving Aspect in Medical Biotechnology

Author(s): Suman Kumar Ray and Sukhes Mukherjee*

Volume 23, Issue 1, 2022

Published on: 10 December, 2020

Page: [112 - 122] Pages: 11

DOI: 10.2174/1389201021666201211102710

Price: $65

Abstract

Cell-free DNA (cfDNA) is present in numerous body fluids and generally blood cells. It is undoubtedly the utmost promising tool among all components of liquid biopsy. Liquid biopsy is a specialized method investigating the non-solid biological tissue by revealing circulating cells, cell-free DNA, etc., that enter the body fluids. Since cancer cells disengage from compact tumors circulating in peripheral blood, evaluating cancer patients' blood profile is essential for the molecular level analysis of various tumor-derived constituents. Cell-free DNA samples can deliver a significant diagnosis in oncology, for instance, tumor heterogeneity, rapid tumor development, response to therapy and treatment, comprising immunotherapy, and mechanisms of cancer metastasis. Malignant growth at any phase can cause the occurrence of tumor cells in addition to fragments of neoplasticity. Liquid biopsy indicates diverse blood-based biomarkers comprising circulating tumor cells (CTCs), circulating tumor DNA (ctDNA) or cfDNA, circulating RNA (cfRNA), and exosomes. Cell-free DNAs are little DNA fragments circulating in plasma or serum, just as other fluids present in our body. Cell-free DNA involves primarily double-stranded nuclear DNA and mitochondrial DNA, present both on a surface level and in the vesicles' lumen. The probable origins of the tumor-inferred portion of cfDNA are apoptosis or tumor necrosis, lysis of CTCs or DNA release from the tumor cells into circulation. The evolution of innovations, refinement, and improvement in therapeutics to determine the fragment size of cfDNA and its distribution provide essential information related to pathological conditions of the cell, thus emerging as a promising indicator for clinical output in medical biotechnology.

Keywords: Cell free DNA, liquid biopsy, circulating tumor cells, cancer, biomarkers, medical biotechnology.

Graphical Abstract

[1]
Palmirotta, R.; Lovero, D.; Cafforio, P.; Felici, C.; Mannavola, F.; Pellè, E.; Quaresmini, D.; Tucci, M.; Silvestris, F. Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology. Ther. Adv. Med. Oncol., 2018, 101758835918794630
[http://dx.doi.org/10.1177/1758835918794630 ] [PMID: 30181785]
[2]
Leon, S.A.; Shapiro, B.; Sklaroff, D.M.; Yaros, M.J. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res., 1977, 37(3), 646-650.
[PMID: 837366]
[3]
Huang, Z.; Gu, B. Circulating tumor DNA: a resuscitative gold mine? Ann. Transl. Med., 2015, 3(17), 253.
[PMID: 26605299]
[4]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590 ] [PMID: 31912902]
[5]
Kodack, D.P.; Farago, A.F.; Dastur, A.; Held, M.A.; Dardaei, L.; Friboulet, L.; von Flotow, F.; Damon, L.J.; Lee, D.; Parks, M.; Dicecca, R.; Greenberg, M.; Kattermann, K.E.; Riley, A.K.; Fintelmann, F.J.; Rizzo, C.; Piotrowska, Z.; Shaw, A.T.; Gainor, J.F.; Sequist, L.V.; Niederst, M.J.; Engelman, J.A.; Benes, C.H. Primary patient-derived cancer cells and their potential for personalized cancer patient care. Cell Rep., 2017, 21(11), 3298-3309.
[http://dx.doi.org/10.1016/j.celrep.2017.11.051 ] [PMID: 29241554]
[6]
Haber, D.A.; Velculescu, V.E. Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discov., 2014, 4(6), 650-661.
[http://dx.doi.org/10.1158/2159-8290.CD-13-1014 ] [PMID: 24801577]
[7]
Marrugo-Ramírez, J.; Mir, M.; Samitier, J. Blood-based cancer biomarkers in liquid biopsy: A promising non-invasive alternative to tissue biopsy. Int. J. Mol. Sci., 2018, 19(10), 2877.
[http://dx.doi.org/10.3390/ijms19102877 ] [PMID: 30248975]
[8]
Sorber, L.; Zwaenepoel, K.; Deschoolmeester, V.; Van Schil, P.E.; Van Meerbeeck, J.; Lardon, F.; Rolfo, C.; Pauwels, P. Circulating cell-free nucleic acids and platelets as a liquid biopsy in the provision of personalized therapy for lung cancer patients. Lung Cancer, 2017, 107, 100-107.
[http://dx.doi.org/10.1016/j.lungcan.2016.04.026 ] [PMID: 27180141]
[9]
Diehl, F.; Schmidt, K.; Choti, M.A.; Romans, K.; Goodman, S.; Li, M.; Thornton, K.; Agrawal, N.; Sokoll, L.; Szabo, S.A.; Kinzler, K.W.; Vogelstein, B.; Diaz, L.A. Jr Circulating mutant DNA to assess tumor dynamics. Nat. Med., 2008, 14(9), 985-990.
[http://dx.doi.org/10.1038/nm.1789 ] [PMID: 18670422]
[10]
Mandel, P.; Metais, P. Les acidesnucleiques du plasma sanguin chez l’ homme. C R Acad. Sci. Paris, 1948, 142, 241-243.
[11]
Lu, Y.T.; Delijani, K.; Mecum, A.; Goldkorn, A. Current status of liquid biopsies for the detection and management of prostate cancer. Cancer Manag. Res., 2019, 11, 5271-5291.
[http://dx.doi.org/10.2147/CMAR.S170380 ] [PMID: 31239778]
[12]
Ding, Y.; Li, W.; Wang, K.; Xu, C.; Hao, M.; Ding, L. Perspectives of the application of liquid biopsy in colorectal cancer. BioMed Res. Int., 2020, 20206843180
[http://dx.doi.org/10.1155/2020/6843180 ] [PMID: 32258135]
[13]
Gai, W.; Sun, K. Epigenetic biomarkers in cell-free DNA and applications in liquid biopsy. Genes (Basel), 2019, 10(1), 32.
[http://dx.doi.org/10.3390/genes10010032 ] [PMID: 30634483]
[14]
Schwarzenbach, H.; Alix-Panabières, C.; Müller, I.; Letang, N.; Vendrell, J.P.; Rebillard, X.; Pantel, K. Cell-free tumor DNA in blood plasma as a marker for circulating tumor cells in prostate cancer. Clin. Cancer Res., 2009, 15(3), 1032-1038.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1910 ] [PMID: 19188176]
[15]
Vizza, E.; Corrado, G.; De Angeli, M.; Carosi, M.; Mancini, E.; Baiocco, E.; Chiofalo, B.; Patrizi, L.; Zampa, A.; Piaggio, G.; Cicchillitti, L. Serum DNA integrity index as a potential molecular biomarker in endometrial cancer. J. Exp. Clin. Cancer Res., 2018, 37(1), 16.
[http://dx.doi.org/10.1186/s13046-018-0688-4 ] [PMID: 29382392]
[16]
Thierry, A.R.; El Messaoudi, S.; Gahan, P.B.; Anker, P.; Stroun, M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev., 2016, 35(3), 347-376.
[http://dx.doi.org/10.1007/s10555-016-9629-x ] [PMID: 27392603]
[17]
Volik, S.; Alcaide, M.; Morin, R.D.; Collins, C. Cell-free DNA (cfDNA): Clinical significance and utility in cancer shaped by emerging technologies. Mol. Cancer Res., 2016, 14(10), 898-908.
[http://dx.doi.org/10.1158/1541-7786.MCR-16-0044 ] [PMID: 27422709]
[18]
Kustanovich, A.; Schwartz, R.; Peretz, T.; Grinshpun, A. Life and death of circulating cell-free DNA. Cancer Biol. Ther., 2019, 20(8), 1057-1067.
[http://dx.doi.org/10.1080/15384047.2019.1598759 ] [PMID: 30990132]
[19]
Snyder, M.W.; Kircher, M.; Hill, A.J.; Daza, R.M.; Shendure, J. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell, 2016, 164(1-2), 57-68.
[http://dx.doi.org/10.1016/j.cell.2015.11.050 ] [PMID: 26771485]
[20]
Arko-Boham, B.; Aryee, N.A.; Blay, R.M.; Owusu, E.D.A.; Tagoe, E.A.; Doris Shackie, E.S.; Debrah, A.B.; Adu-Aryee, N.A. Circulating cell-free DNA integrity as a diagnostic and prognostic marker for breast and prostate cancers. Cancer Genet., 2019, 235-236, 65-71.
[http://dx.doi.org/10.1016/j.cancergen.2019.04.062 ] [PMID: 31105051]
[21]
Vymetalkova, V.; Cervena, K.; Bartu, L.; Vodicka, P. Circulating cell-free DNA and colorectal cancer: A systematic review. Int. J. Mol. Sci., 2018, 19(11), 3356.
[http://dx.doi.org/10.3390/ijms19113356 ] [PMID: 30373199]
[22]
Wang, B.G.; Huang, H-Y.; Chen, Y-C.; Bristow, R.E.; Kassauei, K.; Cheng, C-C.; Roden, R.; Sokoll, L.J.; Chan, D.W.; Shih, IeM. Increased plasma DNA integrity in cancer patients. Cancer Res., 2003, 63(14), 3966-3968.
[PMID: 12873992]
[23]
Madhavan, D.; Wallwiener, M.; Bents, K.; Zucknick, M.; Nees, J.; Schott, S.; Cuk, K.; Riethdorf, S.; Trumpp, A.; Pantel, K.; Sohn, C.; Schneeweiss, A.; Surowy, H.; Burwinkel, B. Plasma DNA integrity as a biomarker for primary and metastatic breast cancer and potential marker for early diagnosis. Breast Cancer Res. Treat., 2014, 146(1), 163-174.
[http://dx.doi.org/10.1007/s10549-014-2946-2 ] [PMID: 24838941]
[24]
Bronkhorst, A.J.; Ungerer, V.; Holdenrieder, S. The emerging role of cell-free DNA as a molecular marker for cancer management. Biomol Detect. Quantif., 2019, 17100087
[http://dx.doi.org/10.1016/j.bdq.2019.100087 ] [PMID: 30923679]
[25]
Wang, W.; Kong, P.; Ma, G.; Li, L.; Zhu, J.; Xia, T.; Xie, H.; Zhou, W.; Wang, S. Characterization of the release and biological significance of cell-free DNA from breast cancer cell lines. Oncotarget, 2017, 8(26), 43180-43191.
[http://dx.doi.org/10.18632/oncotarget.17858 ] [PMID: 28574818]
[26]
Azad, A.A.; Volik, S.V.; Wyatt, A.W.; Haegert, A.; Le Bihan, S.; Bell, R.H.; Anderson, S.A.; McConeghy, B.; Shukin, R.; Bazov, J.; Youngren, J.; Paris, P.; Thomas, G.; Small, E.J.; Wang, Y.; Gleave, M.E.; Collins, C.C.; Chi, K.N. Androgen receptor gene aberrations in circulating cell-free DNA: biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin. Cancer Res., 2015, 21(10), 2315-2324.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2666 ] [PMID: 25712683]
[27]
Elazezy, M.; Joosse, S.A. Techniques of using circulating tumor DNA as a liquid biopsy component in cancer management. Comput. Struct. Biotechnol. J., 2018, 16, 370-378.
[http://dx.doi.org/10.1016/j.csbj.2018.10.002 ] [PMID: 30364656]
[28]
Diehl, F.; Li, M.; Dressman, D.; He, Y.; Shen, D.; Szabo, S.; Diaz, L.A., Jr; Goodman, S.N.; David, K.A.; Juhl, H.; Kinzler, K.W.; Vogelstein, B. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc. Natl. Acad. Sci. USA, 2005, 102(45), 16368-16373.
[http://dx.doi.org/10.1073/pnas.0507904102 ] [PMID: 16258065]
[29]
Tsumita, T.; Iwanaga, M. Fate of injected deoxyribonucleic acid in mice. Nature, 1963, 198, 1088-1089.
[http://dx.doi.org/10.1038/1981088a0 ] [PMID: 13994595]
[30]
Lo, Y.M.D.; Chan, L.Y.S.; Lo, K-W.; Leung, S-F.; Zhang, J.; Chan, A.T.C.; Lee, J.C.; Hjelm, N.M.; Johnson, P.J.; Huang, D.P. Quantitative analysis of cell-free Epstein-Barr virus DNA in plasma of patients with nasopharyngeal carcinoma. Cancer Res., 1999, 59(6), 1188-1191.
[PMID: 10096545]
[31]
Buedts, L.; Vandenberghe, P. Circulating cell-free DNA in hematological malignancies. Haematologica, 2016, 101(9), 997-999.
[http://dx.doi.org/10.3324/haematol.2015.131128 ] [PMID: 27582567]
[32]
Bronkhorst, A.J.; Wentzel, J.F.; Aucamp, J.; van Dyk, E.; du Plessis, L.; Pretorius, P.J. Characterization of the cell-free DNA released by cultured cancer cells. Biochim. Biophys. Acta, 2016, 1863(1), 157-165.
[http://dx.doi.org/10.1016/j.bbamcr.2015.10.022 ] [PMID: 26529550]
[33]
Salvi, S.; Gurioli, G.; De Giorgi, U.; Conteduca, V.; Tedaldi, G.; Calistri, D.; Casadio, V. Cell-free DNA as a diagnostic marker for cancer: current insights. OncoTargets Ther., 2016, 9, 6549-6559.
[http://dx.doi.org/10.2147/OTT.S100901 ] [PMID: 27822059]
[34]
Stroun, M.J.; Lyautey, J.C.; Lederrey, C.A.; Olson-Sand, A.P.; Anker, P. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin. Chim. Acta, 2001, 313(1-2), 139-142.
[35]
Sorenson, G. XXVth anniversary meeting of the international society for oncodevelopmental biology and medicine, Montreux, Switzerland, 1997.
[36]
Stroun, H.E.; Mulcahy, M.J.G. K-ras mutations are found in DNA extracted from the plasma of patients with colorectal cancer. Gastroenterology, 1997, 112(4), 1114-1120.
[37]
Bevilacqua, R.A.U.; Nunes, D.N.; Stroun, M.; Anker, P. The use of genetic instability as a clinical tool for cancer diagnosis. Semin. Cancer Biol., 1998, 8(6), 447-453.
[http://dx.doi.org/10.1006/scbi.1998.0122 ] [PMID: 10191179]
[38]
Yu, S.C.Y.; Chan, K.C.A.; Zheng, Y.W.L.; Jiang, P.; Liao, G.J.W.; Sun, H.; Akolekar, R.; Leung, T.Y.; Go, A.T.; van Vugt, J.M.; Minekawa, R.; Oudejans, C.B.; Nicolaides, K.H.; Chiu, R.W.; Lo, Y.M. Size-based molecular diagnostics using plasma DNA for noninvasive prenatal testing. Proc. Natl. Acad. Sci. USA, 2014, 111(23), 8583-8588.
[http://dx.doi.org/10.1073/pnas.1406103111 ] [PMID: 24843150]
[39]
Zheng, Y.W.L.; Chan, K.C.A.; Sun, H.; Jiang, P.; Su, X.; Chen, E.Z. Non-hematopoietically derived DNA is shorter than hematopoietically derived DNA in plasma: A transplantation model. Clin. Chem., 2012, 58(3), 549-558.
[http://dx.doi.org/10.1373/clinchem.2011.169318]
[40]
Fan, H.C.; Blumenfeld, Y.J.; Chitkara, U.; Hudgins, L.; Quake, S.R. Analysis of the size distributions of fetal and maternal cell-free DNA by paired-end sequencing. Clin. Chem., 2010, 56(8), 1279-1286.
[http://dx.doi.org/10.1373/clinchem.2010.144188 ] [PMID: 20558635]
[41]
Holdenrieder, S.; Stieber, P. Apoptotic markers in cancer. Clin. Biochem., 2004, 37(7), 605-617.
[http://dx.doi.org/10.1016/j.clinbiochem.2004.05.003 ] [PMID: 15234242]
[42]
Nagata, S.; Nagase, H.; Kawane, K.; Mukae, N.; Fukuyama, H. Degradation of chromosomal DNA during apoptosis. Cell Death Differ., 2003, 10, 108-116.
[http://dx.doi.org/10.1038/sj.cdd.4401161]
[43]
Sikora, K.; Bedin, C.; Vicentini, C.; Malpeli, G.; D’Angelo, E.; Sperandio, N.; Lawlor, R.T.; Bassi, C.; Tortora, G.; Nitti, D.; Agostini, M.; Fassan, M.; Scarpa, A. Evaluation of cell-free DNA as a biomarker for pancreatic malignancies. Int. J. Biol. Markers, 2015, 30(1), e136-e141.
[http://dx.doi.org/10.5301/jbm.5000088 ] [PMID: 24832178]
[44]
Sun, Y.; An, K.; Yang, C. Circulating Cell-Free DNA, Liquid Biopsy, Ilze Strumfa and Janis Gardovskis, IntechOpen, DOI: 10.5772/intechopen.80730. Available from:, https://www.intechopen.com/chapters/63989
[http://dx.doi.org/10.5772/intechopen.80730]
[45]
Abraham, J.; Singh, S.; Joshi, S. Liquid biopsy - emergence of a new era in personalized cancer care. Appl. Can. Res., 2018, 38, 4.
[http://dx.doi.org/10.1186/s41241-018-0053-0]
[46]
Ashworth, T.R. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust. Med. J., 1869, 14, 146-147.
[47]
Engell, H.C. Cancer cells in the circulating blood; a clinical study on the occurrence of cancer cells in the peripheral blood and in venous blood draining the tumour area at operation. Acta Chir. Scand. Suppl., 1955, 201, 1-70.
[PMID: 14387468]
[48]
Ilie, M.; Hofman, V.; Long, E.; Bordone, O.; Selva, E.; Washetine, K.; Marquette, C.H.; Hofman, P. Current challenges for detection of circulating tumor cells and cell-free circulating nucleic acids, and their characterization in non-small cell lung carcinoma patients. What is the best blood substrate for personalized medicine? Ann. Transl. Med., 2014, 2(11), 107.
[PMID: 25489581]
[49]
Valentino, A.; Reclusa, P.; Sirera, R.; Giallombardo, M.; Camps, C.; Pauwels, P.; Crispi, S.; Rolfo, C. Exosomal microRNAs in liquid biopsies: Future biomarkers for prostate cancer. Clin. Transl. Oncol., 2017, 19(6), 651-657.
[http://dx.doi.org/10.1007/s12094-016-1599-5 ] [PMID: 28054319]
[50]
Skog, J.; Würdinger, T.; van Rijn, S.; Meijer, D.H.; Gainche, L.; Sena-Esteves, M.; Curry, W.T., Jr; Carter, B.S.; Krichevsky, A.M.; Breakefield, X.O. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol., 2008, 10(12), 1470-1476.
[http://dx.doi.org/10.1038/ncb1800 ] [PMID: 19011622]
[51]
Okajima, W.; Komatsu, S.; Ichikawa, D.; Miyamae, M.; Kawaguchi, T.; Hirajima, S.; Ohashi, T.; Imamura, T.; Kiuchi, J.; Arita, T.; Konishi, H.; Shiozaki, A.; Moriumura, R.; Ikoma, H.; Okamoto, K.; Taniguchi, H.; Itoh, Y.; Otsuji, E. Circulating microRNA profiles in plasma: Identification of miR-224 as a novel diagnostic biomarker in hepatocellular carcinoma independent of hepatic function. Oncotarget, 2016, 7(33), 53820-53836.
[http://dx.doi.org/10.18632/oncotarget.10781 ] [PMID: 27462777]
[52]
Chen, Q.; Zhang, Z.H.; Wang, S.; Lang, J.H. Circulating cell-free DNA or circulating tumor DNA in the management of ovarian and endometrial cancer. OncoTargets Ther., 2019, 12, 11517-11530.
[http://dx.doi.org/10.2147/OTT.S227156 ] [PMID: 31920340]
[53]
Thierry, A.; Mouliere, F.; Messauodi, S. Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat. Med., 2014, 20, 430-435.
[http://dx.doi.org/10.1038/nm.3511]
[54]
Petit, J.; Carroll, G.; Gould, T.; Pockney, P.; Dun, M.; Scott, R.J. Cell-free DNA as a diagnostic blood-based biomarker for colorectal cancer: A systematic review. J. Surg. Res., 2019, 236, 184-197.
[55]
Xu, X.; Qian, J.; Cai, Z. DNA alterations of microsatellite DNA, p53, APC and K-ras in Chinese colorectal cancer patients. Eur. J. Clin. Invest., 2012.
[56]
Schell, M.J.; Yang, M.; Teer, J.K.; Lo, F.Y.; Madan, A.; Coppola, D.; Monteiro, A.N.; Nebozhyn, M.V.; Yue, B.; Loboda, A.; Bien-Willner, G.A.; Greenawalt, D.M.; Yeatman, T.J. A multigene mutation classification of 468 colorectal cancers reveals a prognostic role for APC. Nat. Commun., 2016, 7, 11743.
[http://dx.doi.org/10.1038/ncomms11743 ] [PMID: 27302369]
[57]
Taly, V.; Pekin, D.; Benhaim, L. Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of patient with colorectal cancer. Clin. Chem., 1731, 2013(59), 1722e.
[58]
Mattox, A.K.; Bettegowda, C.; Zhou, S.; Papadopoulos, N.; Kinzler, K.W.; Vogelstein, B. Applications of liquid biopsies for cancer. Sci. Transl. Med., 2019, 11(507)
[http://dx.doi.org/10.1126/scitranslmed.aay1984]
[59]
Zhu, X.; Wetta, H. Genetics and epigenetics in tumorigenesis: acting separately or linked? Austin J. Clin. Med., 2014, 1(4), 1016.
[60]
Han, X.; Wang, J.; Sun, Y. Circulating tumor DNA as biomarkers for cancer detection. Genomics Proteomics Bioinform, 2017, 15(2), 59-72.
[http://dx.doi.org/10.1016/j.gpb.2016.12.004 ] [PMID: 28392479]
[61]
Fiala, C.; Diamandis, E.P. Utility of circulating tumor DNA in cancer diagnostics with emphasis on early detection. BMC Med., 2018, 16(1), 166.
[http://dx.doi.org/10.1186/s12916-018-1157-9 ] [PMID: 30285732]
[62]
Patani, N.; Martin, L.A.; Dowsett, M. Biomarkers for the clinical management of breast cancer: International perspective. Int. J. Cancer, 2013, 133(1), 1-13.
[http://dx.doi.org/10.1002/ijc.27997 ] [PMID: 23280579]
[63]
Zhang, J.; Quadri, S.; Wolfgang, C.L.; Zheng, L. New development of biomarkers for gastrointestinal cancers: From neoplastic cells to tumor microenvironment. Biomedicines, 2018, 6(3), 87.
[http://dx.doi.org/10.3390/biomedicines6030087 ] [PMID: 30104497]
[64]
Rapisuwon, S.; Vietsch, E.E.; Wellstein, A. Circulating biomarkers to monitor cancer progression and treatment. Comput. Struct. Biotechnol. J., 2016, 14, 211-222.
[http://dx.doi.org/10.1016/j.csbj.2016.05.004 ] [PMID: 27358717]
[65]
Siravegna, G.; Marsoni, S.; Siena, S.; Bardelli, A. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol., 2017, 14(9), 531-548.
[http://dx.doi.org/10.1038/nrclinonc.2017.14 ] [PMID: 28252003]
[66]
Demers, M.; Wong, S.L.; Martinod, K.; Gallant, M.; Cabral, J.E.; Wang, Y.; Wagner, D.D. Priming of neutrophils toward NETosis promotes tumor growth. OncoImmunology, 2016, 5(5)e1134073
[http://dx.doi.org/10.1080/2162402X.2015.1134073 ] [PMID: 27467952]
[67]
Soliman, S.E.; Alhanafy, A.M.; Habib, M.S.E.; Hagag, M.; Ibrahem, R.A.L. Serum circulating cell free DNA as potential diagnostic and prognostic biomarker in non-small cell lung cancer. Biochem. Biophys. Rep., 2018, 15, 45-51.
[http://dx.doi.org/10.1016/j.bbrep.2018.06.002 ] [PMID: 29984326]
[68]
Ma, X.; Zhu, L.; Wu, X.; Bao, H.; Wang, X.; Chang, Z.; Shao, Y.W.; Wang, Z. Cell-free DNA provides a good representation of the tumor genome despite its biased fragmentation patterns. PLoS One, 2017, 12(1)e0169231
[http://dx.doi.org/10.1371/journal.pone.0169231 ] [PMID: 28046008]
[69]
Jiang, P.; Chan, C.W.M.; Chan, K.C.A.; Cheng, S.H.; Wong, J.; Wong, V.W.; Wong, G.L.; Chan, S.L.; Mok, T.S.; Chan, H.L.; Lai, P.B.; Chiu, R.W.; Lo, Y.M. Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc. Natl. Acad. Sci. USA, 2015, 112(11), E1317-E1325.
[http://dx.doi.org/10.1073/pnas.1500076112 ] [PMID: 25646427]
[70]
Agostini, M.; Pucciarelli, S.; Enzo, M.V.; Del Bianco, P.; Briarava, M.; Bedin, C.; Maretto, I.; Friso, M.L.; Lonardi, S.; Mescoli, C.; Toppan, P.; Urso, E.; Nitti, D. Circulating cell-free DNA: a promising marker of pathologic tumor response in rectal cancer patients receiving preoperative chemoradiotherapy. Ann. Surg. Oncol., 2011, 18(9), 2461-2468.
[http://dx.doi.org/10.1245/s10434-011-1638-y ] [PMID: 21416156]
[71]
Fernando, M.R.; Jiang, C.; Krzyzanowski, G.D.; Ryan, W.L. New evidence that a large proportion of human blood plasma cell-free DNA is localized in exosomes. PLoS One, 2017, 12(8)e0183915
[http://dx.doi.org/10.1371/journal.pone.0183915 ] [PMID: 28850588]
[72]
Chen, Y.; Guo, W.; Fan, J.; Chen, Y.; Zhang, X.; Chen, X.; Luo, P. The applications of liquid biopsy in resistance surveillance of anaplastic lymphoma kinase inhibitor. Cancer Manag. Res., 2017, 9, 801-811.
[http://dx.doi.org/10.2147/CMAR.S151235 ] [PMID: 29263703]
[73]
Fernandes, J.; Michel, V.; Camorlinga-Ponce, M.; Gomez, A.; Maldonado, C.; De Reuse, H.; Torres, J.; Touati, E. Circulating mitochondrial DNA level, a noninvasive biomarker for the early detection of gastric cancer. Cancer Epidemiol. Biomarkers Prev., 2014, 23(11), 2430-2438.
[http://dx.doi.org/10.1158/1055-9965.EPI-14-0471 ] [PMID: 25159292]
[74]
Holdenrieder, S.; Nagel, D.; Schalhorn, A.; Heinemann, V.; Wilkowski, R.; von Pawel, J.; Raith, H.; Feldmann, K.; Kremer, A.E.; Müller, S.; Geiger, S.; Hamann, G.F.; Seidel, D.; Stieber, P. Clinical relevance of circulating nucleosomes in cancer. Ann. N. Y. Acad. Sci., 2008, 1137, 180-189.
[http://dx.doi.org/10.1196/annals.1448.012 ] [PMID: 18837945]
[75]
Thakur, B.K.; Zhang, H.; Becker, A.; Matei, I.; Huang, Y.; Costa-Silva, B.; Zheng, Y.; Hoshino, A.; Brazier, H.; Xiang, J.; Williams, C.; Rodriguez-Barrueco, R.; Silva, J.M.; Zhang, W.; Hearn, S.; Elemento, O.; Paknejad, N.; Manova-Todorova, K.; Welte, K.; Bromberg, J.; Peinado, H.; Lyden, D. Double-stranded DNA in exosomes: A novel biomarker in cancer detection. Cell Res., 2014, 24(6), 766-769.
[http://dx.doi.org/10.1038/cr.2014.44 ] [PMID: 24710597]
[76]
Stephan, F.; Marsman, G.; Bakker, L.M.; Bulder, I.; Stavenuiter, F.; Aarden, L.A.; Zeerleder, S. Cooperation of factor VII-activating protease and serum DNase I in the release of nucleosomes from necrotic cells. Arthritis Rheumatol., 2014, 66(3), 686-693.
[http://dx.doi.org/10.1002/art.38265 ] [PMID: 24574229]
[77]
Butler, T.M.; Spellman, P.T.; Gray, J. Circulating-tumor DNA as an early detection and diagnostic tool. Curr. Opin. Genet. Dev., 2017, 42, 14-21.
[http://dx.doi.org/10.1016/j.gde.2016.12.003 ] [PMID: 28126649]
[78]
Du Clos, T.W.; Volzer, M.A.; Hahn, F.F.; Xiao, R.; Mold, C.; Searles, R.P. Chromatin clearance in C57Bl/10 mice: Interaction with heparan sulphate proteoglycans and receptors on Kupffer cells. Clin. Exp. Immunol., 1999, 117(2), 403-411.
[http://dx.doi.org/10.1046/j.1365-2249.1999.00976.x ] [PMID: 10444277]
[79]
Lowes, L.E.; Bratman, S.V.; Dittamore, R.; Done, S.; Kelley, S.O.; Mai, S.; Morin, R.D.; Wyatt, A.W.; Allan, A.L. Circulating Tumor Cells (CTC) and Cell-Free DNA (cfDNA) Workshop 2016: Scientific opportunities and logistics for cancer clinical trial incorporation. Int. J. Mol. Sci., 2016, 17(9), 1505.
[http://dx.doi.org/10.3390/ijms17091505 ] [PMID: 27618023]
[80]
Li, J.; Han, X.; Yu, X.; Xu, Z.; Yang, G.; Liu, B. Clinical applications of liquid biopsy as prognostic and predictive biomarkers in hepatocellular carcinoma: Circulating tumor cells and circulating tumor DNA. J. Exp. Clin. Can Res., 2018, 37(1), 213.
[81]
Wu, X.; Li, J.; Gassa, A.; Buchner, D.; Alakus, H.; Dong, Q.; Ren, N.; Liu, M.; Odenthal, M.; Stippel, D.; Bruns, C.; Zhao, Y.; Wahba, R. Circulating tumor DNA as an emerging liquid biopsy biomarker for early diagnosis and therapeutic monitoring in hepatocellular carcinoma. Int. J. Biol. Sci., 2020, 16(9), 1551-1562.
[http://dx.doi.org/10.7150/ijbs.44024 ] [PMID: 32226301]
[82]
Bettegowda, C.; Sausen, M.; Leary, R.J.; Kinde, I.; Wang, Y.; Agrawal, N.; Bartlett, B.R.; Wang, H.; Luber, B.; Alani, R.M.; Antonarakis, E.S.; Azad, N.S.; Bardelli, A.; Brem, H.; Cameron, J.L.; Lee, C.C.; Fecher, L.A.; Gallia, G.L.; Gibbs, P.; Le, D.; Giuntoli, R.L.; Goggins, M.; Hogarty, M.D.; Holdhoff, M.; Hong, S.M.; Jiao, Y.; Juhl, H.H.; Kim, J.J.; Siravegna, G.; Laheru, D.A.; Lauricella, C.; Lim, M.; Lipson, E.J.; Marie, S.K.; Netto, G.J.; Oliner, K.S.; Olivi, A.; Olsson, L.; Riggins, G.J.; Sartore-Bianchi, A.; Schmidt, K.; Shih, M.; Oba-Shinjo, S.M.; Siena, S.; Theodorescu, D.; Tie, J.; Harkins, T.T.; Veronese, S.; Wang, T.L.; Weingart, J.D.; Wolfgang, C.L.; Wood, L.D.; Xing, D.; Hruban, R.H.; Wu, J.; Allen, P.J.; Schmidt, C.M.; Choti, M.A.; Velculescu, V.E.; Kinzler, K.W.; Vogelstein, B.; Papadopoulos, N.; Diaz, L.A., Jr Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med., 2014, 6(224)224ra24
[http://dx.doi.org/10.1126/scitranslmed.3007094 ] [PMID: 24553385]
[83]
Kessler, M.D.; Pawar, N.R.; Martin, S.S.; Antalis, T.M.; O’Connor, T.D. Improving cancer detection and treatment with liquid biopsies and ptDNA. Trends Cancer, 2018, 4(9), 643-654.
[http://dx.doi.org/10.1016/j.trecan.2018.07.004 ] [PMID: 30149882]
[84]
Keller, L.; Belloum, Y.; Wikman, H.; Pantel, K. Clinical relevance of blood-based ctDNA analysis: Mutation detection and beyond. Br. J. Cancer, 2020, 124, 345-358.
[http://dx.doi.org/10.1038/s41416-020-01047-5 ] [PMID: 32968207]
[85]
Phallen, J.; Sausen, M.; Adleff, V.; Leal, A.; Hruban, C.; White, J.; Anagnostou, V.; Fiksel, J.; Cristiano, S.; Papp, E.; Speir, S.; Reinert, T.; Orntoft, M.W.; Woodward, B.D.; Murphy, D.; Parpart-Li, S.; Riley, D.; Nesselbush, M.; Sengamalay, N.; Georgiadis, A.; Li, Q.K.; Madsen, M.R.; Mortensen, F.V.; Huiskens, J.; Punt, C.; van Grieken, N.; Fijneman, R.; Meijer, G.; Husain, H.; Scharpf, R.B.; Diaz, L.A., Jr; Jones, S.; Angiuoli, S.; Ørntoft, T.; Nielsen, H.J.; Andersen, C.L.; Velculescu, V.E. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl. Med., 2017, 9(403)eaan2415
[http://dx.doi.org/10.1126/scitranslmed.aan2415 ] [PMID: 28814544]
[86]
Xu, R.H.; Wei, W.; Krawczyk, M.; Wang, W.; Luo, H.; Flagg, K.; Yi, S.; Shi, W.; Quan, Q.; Li, K.; Zheng, L.; Zhang, H.; Caughey, B.A.; Zhao, Q.; Hou, J.; Zhang, R.; Xu, Y.; Cai, H.; Li, G.; Hou, R.; Zhong, Z.; Lin, D.; Fu, X.; Zhu, J.; Duan, Y.; Yu, M.; Ying, B.; Zhang, W.; Wang, J.; Zhang, E.; Zhang, C.; Li, O.; Guo, R.; Carter, H.; Zhu, J.K.; Hao, X.; Zhang, K. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat. Mater., 2017, 16(11), 1155-1161.
[http://dx.doi.org/10.1038/nmat4997 ] [PMID: 29035356]
[87]
Qin, Z.; Ljubimov, V.A.; Zhou, C.; Tong, Y.; Liang, J. Cell-free circulating tumor DNA in cancer. Chin. J. Cancer, 2016, 35, 36.
[http://dx.doi.org/10.1186/s40880-016-0092-4 ] [PMID: 27056366]
[88]
Sisson, B.A.; Uvalic, J.; Kelly, K.; Selvam, P.; Hesse, A.N.; Ananda, G.; Chandok, H.; Bergeron, D.; Holinka, L.; Reddi, H.V. Technical and regulatory considerations for taking liquid biopsy to the clinic: Validation of the JAX Plasma Monitor TM Assay. Biomark. Insights, 2019, 141177271919826545
[http://dx.doi.org/10.1177/1177271919826545 ] [PMID: 30745794]
[89]
Constâncio, V.; Nunes, S.P.; Henrique, R.; Jerónimo, C. DNA methylation-based testing in liquid biopsies as detection and prognostic biomarkers for the four major cancer types. Cells, 2020, 9(3), 624.
[http://dx.doi.org/10.3390/cells9030624 ] [PMID: 32150897]
[90]
Fujiwara, K.; Fujimoto, N.; Tabata, M.; Nishii, K.; Matsuo, K.; Hotta, K.; Kozuki, T.; Aoe, M.; Kiura, K.; Ueoka, H.; Tanimoto, M. Identification of epigenetic aberrant promoter methylation in serum DNA is useful for early detection of lung cancer. Clin. Cancer Res., 2005, 11(3), 1219-1225.
[PMID: 15709192]
[91]
Wang, Y.; Yu, Z.; Wang, T.; Zhang, J.; Hong, L.; Chen, L. Identification of epigenetic aberrant promoter methylation of RASSF1A in serum DNA and its clinicopathological significance in lung cancer. Lung Cancer, 2007, 56(2), 289-294.
[http://dx.doi.org/10.1016/j.lungcan.2006.12.007 ] [PMID: 17267069]
[92]
Lee, S.M.; Park, J.Y.; Kim, D.S. Methylation of TMEFF2 gene in tissue and serum DNA from patients with non-small cell lung cancer. Mol. Cells, 2012, 34(2), 171-176.
[http://dx.doi.org/10.1007/s10059-012-0083-5 ] [PMID: 22814847]
[93]
Constâncio, V.; Nunes, S.P.; Moreira-Barbosa, C.; Freitas, R.; Oliveira, J.; Pousa, I.; Oliveira, J.; Soares, M.; Dias, C.G.; Dias, T.; Antunes, L.; Henrique, R.; Jerónimo, C. Early detection of the major male cancer types in blood-based liquid biopsies using a DNA methylation panel. Clin. Epigenetics, 2019, 11(1), 175.
[http://dx.doi.org/10.1186/s13148-019-0779-x ] [PMID: 31791387]
[94]
Papadopoulou, E.; Davilas, E.; Sotiriou, V.; Georgakopoulos, E.; Georgakopoulou, S.; Koliopanos, A.; Aggelakis, F.; Dardoufas, K.; Agnanti, N.J.; Karydas, I.; Nasioulas, G. Cell-free DNA and RNA in plasma as a new molecular marker for prostate and breast cancer. Ann. N. Y. Acad. Sci., 2006, 1075, 235-243.
[http://dx.doi.org/10.1196/annals.1368.032 ] [PMID: 17108217]
[95]
Salta, S.; P.Nunes, S.; Fontes-Sousa, M.; Lopes, P.; Freitas, M.; Caldas, M.; Antunes, L.; Castro, F.; Antunes, P.; Palma de Sousa, S.; Henrique, R.; Jerónimo, C. A DNA methylation-based test for breast cancer detection in circulating cell-free DNA. J. Clin. Med., 2018, 7(11), 420.
[http://dx.doi.org/10.3390/jcm7110420 ] [PMID: 30405052]
[96]
Hoque, M.O.; Feng, Q.; Toure, P.; Dem, A.; Critchlow, C.W.; Hawes, S.E.; Wood, T.; Jeronimo, C.; Rosenbaum, E.; Stern, J.; Yu, M.; Trink, B.; Kiviat, N.B.; Sidransky, D. Detection of aberrant methylation of four genes in plasma DNA for the detection of breast cancer. J. Clin. Oncol., 2006, 24(26), 4262-4269.
[http://dx.doi.org/10.1200/JCO.2005.01.3516 ] [PMID: 16908936]
[97]
Mijnes, J.; Tiedemann, J.; Eschenbruch, J.; Gasthaus, J.; Bringezu, S.; Bauerschlag, D.; Maass, N.; Arnold, N.; Weimer, J.; Anzeneder, T.; Fasching, P.A.; Rübner, M.; Bruno, B.; Heindrichs, U.; Freres, J.; Schulz, H.; Hilgers, R.D.; Ortiz-Brüchle, N.; von Serenyi, S.; Knüchel, R.; Kloten, V.; Dahl, E. SNiPER: A novel hypermethylation biomarker panel for liquid biopsy based early breast cancer detection. Oncotarget, 2019, 10(60), 6494-6508.
[http://dx.doi.org/10.18632/oncotarget.27303 ] [PMID: 31741713]
[98]
Yamamoto, N.; Nakayama, T.; Kajita, M.; Miyake, T.; Iwamoto, T.; Kim, S.J.; Sakai, A.; Ishihara, H.; Tamaki, Y.; Noguchi, S. Detection of aberrant promoter methylation of GSTP1, RASSF1A, and RARβ2 in serum DNA of patients with breast cancer by a newly established one-step methylation-specific PCR assay. Breast Cancer Res. Treat., 2012, 132(1), 165-173.
[http://dx.doi.org/10.1007/s10549-011-1575-2 ] [PMID: 21594664]
[99]
Shan, M.; Yin, H.; Li, J.; Li, X.; Wang, D.; Su, Y.; Niu, M.; Zhong, Z.; Wang, J.; Zhang, X.; Kang, W.; Pang, D. Detection of aberrant methylation of a six-gene panel in serum DNA for diagnosis of breast cancer. Oncotarget, 2016, 7(14), 18485-18494.
[http://dx.doi.org/10.18632/oncotarget.7608 ] [PMID: 26918343]
[100]
Lee, B.B.; Lee, E.J.; Jung, E.H.; Chun, H.K.; Chang, D.K.; Song, S.Y.; Park, J.; Kim, D.H. Aberrant methylation of APC, MGMT, RASSF2A, and Wif-1 genes in plasma as a biomarker for early detection of colorectal cancer. Clin. Cancer Res., 2009, 15(19), 6185-6191.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0111 ] [PMID: 19773381]
[101]
Cassinotti, E.; Melson, J.; Liggett, T.; Melnikov, A.; Yi, Q.; Replogle, C.; Mobarhan, S.; Boni, L.; Segato, S.; Levenson, V. DNA methylation patterns in blood of patients with colorectal cancer and adenomatous colorectal polyps. Int. J. Cancer, 2012, 131(5), 1153-1157.
[http://dx.doi.org/10.1002/ijc.26484 ] [PMID: 22020530]
[102]
Liu, Y.; Tham, C.K.; Ong, S.Y.; Ho, K.S.; Lim, J.F.; Chew, M.H.; Lim, C.K.; Zhao, Y.; Tang, C.L.; Eu, K.W. Serum methylation levels of TAC1. SEPT9 and EYA4 as diagnostic markers for early colorectal cancers: A pilot study. Biomarkers, 2013, 18(5), 399-405.
[http://dx.doi.org/10.3109/1354750X.2013.798745 ] [PMID: 23862763]
[103]
Roperch, J.P.; Incitti, R.; Forbin, S.; Bard, F.; Mansour, H.; Mesli, F.; Baumgaertner, I.; Brunetti, F.; Sobhani, I. Aberrant methylation of NPY, PENK, and WIF1 as a promising marker for blood-based diagnosis of colorectal cancer. BMC Cancer, 2013, 13, 566.
[http://dx.doi.org/10.1186/1471-2407-13-566 ] [PMID: 24289328]
[104]
Ellinger, J.; Haan, K.; Heukamp, L.C.; Kahl, P.; Büttner, R.; Müller, S.C.; von Ruecker, A.; Bastian, P.J. CpG island hypermethylation in cell-free serum DNA identifies patients with localized prostate cancer. Prostate, 2008, 68(1), 42-49.
[http://dx.doi.org/10.1002/pros.20651 ] [PMID: 18004747]
[105]
Haldrup, C.; Pedersen, A.L.; Øgaard, N.; Strand, S.H.; Høyer, S.; Borre, M.; Ørntoft, T.F.; Sørensen, K.D. Biomarker potential of ST6GALNAC3 and ZNF660 promoter hypermethylation in prostate cancer tissue and liquid biopsies. Mol. Oncol., 2018, 12(4), 545-560.
[http://dx.doi.org/10.1002/1878-0261.12183 ] [PMID: 29465788]
[106]
Payne, S.R.; Serth, J.; Schostak, M.; Kamradt, J.; Strauss, A.; Thelen, P.; Model, F.; Day, J.K.; Liebenberg, V.; Morotti, A.; Yamamura, S.; Lograsso, J.; Sledziewski, A.; Semjonow, A. DNA methylation biomarkers of prostate cancer: confirmation of candidates and evidence urine is the most sensitive body fluid for non-invasive detection. Prostate, 2009, 69(12), 1257-1269.
[http://dx.doi.org/10.1002/pros.20967 ] [PMID: 19459176]
[107]
Lohr, J.G.; Kim, S.; Gould, J.; Knoechel, B.; Drier, Y.; Cotton, M.J.; Gray, D.; Birrer, N.; Wong, B.; Ha, G.; Zhang, C.Z.; Guo, G.; Meyerson, M.; Yee, A.J.; Boehm, J.S.; Raje, N.; Golub, T.R. Genetic interrogation of circulating multiple myeloma cells at single-cell resolution. Sci. Transl. Med., 2016, 8(363)363ra147
[http://dx.doi.org/10.1126/scitranslmed.aac7037 ] [PMID: 27807282]
[108]
Miyamoto, D.T.; Zheng, Y.; Wittner, B.S.; Lee, R.J.; Zhu, H.; Broderick, K.T.; Desai, R.; Fox, D.B.; Brannigan, B.W.; Trautwein, J.; Arora, K.S.; Desai, N.; Dahl, D.M.; Sequist, L.V.; Smith, M.R.; Kapur, R.; Wu, C.L.; Shioda, T.; Ramaswamy, S.; Ting, D.T.; Toner, M.; Maheswaran, S.; Haber, D.A. RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science, 2015, 349(6254), 1351-1356.
[http://dx.doi.org/10.1126/science.aab0917 ] [PMID: 26383955]
[109]
Kwan, T.T.; Bardia, A.; Spring, L.M.; Giobbie-Hurder, A.; Kalinich, M.; Dubash, T.; Sundaresan, T.; Hong, X. LiCausi, J.A.; Ho, U.; Silva, E.J.; Wittner, B.S.; Sequist, L.V.; Kapur, R.; Miyamoto, D.T.; Toner, M.; Haber, D.A.; Maheswaran, S. A digital RNA Signature of circulating tumor cells predicting early therapeutic response in localized and metastatic breast cancer. Cancer Discov., 2018, 8(10), 1286-1299.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0432 ] [PMID: 30104333]
[110]
Aceto, N.; Bardia, A.; Miyamoto, D.T.; Donaldson, M.C.; Wittner, B.S.; Spencer, J.A.; Yu, M.; Pely, A.; Engstrom, A.; Zhu, H.; Brannigan, B.W.; Kapur, R.; Stott, S.L.; Shioda, T.; Ramaswamy, S.; Ting, D.T.; Lin, C.P.; Toner, M.; Haber, D.A.; Maheswaran, S. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell, 2014, 158(5), 1110-1122.
[http://dx.doi.org/10.1016/j.cell.2014.07.013 ] [PMID: 25171411]
[111]
Hou, J.M.; Krebs, M.G.; Lancashire, L.; Sloane, R.; Backen, A.; Swain, R.K.; Priest, L.J.; Greystoke, A.; Zhou, C.; Morris, K.; Ward, T.; Blackhall, F.H.; Dive, C. Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J. Clin. Oncol., 2012, 30(5), 525-532.
[http://dx.doi.org/10.1200/JCO.2010.33.3716 ] [PMID: 22253462]
[112]
Paoletti, C.; Li, Y.; Muñiz, M.C.; Kidwell, K.M.; Aung, K.; Thomas, D.G.; Brown, M.E.; Abramson, V.G.; Irvin, W.J., Jr; Lin, N.U.; Liu, M.C.; Nanda, R.; Nangia, J.R.; Storniolo, A.M.; Traina, T.A.; Vaklavas, C.; Van Poznak, C.H.; Wolff, A.C.; Forero-Torres, A.; Hayes, D.F. Translational Breast Cancer Research Consortium (TBCRC). Significance of circulating tumor cells in metastatic triplenegative breast cancer patients within a randomized, phase II trial: TBCRC 019. Clin. Cancer Res., 2015, 21(12), 2771-2779.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2781 ] [PMID: 25779948]
[113]
Aceto, N.; Toner, M.; Maheswaran, S.; Haber, D.A. En route to metastasis: Circulating tumor cell clusters and epithelial-to-mesenchymal transition. Trends Cancer, 2015, 1(1), 44-52.
[http://dx.doi.org/10.1016/j.trecan.2015.07.006 ] [PMID: 28741562]
[114]
Cheung, K.J.; Padmanaban, V.; Silvestri, V.; Schipper, K.; Cohen, J.D.; Fairchild, A.N.; Gorin, M.A.; Verdone, J.E.; Pienta, K.J.; Bader, J.S.; Ewald, A.J. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc. Natl. Acad. Sci. USA, 2016, 113(7), E854-E863.
[http://dx.doi.org/10.1073/pnas.1508541113 ] [PMID: 26831077]
[115]
Duda, D.G.; Duyverman, A.M.; Kohno, M.; Snuderl, M.; Steller, E.J.; Fukumura, D.; Jain, R.K. Malignant cells facilitate lung metastasis by bringing their own soil. Proc. Natl. Acad. Sci. USA, 2010, 107(50), 21677-21682.
[http://dx.doi.org/10.1073/pnas.1016234107 ] [PMID: 21098274]
[116]
Chen, C.L.; Mahalingam, D.; Osmulski, P.; Jadhav, R.R.; Wang, C.M.; Leach, R.J.; Chang, T.C.; Weitman, S.D.; Kumar, A.P.; Sun, L.; Gaczynska, M.E.; Thompson, I.M.; Huang, T.H. Single-cell analysis of circulating tumor cells identifies cumulative expression patterns of EMT-related genes in metastatic prostate cancer. Prostate, 2013, 73(8), 813-826.
[http://dx.doi.org/10.1002/pros.22625 ] [PMID: 23280481]
[117]
Lim, S.B.; Lee, W.D.; Vasudevan, J.; Lim, W.T.; Lim, C.T. Liquid biopsy: One cell at a time. NPJ Prec. Oncol., 2019, 3, Article no. 23.,
[118]
Miyamoto, D.T.; Lee, R.J.; Kalinich, M. LiCausi, J.A.; Zheng, Y.; Chen, T.; Milner, J.D.; Emmons, E.; Ho, U.; Broderick, K.; Silva, E.; Javaid, S.; Kwan, T.T.; Hong, X.; Dahl, D.M.; McGovern, F.J.; Efstathiou, J.A.; Smith, M.R.; Sequist, L.V.; Kapur, R.; Wu, C.L.; Stott, S.L.; Ting, D.T.; Giobbie-Hurder, A.; Toner, M.; Maheswaran, S.; Haber, D.A. An RNA-based digital circulating tumor cell signature is predictive of drug response and early dissemination in prostate cancer. Cancer Discov., 2018, 8(3), 288-303.
[http://dx.doi.org/10.1158/2159-8290.CD-16-1406 ] [PMID: 29301747]
[119]
Mathai, R.A.; Vidya, R.V.S.; Reddy, B.S.; Thomas, L.; Udupa, K.; Kolesar, J.; Rao, M. Potential utility of liquid biopsy as a diagnostic and prognostic tool for the assessment of solid tumors: Implications in the precision oncology. J. Clin. Med., 2019, 8(3), 373.
[http://dx.doi.org/10.3390/jcm8030373 ] [PMID: 30889786]
[120]
Sato, Y.; Matoba, R.; Kato, K. Recent advances in liquid biopsy in precision oncology research. Biol. Pharm. Bull., 2019, 42(3), 337-342.
[http://dx.doi.org/10.1248/bpb.b18-00804 ] [PMID: 30828064]
[121]
Casoni, G.L.; Ulivi, P.; Mercatali, L.; Chilosi, M.; Tomassetti, S.; Romagnoli, M.; Ravaglia, C.; Gurioli, C.; Gurioli, C.; Zoli, W.; Silvestrini, R.; Poletti, V. Increased levels of free circulating DNA in patients with idiopathic pulmonary fibrosis. Int. J. Biol. Markers, 2010, 25(4), 229-235.
[http://dx.doi.org/10.5301/JBM.2010.6115 ] [PMID: 21161945]
[122]
Chang, C.P.Y.; Chia, R.H.; Wu, T.L.; Tsao, K.C.; Sun, C.F.; Wu, J.T. Elevated cell-free serum DNA detected in patients with myocardial infarction. Clin. Chim. Acta, 2003, 327(1-2), 95-101.
[http://dx.doi.org/10.1016/S0009-8981(02)00337-6 ] [PMID: 12482623]
[123]
Temilola, D.O.; Wium, M.; Coulidiati, T.H.; Adeola, H.A.; Carbone, G.M.; Catapano, C.V.; Zerbini, L.F. The prospect and challenges to the flow of liquid biopsy in Africa. Cells, 2019, 8(8), 862.
[http://dx.doi.org/10.3390/cells8080862 ] [PMID: 31404988]
[124]
Gorgannezhad, L.; Umer, M.; Islam, M.N.; Nguyen, N.T.; Shiddiky, M.J.A. Circulating tumor DNA and liquid biopsy: Opportunities, challenges, and recent advances in detection technologies. Lab Chip, 2018, 18(8), 1174-1196.
[http://dx.doi.org/10.1039/C8LC00100F ] [PMID: 29569666]
[125]
Sun, L.; Brentnall, A.; Patel, S.; Buist, D.S.M.; Bowles, E.J.A.; Evans, D.G.R.; Eccles, D.; Hopper, J.; Li, S.; Southey, M.; Duffy, S.; Cuzick, J.; Dos Santos Silva, I.; Miners, A.; Sadique, Z.; Yang, L.; Legood, R.; Manchanda, R. A Cost-effectiveness analysis of multigene testing for all patients with breast cancer. JAMA Oncol., 2019, 5(12), 1718-1730.
[http://dx.doi.org/10.1001/jamaoncol.2019.3323 ] [PMID: 31580391]
[126]
Cheung, A.H.K.; Chow, C.; To, K.F. Latest development of liquid biopsy. J. Thorac. Dis., 2018, 10(Suppl. 14), S1645-S1651.
[http://dx.doi.org/10.21037/jtd.2018.04.68 ] [PMID: 30034830]
[127]
Fernández-Lázaro, D.; García Hernández, J.L.; García, A.C.; Córdova Martínez, A.; Mielgo-Ayuso, J.; Cruz-Hernández, J.J. Liquid biopsy as novel tool in precision medicine: Origins, properties, identification and clinical perspective of cancer’s biomarkers. Diagnostics (Basel), 2020, 10(4), 215.
[http://dx.doi.org/10.3390/diagnostics10040215 ] [PMID: 32294884]
[128]
Heidi, F.; Kwan, E.M.; Azad, A.A. Cell-free DNA in cancer: current insights. Cell. Oncol., 2009, 42(1), 13-28.
[129]
FDA Approves FoundationOne Liquid CDx as Companion Diagnostic. 2020.https://www.cancernetwork.com/view/fda-approves-foundationone-liquid-cdx-as-companion-diagnostic
[130]
FDA Approves FoundationOne Liquid CDx, a Pan-Tumor Liquid Biopsy Test. . 2020.https://ascopost.com/news/august-2020/fda-approves-foundationone-liquid-cdx-a-pan-tumor-liquid-biopsy-test/
[131]
FDA Approves First Liquid Biopsy Next-Generation Sequencing Companion Diagnostic Test. 2020.https://www.fda.gov/news-events/press-announcements/fda-approves-first-liquid-biopsy-next-generation-sequencing-companion-diagnostic-test

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy