Generic placeholder image

Current Psychiatry Research and Reviews

Editor-in-Chief

ISSN (Print): 2666-0822
ISSN (Online): 2666-0830

Review Article

EEG Correlates of Cognitive Functions and Neuropsychiatric Disorders: A Review of Oscillatory Activity and Neural Synchrony Abnormalities

Author(s): Meysam Amidfar* and Yong-Ku Kim

Volume 16, Issue 4, 2020

Page: [228 - 243] Pages: 16

DOI: 10.2174/2666082216999201209130117

Price: $65

Abstract

Background: A large body of evidence suggested that disruption of neural rhythms and synchronization of brain oscillations are correlated with a variety of cognitive and perceptual processes. Cognitive deficits are common features of psychiatric disorders that complicate treatment of the motivational, affective and emotional symptoms.

Objective: Electrophysiological correlates of cognitive functions will contribute to understanding of neural circuits controlling cognition, the causes of their perturbation in psychiatric disorders and developing novel targets for the treatment of cognitive impairments.

Methods: This review includes a description of brain oscillations in Alzheimer’s disease, bipolar disorder, attention-deficit/hyperactivity disorder, major depression, obsessive compulsive disorders, anxiety disorders, schizophrenia and autism.

Results: The review clearly shows that the reviewed neuropsychiatric diseases are associated with fundamental changes in both spectral power and coherence of EEG oscillations.

Conclusion: In this article, we examined the nature of brain oscillations, the association of brain rhythms with cognitive functions and the relationship between EEG oscillations and neuropsychiatric diseases. Accordingly, EEG oscillations can most likely be used as biomarkers in psychiatric disorders.

Keywords: Brain rhythms, EEG oscillations, neuropsychiatric diseases, cognitive functions, neural synchrony, EEG coherence.

Graphical Abstract

[1]
Massion AO, Warshaw MG, Keller MB. Quality of life and psychiatric morbidity in panic disorder and generalized anxiety disorder. Am J Psychiatry 1993; 150(4): 600-7.
[http://dx.doi.org/10.1176/ajp.150.4.600] [PMID: 8465877]
[2]
Rapaport MH, Clary C, Fayyad R, Endicott J. Quality-of-life impairment in depressive and anxiety disorders. Am J Psychiatry 2005; 162(6): 1171-8.
[http://dx.doi.org/10.1176/appi.ajp.162.6.1171] [PMID: 15930066]
[3]
Saarni SI, Suvisaari J, Sintonen H, et al. Impact of psychiatric disorders on health-related quality of life: general population survey. Br J Psychiatry 2007; 190(4): 326-32.
[http://dx.doi.org/10.1192/bjp.bp.106.025106] [PMID: 17401039]
[4]
Zatzick DF, Marmar CR, Weiss DS, et al. Posttraumatic stress disorder and functioning and quality of life outcomes in a nationally representative sample of male Vietnam veterans. Am J Psychiatry 1997; 154(12): 1690-5.
[http://dx.doi.org/10.1176/ajp.154.12.1690] [PMID: 9396947]
[5]
Mountcastle VB. Perceptual neuroscience: the cerebral cortex. United States: Harvard University Press 1998.
[6]
Mountcastle VB, Atluri PP, Romo R. Selective output-discriminative signals in the motor cortex of waking monkeys. Cereb Cortex 1992; 2(4): 277-94.
[http://dx.doi.org/10.1093/cercor/2.4.277] [PMID: 1422089]
[7]
Berger H. Über das elektrenkephalogramm des menschen. Arch Psychiatr Nervenkr 1929; 87(1): 527-70.
[http://dx.doi.org/10.1007/BF01797193]
[8]
Chatrian GE, Bickford RG, Uihlein A. Depth electrographic study of a fast rhythm evoked from the human calcarine region by steady illumination. Electroencephalogr Clin Neurophysiol 1960; 12(1): 167-76.
[http://dx.doi.org/10.1016/0013-4694(60)90070-5] [PMID: 13809431]
[9]
Herrmann CS, Demiralp T. Human EEG gamma oscillations in neuropsychiatric disorders. Clin Neurophysiol 2005; 116(12): 2719-33.
[http://dx.doi.org/10.1016/j.clinph.2005.07.007] [PMID: 16253555]
[10]
Basar E. Brain Function and Oscillations [v I]: Brain Oscillations Principles and Approaches 1st ed Germany: Springer Berlin Heidelberg. 1998.
[11]
Buzsaki G. Rhythms of the Brain. New York: Oxford University Press 2006.
[http://dx.doi.org/10.1093/acprof:oso/9780195301069.001.0001]
[12]
Başar E. Brain oscillations in neuropsychiatric disease. Dialogues Clin Neurosci 2013; 15(3): 291-300.
[http://dx.doi.org/10.31887/DCNS.2013.15.3/ebasar] [PMID: 24174901]
[13]
Giannakopoulos P, Missonnier P, Gold G, Michon A. Electrophysiological markers of rapid cognitive decline in mild cognitive impairment. Front Neurol Neurosci 2009; 24: 39-46.
[14]
Li X, Hu B, Sun S, Cai H. EEG-based mild depressive detection using feature selection methods and classifiers. Comput Methods Programs Biomed 2016; 136: 151-61.
[http://dx.doi.org/10.1016/j.cmpb.2016.08.010] [PMID: 27686712]
[15]
Parvinnia E, Sabeti M, Jahromi MZ, Boostani R. Classification of EEG Signals using adaptive weighted distance nearest neighbor algorithm. J King Saud Uni-Comp Info Sci 2014; 26(1): 1-6.
[http://dx.doi.org/10.1016/j.jksuci.2013.01.001]
[16]
Uhlhaas PJ, Pipa G, Lima B, et al. Neural synchrony in cortical networks: history, concept and current status. Front Integr Nuerosci 2009; 3: 17.
[http://dx.doi.org/10.3389/neuro.07.017.2009] [PMID: 19668703]
[17]
Etkin A, Gyurak A, O’Hara R. A neurobiological approach to the cognitive deficits of psychiatric disorders. Dialogues Clin Neurosci 2013; 15(4): 419-29.
[http://dx.doi.org/10.31887/DCNS.2013.15.4/aetkin] [PMID: 24459409]
[18]
Uhlhaas PJ, Singer W. Neuronal dynamics and neuropsychiatric disorders: toward a translational paradigm for dysfunctional large-scale networks. Neuron 2012; 75(6): 963-80.
[http://dx.doi.org/10.1016/j.neuron.2012.09.004] [PMID: 22998866]
[19]
Başar E, Başar-Eroğlu C, Güntekin B, Yener GG. Brain’s alpha, beta, gamma, delta, and theta oscillations in neuropsychiatric diseases: proposal for biomarker strategies. Suppl Clin Neurophysiol 2013; 62: 19-54.
[20]
Başar E, Güntekin B, Tülay E, Yener GG. Evoked and event related coherence of Alzheimer patients manifest differentiation of sensory-cognitive networks. Brain Res 2010; 1357: 79-90.
[http://dx.doi.org/10.1016/j.brainres.2010.08.054] [PMID: 20732310]
[21]
Güntekin B, Saatçi E, Yener G. Decrease of evoked delta, theta and alpha coherences in Alzheimer patients during a visual oddball paradigm. Brain Res 2008; 1235: 109-16.
[http://dx.doi.org/10.1016/j.brainres.2008.06.028] [PMID: 18598686]
[22]
Sharma A, Weisbrod M, Bender S. Connectivity and local activity within the fronto-posterior brain network in schizophrenia. Suppl Clin Neurophysiol 2013; 62: 181-96.
[http://dx.doi.org/10.1016/B978-0-7020-5307-8.00012-0]
[23]
Yener GG, Başar E. Brain oscillations as biomarkers in neuropsychiatric disorders: following an interactive panel discussion and synopsis. Suppl Clin Neurophysiol 2013; 62: 343-63.
[24]
Iosifescu DV. Electroencephalography-derived biomarkers of antidepressant response. Harv Rev Psychiatry 2011; 19(3): 144-54.
[http://dx.doi.org/10.3109/10673229.2011.586549] [PMID: 21631160]
[25]
Buzsáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes. Nat Rev Neurosci 2012; 13(6): 407-20.
[http://dx.doi.org/10.1038/nrn3241] [PMID: 22595786]
[26]
Donner TH, Siegel M. A framework for local cortical oscillation patterns. Trends Cogn Sci 2011; 15(5): 191-9.
[http://dx.doi.org/10.1016/j.tics.2011.03.007] [PMID: 21481630]
[27]
Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev 1999; 29(2-3): 169-95.
[http://dx.doi.org/10.1016/S0165-0173(98)00056-3] [PMID: 10209231]
[28]
Buzsáki G, Logothetis N, Singer W. Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron 2013; 80(3): 751-64.
[http://dx.doi.org/10.1016/j.neuron.2013.10.002] [PMID: 24183025]
[29]
Fingelkurts AA, Fingelkurts AA. EEG oscillatory states: universality, uniqueness and specificity across healthy-normal, altered and pathological brain conditions. PLoS One 2014; 9(2)e87507
[http://dx.doi.org/10.1371/journal.pone.0087507] [PMID: 24505292]
[30]
Jensen O, Colgin LL. Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci 2007; 11(7): 267-9.
[http://dx.doi.org/10.1016/j.tics.2007.05.003] [PMID: 17548233]
[31]
von Stein A, Sarnthein J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol 2000; 38(3): 301-13.
[http://dx.doi.org/10.1016/S0167-8760(00)00172-0] [PMID: 11102669]
[32]
Bullock TH, McClune MC. Lateral coherence of the electrocorticogram: a new measure of brain synchrony. Electroencephalogr Clin Neurophysiol 73(6): 479-98.
[33]
Başar E. A review of alpha activity in integrative brain function: fundamental physiology, sensory coding, cognition and pathology. Int J Psychophysiol 2012; 86(1): 1-24.
[http://dx.doi.org/10.1016/j.ijpsycho.2012.07.002] [PMID: 22820267]
[34]
Murias M, Webb SJ, Greenson J, Dawson G. Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biol Psychiatry 2007; 62(3): 270-3.
[http://dx.doi.org/10.1016/j.biopsych.2006.11.012] [PMID: 17336944]
[35]
Nunez PL, Srinivasan R. Electric fields of the brain: the neurophysics of EEG. USA: Oxford University Press 2006.
[http://dx.doi.org/10.1093/acprof:oso/9780195050387.001.0001]
[36]
Srinivasan R, Nunez PL, Silberstein RB. Spatial filtering and neocortical dynamics: estimates of EEG coherence. IEEE Trans Biomed Eng 1998; 45(7): 814-26.
[http://dx.doi.org/10.1109/10.686789] [PMID: 9644890]
[37]
Varela F, Lachaux J-P, Rodriguez E, Martinerie J. The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2001; 2(4): 229-39.
[http://dx.doi.org/10.1038/35067550] [PMID: 11283746]
[38]
Ba E, Dumermuth G. EEG-brain dynamics: relation between EEG and brain evoked potentials. New York: Elsevier 1982.
[39]
Steriade M, Gloor P, Llinás RR, Lopes de Silva FH, Mesulam M-M. Report of IFCN Committee on Basic Mechanisms. Basic mechanisms of cerebral rhythmic activities. Electroencephalogr Clin Neurophysiol 1990; 76(6): 481-508.
[http://dx.doi.org/10.1016/0013-4694(90)90001-Z] [PMID: 1701118]
[40]
Herrmann CS, Grigutsch M, Busch NA. 11 EEG oscillations and wavelet analysis.In: Handy TC, Ed Event-related potentials: a methods handbook. USA: MIT Press 2005; p. 229.
[41]
Fruhstorfer H, Bergström RM. Human vigilance and auditory evoked responses. Electroencephalogr Clin Neurophysiol 1969; 27(4): 346-55.
[http://dx.doi.org/10.1016/0013-4694(69)91443-6] [PMID: 4186732]
[42]
Polich J. EEG and ERP assessment of normal aging. Electroencephalogr Clin Neurophysiol 1997; 104(3): 244-56.
[http://dx.doi.org/10.1016/S0168-5597(97)96139-6]
[43]
Polich J. On the relationship between EEG and P300: individual differences, aging, and ultradian rhythms. Int J Psychophysiol 1997; 26(1-3): 299-317.
[http://dx.doi.org/10.1016/S0167-8760(97)00772-1] [PMID: 9203011]
[44]
Santamaria J, Chiappa KH. The EEG of drowsiness in normal adults. J Clin Neurophysiol 1987; 4(4): 327-82.
[http://dx.doi.org/10.1097/00004691-198710000-00002] [PMID: 3316272]
[45]
Eidelman-Rothman M, Levy J, Feldman R. Alpha oscillations and their impairment in affective and post-traumatic stress disorders. Neurosci Biobehav Rev 2016; 68: 794-815.
[http://dx.doi.org/10.1016/j.neubiorev.2016.07.005] [PMID: 27435239]
[46]
Fingelkurts AA, Fingelkurts AA. Alpha rhythm operational architectonics in the continuum of normal and pathological brain states: current state of research. Int J Psychophysiol 2010; 76(2): 93-106.
[http://dx.doi.org/10.1016/j.ijpsycho.2010.02.009] [PMID: 20211668]
[47]
Buzsáki G, Draguhn A. Neuronal oscillations in cortical networks science 2004; 304(5679): 1926-9.
[48]
Clayton MS, Yeung N, Cohen Kadosh R. The roles of cortical oscillations in sustained attention. Trends Cogn Sci 2015; 19(4): 188-95.
[http://dx.doi.org/10.1016/j.tics.2015.02.004] [PMID: 25765608]
[49]
Wang X-J. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 2010; 90(3): 1195-268.
[http://dx.doi.org/10.1152/physrev.00035.2008] [PMID: 20664082]
[50]
Ward LM. Synchronous neural oscillations and cognitive processes. Trends Cogn Sci 2003; 7(12): 553-9.
[http://dx.doi.org/10.1016/j.tics.2003.10.012] [PMID: 14643372]
[51]
Uhlhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 2006; 52(1): 155-68.
[52]
Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 2010; 11(2): 100-13.
[http://dx.doi.org/10.1038/nrn2774] [PMID: 20087360]
[53]
Fries P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 2009; 32: 209-24.
[http://dx.doi.org/10.1146/annurev.neuro.051508.135603] [PMID: 19400723]
[54]
Singer W. Neuronal synchrony: a versatile code for the definition of relations? Neuron 1999; 24(1): 49-65, 111-125.
[http://dx.doi.org/10.1016/S0896-6273(00)80821-1] [PMID: 10677026]
[55]
Davidson RJ. Anterior electrophysiological asymmetries, emotion, and depression: conceptual and methodological conundrums. Psychophysiology 1998; 35(5): 607-14.
[http://dx.doi.org/10.1017/S0048577298000134] [PMID: 9715104]
[56]
Jaworska N, Blier P, Fusee W, Knott V. α Power, α asymmetry and anterior cingulate cortex activity in depressed males and females. J Psychiatr Res 2012; 46(11): 1483-91.
[http://dx.doi.org/10.1016/j.jpsychires.2012.08.003] [PMID: 22939462]
[57]
Neuper C, Pfurtscheller G. Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates. Int J Psychophysiol 2001; 43(1): 41-58.
[http://dx.doi.org/10.1016/S0167-8760(01)00178-7] [PMID: 11742684]
[58]
Crone NE, Sinai A, Korzeniewska A. High-frequency gamma oscillations and human brain mapping with electrocorticographyProg Brain Res. 2006; 159: pp. 275-95.
[PMID: 17071238]
[59]
Jerbi K, Ossandón T, Hamamé CM, et al. Task-related gamma-band dynamics from an intracerebral perspective: review and implications for surface EEG and MEG. Hum Brain Mapp 2009; 30(6): 1758-71.
[http://dx.doi.org/10.1002/hbm.20750] [PMID: 19343801]
[60]
Borghini G, Astolfi L, Vecchiato G, Mattia D, Babiloni F. Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neurosci Biobehav Rev 2014; 44: 58-75.
[http://dx.doi.org/10.1016/j.neubiorev.2012.10.003] [PMID: 23116991]
[61]
Clarke AR, Barry RJ, McCarthy R, Selikowitz M. Age and sex effects in the EEG: differences in two subtypes of attention-deficit/hyperactivity disorder. Clin Neurophysiol 2001; 112(5): 815-26.
[http://dx.doi.org/10.1016/S1388-2457(01)00487-4] [PMID: 11336897]
[62]
Veltmeyer MD, McFarlane AC, Bryant RA, Mayo T, Gordon E, Clark CR. Integrative assessment of brain function in PTSD: brain stability and working memory. J Integr Neurosci 2006; 5(1): 123-38.
[http://dx.doi.org/10.1142/S0219635206001057] [PMID: 16544370]
[63]
Pfurtscheller G, Stancák A Jr, Neuper C. Event-related synchronization (ERS) in the alpha band-an electrophysiological correlate of cortical idling: a review. Int J Psychophysiol 1996; 24(1-2): 39-46.
[http://dx.doi.org/10.1016/S0167-8760(96)00066-9] [PMID: 8978434]
[64]
Goldman RI, Stern JM, Engel J Jr, Cohen MS. Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport 2002; 13(18): 2487-92.
[http://dx.doi.org/10.1097/00001756-200212200-00022] [PMID: 12499854]
[65]
Laufs H, Kleinschmidt A, Beyerle A, et al. EEG-correlated fMRI of human alpha activity. Neuroimage 2003; 19(4): 1463-76.
[http://dx.doi.org/10.1016/S1053-8119(03)00286-6] [PMID: 12948703]
[66]
Laufs H, Krakow K, Sterzer P, et al. Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci USA 2003; 100(19): 11053-8.
[http://dx.doi.org/10.1073/pnas.1831638100] [PMID: 12958209]
[67]
Knyazev GG. Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neurosci Biobehav Rev 2007; 31(3): 377-95.
[http://dx.doi.org/10.1016/j.neubiorev.2006.10.004] [PMID: 17145079]
[68]
Bașar E. Brain-Body-Mind.The Nebulous Cartesian System: A Holistic Approach by Oscillations. New York: Springer 2011.
[69]
Dumas G, Nadel J, Soussignan R, Martinerie J, Garnero L. Inter-brain synchronization during social interaction. PLoS One 2010; 5(8)e12166
[http://dx.doi.org/10.1371/journal.pone.0012166] [PMID: 20808907]
[70]
Ulloa ER, Pineda JA. Recognition of point-light biological motion: mu rhythms and mirror neuron activity. Behav Brain Res 2007; 183(2): 188-94.
[http://dx.doi.org/10.1016/j.bbr.2007.06.007] [PMID: 17658625]
[71]
Levy J, Goldstein A, Zagoory-Sharon O, et al. Oxytocin selectively modulates brain response to stimuli probing social synchrony. Neuroimage 2016; 124: 923-30.
[http://dx.doi.org/10.1016/j.neuroimage.2015.09.066] [PMID: 26455794]
[72]
Baker SN, Kilner JM, Pinches EM, Lemon RN. The role of synchrony and oscillations in the motor output. Exp Brain Res 1999; 128(1-2): 109-17.
[http://dx.doi.org/10.1007/s002210050825] [PMID: 10473748]
[73]
Baker SN, Olivier E, Lemon RN. Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation. J Physiol 1997; 501: 225-41.
[http://dx.doi.org/10.1111/j.1469-7793.1997.225bo.x] [PMID: 9175005]
[74]
MacKay WA, Mendonça AJ. Field potential oscillatory bursts in parietal cortex before and during reach. Brain Res 1995; 704(2): 167-74.
[http://dx.doi.org/10.1016/0006-8993(95)01109-9] [PMID: 8788911]
[75]
Murthy VN, Fetz EE. Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc Natl Acad Sci USA 1992; 89(12): 5670-4.
[http://dx.doi.org/10.1073/pnas.89.12.5670] [PMID: 1608977]
[76]
Sanes JN, Donoghue JP. Oscillations in local field potentials of the primate motor cortex during voluntary movement. Proc Natl Acad Sci USA 1993; 90(10): 4470-4.
[http://dx.doi.org/10.1073/pnas.90.10.4470] [PMID: 8506287]
[77]
Pfurtscheller G, Zalaudek K, Neuper C. Event-related beta synchronization after wrist, finger and thumb movement. Electroencephalography and Clinical Neurophysiology. Electromyogr Motor Control 1998; 109(2): 154-60.
[http://dx.doi.org/10.1016/S0924-980X(97)00070-2]
[78]
Stancák A Jr, Pfurtscheller G. Event-related desynchronisation of central beta-rhythms during brisk and slow self-paced finger movements of dominant and nondominant hand. Brain Res Cogn Brain Res 1996; 4(3): 171-83.
[http://dx.doi.org/10.1016/S0926-6410(96)00031-6] [PMID: 8924046]
[79]
Pfurtscheller G, Neuper C. Motor imagery activates primary sensorimotor area in humans. Neurosci Lett 1997; 239(2-3): 65-8.
[http://dx.doi.org/10.1016/S0304-3940(97)00889-6] [PMID: 9469657]
[80]
Alegre M, Labarga A, Gurtubay IG, Iriarte J, Malanda A, Artieda J. Movement-related changes in cortical oscillatory activity in ballistic, sustained and negative movements. Exp Brain Res 2003; 148(1): 17-25.
[http://dx.doi.org/10.1007/s00221-002-1255-x] [PMID: 12478393]
[81]
Kaiser J, Birbaumer N, Lutzenberger W. Event-related beta desynchronization indicates timing of response selection in a delayed-response paradigm in humans. Neurosci Lett 2001; 312(3): 149-52.
[http://dx.doi.org/10.1016/S0304-3940(01)02217-0] [PMID: 11602332]
[82]
Karrasch M, Laine M, Rapinoja P, Krause CM. Effects of normal aging on event-related desynchronization/synchronization during a memory task in humans. Neurosci Lett 2004; 366(1): 18-23.
[http://dx.doi.org/10.1016/j.neulet.2004.05.010] [PMID: 15265582]
[83]
Kopp F, Schröger E, Lipka S. Neural networks engaged in short-term memory rehearsal are disrupted by irrelevant speech in human subjects. Neurosci Lett 2004; 354(1): 42-5.
[http://dx.doi.org/10.1016/j.neulet.2003.09.065] [PMID: 14698478]
[84]
Pesonen M, Björnberg CH, Hämäläinen H, Krause CM. Brain oscillatory 1-30 Hz EEG ERD/ERS responses during the different stages of an auditory memory search task. Neurosci Lett 2006; 399(1-2): 45-50.
[http://dx.doi.org/10.1016/j.neulet.2006.01.053] [PMID: 16490308]
[85]
Tallon-Baudry C. Oscillatory synchrony and human visual cognition. J Physiol Paris 2003; 97(2-3): 355-63.
[http://dx.doi.org/10.1016/j.jphysparis.2003.09.009] [PMID: 14766151]
[86]
Weiss S, Rappelsberger P. Left frontal EEG coherence reflects modality independent language processes. Brain Topogr 1998; 11(1): 33-42.
[http://dx.doi.org/10.1023/A:1022266419488] [PMID: 9758390]
[87]
Fan J, Byrne J, Worden MS, et al. The relation of brain oscillations to attentional networks. J Neurosci 2007; 27(23): 6197-206.
[http://dx.doi.org/10.1523/JNEUROSCI.1833-07.2007] [PMID: 17553991]
[88]
Weiss S, Mueller HM. “Too many betas do not spoil the broth”: the role of beta brain oscillations in language processing. Front Psychol 2012; 3: 201.
[http://dx.doi.org/10.3389/fpsyg.2012.00201] [PMID: 22737138]
[89]
Hanslmayr S, Staudigl T, Fellner MC. Oscillatory power decreases and long-term memory: the information via desynchronization hypothesis. Front Hum Neurosci 2012; 6: 74.
[http://dx.doi.org/10.3389/fnhum.2012.00074] [PMID: 22514527]
[90]
Baker SN. Oscillatory interactions between sensorimotor cortex and the periphery. Curr Opin Neurobiol 2007; 17(6): 649-55.
[http://dx.doi.org/10.1016/j.conb.2008.01.007] [PMID: 18339546]
[91]
Kühn AA, Williams D, Kupsch A, et al. Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance. Brain 2004; 127(Pt 4): 735-46.
[http://dx.doi.org/10.1093/brain/awh106] [PMID: 14960502]
[92]
Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 1999; 110(11): 1842-57.
[http://dx.doi.org/10.1016/S1388-2457(99)00141-8] [PMID: 10576479]
[93]
Pfurtscheller G, Neuper C, Andrew C, Edlinger G. Foot and hand area mu rhythms. Int J Psychophysiol 1997; 26(1-3): 121-35.
[http://dx.doi.org/10.1016/S0167-8760(97)00760-5] [PMID: 9202999]
[94]
Zhang Y, Chen Y, Bressler SL, Ding M. Response preparation and inhibition: the role of the cortical sensorimotor beta rhythm. Neuroscience 2008; 156(1): 238-46.
[http://dx.doi.org/10.1016/j.neuroscience.2008.06.061] [PMID: 18674598]
[95]
Gelastopoulos A, Whittington MA, Kopell NJ. Parietal low beta rhythm provides a dynamical substrate for a working memory buffer. Proc Natl Acad Sci USA 2019; 116(33): 16613-20.
[http://dx.doi.org/10.1073/pnas.1902305116] [PMID: 31371513]
[96]
Roohi-Azizi M, Azimi L, Heysieattalab S, Aamidfar M. Changes of the brain’s bioelectrical activity in cognition, consciousness, and some mental disorders. Med J Islam Repub Iran 2017; 31: 53.
[http://dx.doi.org/10.14196/mjiri.31.53] [PMID: 29445682]
[97]
Mitchell DJ, McNaughton N, Flanagan D, Kirk IJ. Frontal-midline theta from the perspective of hippocampal “theta”. Prog Neurobiol 2008; 86(3): 156-85.
[http://dx.doi.org/10.1016/j.pneurobio.2008.09.005] [PMID: 18824212]
[98]
Schutter DJ, van Honk J. Decoupling of midfrontal delta-beta oscillations after testosterone administration. Int J Psychophysiol 2004; 53(1): 71-3.
[http://dx.doi.org/10.1016/j.ijpsycho.2003.12.012] [PMID: 15172137]
[99]
Başar-Eroglu C, Strüber D, Schürmann M, Stadler M, Başar E. Gamma-band responses in the brain: a short review of psychophysiological correlates and functional significance. Int J Psychophysiol 1996; 24(1-2): 101-12.
[http://dx.doi.org/10.1016/S0167-8760(96)00051-7] [PMID: 8978437]
[100]
Engel AK, Fries P, Singer W. Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2001; 2(10): 704-16.
[http://dx.doi.org/10.1038/35094565] [PMID: 11584308]
[101]
Tallon-Baudry C, Bertrand O. Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 1999; 3(4): 151-62.
[http://dx.doi.org/10.1016/S1364-6613(99)01299-1] [PMID: 10322469]
[102]
Gray CM, Viana Di Prisco G. Stimulus-dependent neuronal oscillations and local synchronization in striate cortex of the alert cat. J Neurosci 1997; 17(9): 3239-53.
[http://dx.doi.org/10.1523/JNEUROSCI.17-09-03239.1997] [PMID: 9096157]
[103]
Joliot M, Ribary U, Llinás R. Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. Proc Natl Acad Sci USA 1994; 91(24): 11748-51.
[http://dx.doi.org/10.1073/pnas.91.24.11748] [PMID: 7972135]
[104]
Felleman DJ, Van DE. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1991; 1(1): 1-47.
[http://dx.doi.org/10.1093/cercor/1.1.1]
[105]
Galambos R. A comparison of certain gamma band (40-Hz) brain rhythms in cat and man.In: Başar E, Bullock TH, Eds Induced Rhythms in the Brain. Boston: Springer 1992; pp. 201-16.
[106]
Llinás RR, Ribary U. Rostrocaudal scan in human brain: a global characteristic of the 40-Hz response during sensory input. In: Başar E, Bullock TH, Eds. Induced Rhythms in the Brain. Boston: Springer 1992; pp. 147-54..
[107]
Engel AK, König P, Kreiter AK, Schillen TB, Singer W. Temporal coding in the visual cortex: new vistas on integration in the nervous system. Trends Neurosci 1992; 15(6): 218-26.
[http://dx.doi.org/10.1016/0166-2236(92)90039-B] [PMID: 1378666]
[108]
Roelfsema PR, Engel AK, König P, Singer W. Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 1997; 385(6612): 157-61.
[http://dx.doi.org/10.1038/385157a0] [PMID: 8990118]
[109]
Demiralp T, Başar-Eroglu C, Başar E. Distributed gamma band responses in the brain studied in cortex, reticular formation, hippocampus and cerebellum. Int J Neurosci 1996; 84(1-4): 1-13.
[http://dx.doi.org/10.3109/00207459608987246] [PMID: 8707470]
[110]
Galambos R, Makeig S, Talmachoff PJAA. 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci USA 1981; 78(4): 2643-7.
[http://dx.doi.org/10.1073/pnas.78.4.2643] [PMID: 6941317]
[111]
Crone NE, Boatman D, Gordon B, Hao L. Induced electrocorticographic gamma activity during auditory perception. Clin Neurophysiol 2001; 112(4): 565-82.
[http://dx.doi.org/10.1016/S1388-2457(00)00545-9] [PMID: 11275528]
[112]
Gutschalk A, Mase R, Roth R, et al. Deconvolution of 40 Hz steady-state fields reveals two overlapping source activities of the human auditory cortex. Clin Neurophysiol 1999; 110(5): 856-68.
[http://dx.doi.org/10.1016/S1388-2457(99)00019-X] [PMID: 10400199]
[113]
Herdman AT, Lins O, Van Roon P, Stapells DR, Scherg M, Picton TW. Intracerebral sources of human auditory steady-state responses. Brain Topogr 2002; 15(2): 69-86.
[http://dx.doi.org/10.1023/A:1021470822922] [PMID: 12537303]
[114]
Herrmann CS, Mecklinger A. Gamma activity in human EEG is related to highspeed memory comparisons during object selective attention. Vis Cogn 2001; 8(3-5): 593-608.
[http://dx.doi.org/10.1080/13506280143000142]
[115]
Pantev C, Makeig S, Hoke M, Galambos R, Hampson S, Gallen C. Human auditory evoked gamma-band magnetic fields. Proc Natl Acad Sci USA 1991; 88(20): 8996-9000.
[http://dx.doi.org/10.1073/pnas.88.20.8996] [PMID: 1924362]
[116]
Bianchetti A, Trabucch M. Clinical aspects of Alzheimer’s disease. Aging 2001; 13(3): 221-30.
[PMID: 11442304]
[117]
Jeong J. EEG dynamics in patients with Alzheimer’s disease. Clin Neurophysiol 2004; 115(7): 1490-505.
[http://dx.doi.org/10.1016/j.clinph.2004.01.001] [PMID: 15203050]
[118]
Brenner RP, Ulrich RF, Spiker DG, et al. Computerized EEG spectral analysis in elderly normal, demented and depressed subjects. Electroencephalogr Clin Neurophysiol 1986; 64(6): 483-92.
[http://dx.doi.org/10.1016/0013-4694(86)90184-7] [PMID: 2430770]
[119]
Coben LA, Danziger W, Storandt M. A longitudinal EEG study of mild senile dementia of Alzheimer type: changes at 1 year and at 2.5 years. Electroencephalogr Clin Neurophysiol 1985; 61(2): 101-12.
[http://dx.doi.org/10.1016/0013-4694(85)91048-X] [PMID: 2410219]
[120]
Coben LA, Danziger WL, Berg L. Frequency analysis of the resting awake EEG in mild senile dementia of Alzheimer type. Electroencephalogr Clin Neurophysiol 1983; 55(4): 372-80.
[http://dx.doi.org/10.1016/0013-4694(83)90124-4] [PMID: 6187529]
[121]
Giaquinto S, Nolfe G. The EEG in the normal elderly: a contribution to the interpretation of aging and dementia. Electroencephalogr Clin Neurophysiol 1986; 63(6): 540-6.
[http://dx.doi.org/10.1016/0013-4694(86)90141-0] [PMID: 2422003]
[122]
Dunkin JJ, Leuchter AF, Newton TF, Cook IA. Reduced EEG coherence in dementia: state or trait marker? Biol Psychiatry 1994; 35(11): 870-9.
[http://dx.doi.org/10.1016/0006-3223(94)90023-X] [PMID: 8054410]
[123]
Leuchter AF, Spar JE, Walter DO, Weiner H. Electroencephalographic spectra and coherence in the diagnosis of Alzheimer’s-type and multi-infarct dementia. A pilot study. Arch Gen Psychiatry 1987; 44(11): 993-8.
[http://dx.doi.org/10.1001/archpsyc.1987.01800230073012] [PMID: 3314770]
[124]
Locatelli T, Cursi M, Liberati D, Franceschi M, Comi G. EEG coherence in Alzheimer’s disease. Electroencephalogr Clin Neurophysiol 1998; 106(3): 229-37.
[http://dx.doi.org/10.1016/S0013-4694(97)00129-6] [PMID: 9743281]
[125]
Hughes JR, Shanmugham S, Wetzel LC, Bellur S, Hughes CA. The relationship between EEG changes and cognitive functions in dementia: a study in a VA population. Clin Electroencephalogr 1989; 20(2): 77-85.
[http://dx.doi.org/10.1177/155005948902000204] [PMID: 2706793]
[126]
Kowalski JW, Gawel M, Pfeffer A, Barcikowska M. The diagnostic value of EEG in Alzheimer disease: correlation with the severity of mental impairment. J Clin Neurophysiol 2001; 18(6): 570-5.
[http://dx.doi.org/10.1097/00004691-200111000-00008] [PMID: 11779971]
[127]
Dauwels J, Vialatte F, Musha T, Cichocki A. A comparative study of synchrony measures for the early diagnosis of Alzheimer’s disease based on EEG. Neuroimage 2010; 49(1): 668-93.
[http://dx.doi.org/10.1016/j.neuroimage.2009.06.056] [PMID: 19573607]
[128]
Koenig T, Prichep L, Dierks T, et al. Decreased EEG synchronization in Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 2005; 26(2): 165-71.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.03.008] [PMID: 15582746]
[129]
Association AP. Diagnostic and statistical manual of mental disorders (DSM-IV). Washington, DC: American Psychiatry Association 1994.
[130]
Ravnkilde B, Videbech P, Clemmensen K, Egander A, Rasmussen NA, Rosenberg R. Cognitive deficits in major depression. Scand J Psychol 2002; 43(3): 239-51.
[http://dx.doi.org/10.1111/1467-9450.00292] [PMID: 12184479]
[131]
Davidson RJ. Affective style and affective disorders: perspectives from affective neuroscience. Cogn Emotion 1998; 12(3): 307-30.
[http://dx.doi.org/10.1080/026999398379628]
[132]
Fingelkurts AA, Fingelkurts AA. Altered structure of dynamic electroencephalogram oscillatory pattern in major depression. Biol Psychiatry 2015; 77(12): 1050-60.
[http://dx.doi.org/10.1016/j.biopsych.2014.12.011] [PMID: 25662102]
[133]
Thibodeau R, Jorgensen RS, Kim S. Depression, anxiety, and resting frontal EEG asymmetry: a meta-analytic review. J Abnorm Psychol 2006; 115(4): 715-29.
[http://dx.doi.org/10.1037/0021-843X.115.4.715] [PMID: 17100529]
[134]
Sutton SK, Davidson RJ. Prefrontal brain asymmetry: a biological substrate of the behavioral approach and inhibition systems. Psychol Sci 1997; 8(3): 204-10.
[http://dx.doi.org/10.1111/j.1467-9280.1997.tb00413.x]
[135]
Cantisani A, Koenig T, Horn H, Müller T, Strik W, Walther S. Psychomotor retardation is linked to frontal alpha asymmetry in major depression. J Affect Disord 2015; 188: 167-72.
[http://dx.doi.org/10.1016/j.jad.2015.08.018] [PMID: 26363266]
[136]
Chang JS, Yoo CS, Yi SH, et al. An integrative assessment of the psychophysiologic alterations in young women with recurrent major depressive disorder. Psychosom Med 2012; 74(5): 495-500.
[http://dx.doi.org/10.1097/PSY.0b013e31824d0da0] [PMID: 22408133]
[137]
Henriques JB, Davidson RJ. Regional brain electrical asymmetries discriminate between previously depressed and healthy control subjects. J Abnorm Psychol 1990; 99(1): 22-31.
[http://dx.doi.org/10.1037/0021-843X.99.1.22] [PMID: 2307762]
[138]
Kemp AH, Griffiths K, Felmingham KL, et al. Disorder specificity despite comorbidity: resting EEG alpha asymmetry in major depressive disorder and post-traumatic stress disorder. Biol Psychol 2010; 85(2): 350-4.
[http://dx.doi.org/10.1016/j.biopsycho.2010.08.001] [PMID: 20708650]
[139]
Putnam KM, McSweeney LB. Depressive symptoms and baseline prefrontal EEG alpha activity: a study utilizing ecological momentary assessment. Biol Psychol 2008; 77(2): 237-40.
[http://dx.doi.org/10.1016/j.biopsycho.2007.10.010] [PMID: 18079035]
[140]
Bruder GE, Fong R, Tenke CE, et al. Regional brain asymmetries in major depression with or without an anxiety disorder: a quantitative electroencephalographic study. Biol Psychiatry 1997; 41(9): 939-48.
[http://dx.doi.org/10.1016/S0006-3223(96)00260-0] [PMID: 9110099]
[141]
Gold C, Fachner J, Erkkilä J. Validity and reliability of electroencephalographic frontal alpha asymmetry and frontal midline theta as biomarkers for depression. Scand J Psychol 2013; 54(2): 118-26.
[http://dx.doi.org/10.1111/sjop.12022] [PMID: 23278257]
[142]
Mathersul D, Williams LM, Hopkinson PJ, Kemp AH. Investigating models of affect: relationships among EEG alpha asymmetry, depression, and anxiety. Emotion 2008; 8(4): 560-72.
[http://dx.doi.org/10.1037/a0012811] [PMID: 18729586]
[143]
Segrave RA, Cooper NR, Thomson RH, Croft RJ, Sheppard DM, Fitzgerald PB. Individualized alpha activity and frontal asymmetry in major depression. Clin EEG Neurosci 2011; 42(1): 45-52.
[http://dx.doi.org/10.1177/155005941104200110] [PMID: 21309442]
[144]
Davidson RJ, Slagter HA. Probing emotion in the developing brain: functional neuroimaging in the assessment of the neural substrates of emotion in normal and disordered children and adolescents. Ment Retard Dev Disabil Res Rev 2000; 6(3): 166-70.
[http://dx.doi.org/10.1002/1098-2779(2000)6:3<166:AID-MRDD3>3.0.CO;2-O] [PMID: 10982493]
[145]
Deldin PJ, Chiu P. Cognitive restructuring and EEG in major depression. Biol Psychol 2005; 70(3): 141-51.
[http://dx.doi.org/10.1016/j.biopsycho.2005.01.003] [PMID: 16242533]
[146]
Deslandes AC, de Moraes H, Pompeu FA, et al. Electroencephalographic frontal asymmetry and depressive symptoms in the elderly. Biol Psychol 2008; 79(3): 317-22.
[http://dx.doi.org/10.1016/j.biopsycho.2008.07.008] [PMID: 18761052]
[147]
Pössel P, Lo H, Fritz A, Seemann S. A longitudinal study of cortical EEG activity in adolescents. Biol Psychol 2008; 78(2): 173-8.
[http://dx.doi.org/10.1016/j.biopsycho.2008.02.004] [PMID: 18375035]
[148]
Saletu B, Anderer P, Saletu-Zyhlarz GM. EEG topography and tomography (LORETA) in diagnosis and pharmacotherapy of depression. Clin EEG Neurosci 2010; 41(4): 203-10.
[http://dx.doi.org/10.1177/155005941004100407] [PMID: 21077572]
[149]
Bruder GE, Tenke CE, Warner V, et al. Electroencephalographic measures of regional hemispheric activity in offspring at risk for depressive disorders. Biol Psychiatry 2005; 57(4): 328-35.
[http://dx.doi.org/10.1016/j.biopsych.2004.11.015] [PMID: 15705347]
[150]
Kentgen LM, Tenke CE, Pine DS, Fong R, Klein RG, Bruder GE. Electroencephalographic asymmetries in adolescents with major depression: influence of comorbidity with anxiety disorders. J Abnorm Psychol 2000; 109(4): 797-802.
[http://dx.doi.org/10.1037/0021-843X.109.4.797] [PMID: 11196007]
[151]
Heller W, Nitschke JB, Etienne MA, Miller GA. Patterns of regional brain activity differentiate types of anxiety. J Abnorm Psychol 1997; 106(3): 376-85.
[http://dx.doi.org/10.1037/0021-843X.106.3.376] [PMID: 9241939]
[152]
Keller J, Nitschke JB, Bhargava T, et al. Neuropsychological differentiation of depression and anxiety. J Abnorm Psychol 2000; 109(1): 3-10.
[http://dx.doi.org/10.1037/0021-843X.109.1.3] [PMID: 10740930]
[153]
Knott V, Mahoney C, Kennedy S, Evans K. Pre-treatment EEG and its relationship to depression severity and paroxetine treatment outcome. Pharmacopsychiatry 2000; 33(6): 201-5.
[http://dx.doi.org/10.1055/s-2000-8356] [PMID: 11147926]
[154]
Kwon JS, Youn T, Jung HY. Right hemisphere abnormalities in major depression: quantitative electroencephalographic findings before and after treatment. J Affect Disord 1996; 40(3): 169-73.
[http://dx.doi.org/10.1016/0165-0327(96)00057-2] [PMID: 8897116]
[155]
Ricardo-Garcell J, González-Olvera JJ, Miranda E, et al. EEG sources in a group of patients with major depressive disorders. Int J Psychophysiol 2009; 71(1): 70-4.
[http://dx.doi.org/10.1016/j.ijpsycho.2008.07.021] [PMID: 18755226]
[156]
Pizzagalli DA, Oakes TR, Davidson RJ. Coupling of theta activity and glucose metabolism in the human rostral anterior cingulate cortex: an EEG/PET study of normal and depressed subjects. Psychophysiology 2003; 40(6): 939-49.
[http://dx.doi.org/10.1111/1469-8986.00112] [PMID: 14986847]
[157]
Bruder GE, Stewart JW, Tenke CE, et al. Electroencephalographic and perceptual asymmetry differences between responders and nonresponders to an SSRI antidepressant. Biol Psychiatry 2001; 49(5): 416-25.
[http://dx.doi.org/10.1016/S0006-3223(00)01016-7] [PMID: 11274653]
[158]
Knott VJ, Telner JI, Lapierre YD, Browne M, Horn ER. Quantitative EEG in the prediction of antidepressant response to imipramine. J Affect Disord 1996; 39(3): 175-84.
[http://dx.doi.org/10.1016/0165-0327(96)00003-1] [PMID: 8856421]
[159]
Mulert C, Juckel G, Brunnmeier M, et al. Prediction of treatment response in major depression: integration of concepts. J Affect Disord 2007; 98(3): 215-25.
[http://dx.doi.org/10.1016/j.jad.2006.07.021] [PMID: 16996140]
[160]
Pizzagalli D, Pascual-Marqui RD, Nitschke JB, et al. Anterior cingulate activity as a predictor of degree of treatment response in major depression: evidence from brain electrical tomography analysis. Am J Psychiatry 2001; 158(3): 405-15.
[http://dx.doi.org/10.1176/appi.ajp.158.3.405] [PMID: 11229981]
[161]
Ulrich G, Renfordt E, Frick K. The topographical distribution of alpha-activity in the resting EEG of endogenous-depressive in-patients with and without clinical response to pharmacotherapy. Pharmacopsychiatry 1986; 19(04): 272-3.
[http://dx.doi.org/10.1055/s-2007-1017230]
[162]
Spronk D, Arns M, Barnett KJ, Cooper NJ, Gordon E. An investigation of EEG, genetic and cognitive markers of treatment response to antidepressant medication in patients with major depressive disorder: a pilot study. J Affect Disord 2011; 128(1-2): 41-8.
[http://dx.doi.org/10.1016/j.jad.2010.06.021] [PMID: 20619899]
[163]
Belmaker RH. Bipolar disorder. N Engl J Med 2004; 351(5): 476-86.
[http://dx.doi.org/10.1056/NEJMra035354] [PMID: 15282355]
[164]
Degabriele R, Lagopoulos J. A review of EEG and ERP studies in bipolar disorder. Acta Neuropsychiatr 2009; 21(2): 58-66.
[http://dx.doi.org/10.1111/j.1601-5215.2009.00359.x]
[165]
Başar E, Güntekin B, Atagün I, Turp Gölbaşı B, Tülay E, Özerdem A. Brain’s alpha activity is highly reduced in euthymic bipolar disorder patients. Cogn Neurodyn 2012; 6(1): 11-20.
[http://dx.doi.org/10.1007/s11571-011-9172-y] [PMID: 23372616]
[166]
Clementz BA, Sponheim SR, Iacono WG, Beiser M. Resting EEG in first-episode schizophrenia patients, bipolar psychosis patients, and their first-degree relatives. Psychophysiology 1994; 31(5): 486-94.
[http://dx.doi.org/10.1111/j.1469-8986.1994.tb01052.x] [PMID: 7972603]
[167]
El-Badri SM, Ashton CH, Moore PB, Marsh VR, Ferrier IN. Electrophysiological and cognitive function in young euthymic patients with bipolar affective disorder. Bipolar Disord 2001; 3(2): 79-87.
[http://dx.doi.org/10.1034/j.1399-5618.2001.030206.x] [PMID: 11333067]
[168]
Harmon-Jones E, Abramson LY, Nusslock R, et al. Effect of bipolar disorder on left frontal cortical responses to goals differing in valence and task difficulty. Biol Psychiatry 2008; 63(7): 693-8.
[http://dx.doi.org/10.1016/j.biopsych.2007.08.004] [PMID: 17919457]
[169]
Allen JJ, Iacono WG, Depue RA, Arbisi P. Regional electroencephalographic asymmetries in bipolar seasonal affective disorder before and after exposure to bright light. Biol Psychiatry 1993; 33(8-9): 642-6.
[http://dx.doi.org/10.1016/0006-3223(93)90104-L] [PMID: 8329494]
[170]
Kano K, Nakamura M, Matsuoka T, Iida H, Nakajima T. The topographical features of EEGs in patients with affective disorders. Electroencephalogr Clin Neurophysiol 1992; 83(2): 124-9.
[http://dx.doi.org/10.1016/0013-4694(92)90025-D] [PMID: 1378377]
[171]
Tas C, Cebi M, Tan O, Hızlı-Sayar G, Tarhan N, Brown EC. EEG power, cordance and coherence differences between unipolar and bipolar depression. J Affect Disord 2015; 172: 184-90.
[http://dx.doi.org/10.1016/j.jad.2014.10.001] [PMID: 25451416]
[172]
Lieber AL, Newbury ND. Diagnosis and subtyping of depressive disorders by quantitative electroencephalography: III. Discriminating unipolar from bipolar depression. Hillside J Clin Psychiatry 1988; 10(2): 165-72.
[PMID: 3147236]
[173]
Kim D-J, Bolbecker AR, Howell J, et al. Disturbed resting state EEG synchronization in bipolar disorder: a graph-theoretic analysis. Neuroimage Clin 2013; 2: 414-23.
[http://dx.doi.org/10.1016/j.nicl.2013.03.007] [PMID: 24179795]
[174]
Lisman J. Excitation, inhibition, local oscillations, or large-scale loops: what causes the symptoms of schizophrenia? Curr Opin Neurobiol 2012; 22(3): 537-44.
[http://dx.doi.org/10.1016/j.conb.2011.10.018] [PMID: 22079494]
[175]
Krishnan GP, Vohs JL, Hetrick WP, et al. Steady state visual evoked potential abnormalities in schizophrenia. Clin Neurophysiol 2005; 116(3): 614-24.
[http://dx.doi.org/10.1016/j.clinph.2004.09.016] [PMID: 15721075]
[176]
Kwon JS, O’Donnell BF, Wallenstein GV, et al. Gamma frequency-range abnormalities to auditory stimulation in schizophrenia. Arch Gen Psychiatry 1999; 56(11): 1001-5.
[http://dx.doi.org/10.1001/archpsyc.56.11.1001] [PMID: 10565499]
[177]
Cho RY, Konecky RO, Carter CS. Impairments in frontal cortical γ synchrony and cognitive control in schizophrenia. Proc Natl Acad Sci USA 2006; 103(52): 19878-83.
[http://dx.doi.org/10.1073/pnas.0609440103] [PMID: 17170134]
[178]
Haenschel C, Bittner RA, Waltz J, et al. Cortical oscillatory activity is critical for working memory as revealed by deficits in early-onset schizophrenia. J Neurosci 2009; 29(30): 9481-9.
[http://dx.doi.org/10.1523/JNEUROSCI.1428-09.2009] [PMID: 19641111]
[179]
Schmiedt C, Brand A, Hildebrandt H, Basar-Eroglu C. Event-related theta oscillations during working memory tasks in patients with schizophrenia and healthy controls. Brain Res Cogn Brain Res 2005; 25(3): 936-47.
[http://dx.doi.org/10.1016/j.cogbrainres.2005.09.015] [PMID: 16289526]
[180]
Friston KJ. Schizophrenia and the disconnection hypothesis. Acta Psychiatr Scand Suppl 1999; 395: 68-79.
[http://dx.doi.org/10.1111/j.1600-0447.1999.tb05985.x] [PMID: 10225335]
[181]
Phillips WA, Silverstein SM. Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav Brain Sci 2003; 26(1): 65-82.
[http://dx.doi.org/10.1017/S0140525X03000025] [PMID: 14598440]
[182]
Spencer KM, Nestor PG, Niznikiewicz MA, Salisbury DF, Shenton ME, McCarley RW. Abnormal neural synchrony in schizophrenia. J Neurosci 2003; 23(19): 7407-11.
[http://dx.doi.org/10.1523/JNEUROSCI.23-19-07407.2003] [PMID: 12917376]
[183]
Symond MP, Harris AW, Gordon E, Williams LM. “Gamma synchrony” in first-episode schizophrenia: a disorder of temporal connectivity? Am J Psychiatry 2005; 162(3): 459-65.
[http://dx.doi.org/10.1176/appi.ajp.162.3.459] [PMID: 15741462]
[184]
Uhlhaas PJ, Linden DE, Singer W, et al. Dysfunctional long-range coordination of neural activity during Gestalt perception in schizophrenia. J Neurosci 2006; 26(31): 8168-75.
[http://dx.doi.org/10.1523/JNEUROSCI.2002-06.2006] [PMID: 16885230]
[185]
Rutter L, Carver FW, Holroyd T, et al. Magnetoencephalographic gamma power reduction in patients with schizophrenia during resting condition. Hum Brain Mapp 2009; 30(10): 3254-64.
[http://dx.doi.org/10.1002/hbm.20746] [PMID: 19288463]
[186]
Koenig T, Lehmann D, Saito N, Kuginuki T, Kinoshita T, Koukkou M. Decreased functional connectivity of EEG theta-frequency activity in first-episode, neuroleptic-naïve patients with schizophrenia: preliminary results. Schizophr Res 2001; 50(1-2): 55-60.
[http://dx.doi.org/10.1016/S0920-9964(00)00154-7] [PMID: 11378314]
[187]
Eysenck MW, Derakshan N, Santos R, Calvo MG. Anxiety and cognitive performance: attentional control theory. Emotion 2007; 7(2): 336-53.
[http://dx.doi.org/10.1037/1528-3542.7.2.336] [PMID: 17516812]
[188]
Mendlowicz MV, Stein MB. Quality of life in individuals with anxiety disorders. Am J Psychiatry 2000; 157(5): 669-82.
[http://dx.doi.org/10.1176/appi.ajp.157.5.669] [PMID: 10784456]
[189]
Stein MB, Roy-Byrne PP, Craske MG, et al. Functional impact and health utility of anxiety disorders in primary care outpatients. Med Care 2005; 43(12): 1164-70.
[http://dx.doi.org/10.1097/01.mlr.0000185750.18119.fd] [PMID: 16299426]
[190]
Knyazev GG, Savostyanov AN, Levin EA. Alpha oscillations as a correlate of trait anxiety. Int J Psychophysiol 2004; 53(2): 147-60.
[http://dx.doi.org/10.1016/j.ijpsycho.2004.03.001] [PMID: 15210292]
[191]
Knyazev GG, Slobodskaya HR. Personality trait of behavioral inhibition is associated with oscillatory systems reciprocal relationships. Int J Psychophysiol 2003; 48(3): 247-61.
[http://dx.doi.org/10.1016/S0167-8760(03)00072-2] [PMID: 12798985]
[192]
Knyazev GG, Slobodskaya HR, Wilson GD. Psychophysiological correlates of behavioural inhibition and activation. Pers Individ Dif 2002; 33(4): 647-60.
[http://dx.doi.org/10.1016/S0191-8869(01)00180-5]
[193]
Saletu-Zyhlarz G, Saletu B, Anderer P, et al. Nonorganic insomnia in generalized anxiety disorder. 1. Controlled studies on sleep, awakening and daytime vigilance utilizing polysomnography and EEG mapping. Neuropsychobiology 1997; 36(3): 117-29.
[http://dx.doi.org/10.1159/000119373] [PMID: 9313244]
[194]
Sachs G, Anderer P, Dantendorfer K, Saletu B. EEG mapping in patients with social phobia. Psychiatry Res 2004; 131(3): 237-47.
[http://dx.doi.org/10.1016/j.pscychresns.2003.08.007] [PMID: 15465293]
[195]
Newman F, Stein MB, Trettau JR, Coppola R, Uhde TW. Quantitative electroencephalographic effects of caffeine in panic disorder. Psychiatry Res 1992; 45(2): 105-13.
[http://dx.doi.org/10.1016/0925-4927(92)90004-N] [PMID: 1488468]
[196]
Wise V, McFarlane AC, Clark CR, Battersby M. An integrative assessment of brain and body function ‘at rest’ in panic disorder: a combined quantitative EEG/autonomic function study. Int J Psychophysiol 2011; 79(2): 155-65.
[http://dx.doi.org/10.1016/j.ijpsycho.2010.10.002] [PMID: 20950657]
[197]
Knott V, Bakish D, Lusk S, Barkely J. Relaxation-induced EEG alterations in panic disorder patients. J Anxiety Disord 1997; 11(4): 365-76.
[http://dx.doi.org/10.1016/S0887-6185(97)00016-9] [PMID: 9276782]
[198]
Crost NW, Pauls CA, Wacker J. Defensiveness and anxiety predict frontal EEG asymmetry only in specific situational contexts. Biol Psychol 2008; 78(1): 43-52.
[http://dx.doi.org/10.1016/j.biopsycho.2007.12.008] [PMID: 18295958]
[199]
Davidson RJ, Marshall JR, Tomarken AJ, Henriques JB. While a phobic waits: regional brain electrical and autonomic activity in social phobics during anticipation of public speaking. Biol Psychiatry 2000; 47(2): 85-95.
[http://dx.doi.org/10.1016/S0006-3223(99)00222-X] [PMID: 10664824]
[200]
Wiedemann G, Pauli P, Dengler W, Lutzenberger W, Birbaumer N, Buchkremer G. Frontal brain asymmetry as a biological substrate of emotions in patients with panic disorders. Arch Gen Psychiatry 1999; 56(1): 78-84.
[http://dx.doi.org/10.1001/archpsyc.56.1.78] [PMID: 9892259]
[201]
Beaton EA, Schmidt LA, Ashbaugh AR, Santesso DL, Antony MM, McCabe RE. Resting and reactive frontal brain electrical activity (EEG) among a non-clinical sample of socially anxious adults: does concurrent depressive mood matter? Neuropsychiatr Dis Treat 2008; 4(1): 187-92.
[PMID: 18728822]
[202]
Chamberlain SR, Blackwell AD, Fineberg NA, Robbins TW, Sahakian BJ. The neuropsychology of obsessive compulsive disorder: the importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers. Neurosci Biobehav Rev 2005; 29(3): 399-419.
[http://dx.doi.org/10.1016/j.neubiorev.2004.11.006] [PMID: 15820546]
[203]
Karadag F, Oguzhanoglu NK, Kurt T, Oguzhanoglu A, Ateşci F, Ozdel O. Quantitative EEG analysis in obsessive compulsive disorder. Int J Neurosci 2003; 113(6): 833-47.
[http://dx.doi.org/10.1080/00207450390200963] [PMID: 12775347]
[204]
Locatelli M, Bellodi L, Grassi B, Scarone S. EEG power modifications in obsessive-compulsive disorder during olfactory stimulation. Biol Psychiatry 1996; 39(5): 326-31.
[http://dx.doi.org/10.1016/0006-3223(95)00172-7] [PMID: 8704063]
[205]
Bucci P, Mucci A, Volpe U, Merlotti E, Galderisi S, Maj M. Executive hypercontrol in obsessive-compulsive disorder: electrophysiological and neuropsychological indices. Clin Neurophysiol 2004; 115(6): 1340-8.
[http://dx.doi.org/10.1016/j.clinph.2003.12.031] [PMID: 15134701]
[206]
Shin YW, Ha TH, Kim SY, Kwon JS. Association between EEG alpha power and visuospatial function in obsessive-compulsive disorder. Psychiatry Clin Neurosci 2004; 58(1): 16-20.
[http://dx.doi.org/10.1111/j.1440-1819.2004.01186.x] [PMID: 14678451]
[207]
Ischebeck M, Endrass T, Simon D, Kathmann N. Altered frontal EEG asymmetry in obsessive-compulsive disorder. Psychophysiology 2014; 51(7): 596-601.
[http://dx.doi.org/10.1111/psyp.12214] [PMID: 24673721]
[208]
Diagnostic and Statistical Manual of Mental disorders DSM-5. Washington, DC: American Psychiatric Association 2013.
[209]
Gordon E, Palmer DM, Cooper N. EEG alpha asymmetry in schizophrenia, depression, PTSD, panic disorder, ADHD and conduct disorder. Clin EEG Neurosci 2010; 41(4): 178-83.
[http://dx.doi.org/10.1177/155005941004100404] [PMID: 21077569]
[210]
Rabe S, Beauducel A, Zöllner T, Maercker A, Karl A. Regional brain electrical activity in posttraumatic stress disorder after motor vehicle accident. J Abnorm Psychol 2006; 115(4): 687-98.
[http://dx.doi.org/10.1037/0021-843X.115.4.687] [PMID: 17100526]
[211]
Shankman SA, Silverstein SM, Williams LM, et al. Resting electroencephalogram asymmetry and posttraumatic stress disorder. J Trauma Stress 2008; 21(2): 190-8.
[http://dx.doi.org/10.1002/jts.20319] [PMID: 18404640]
[212]
Wahbeh H, Oken BS. Peak high-frequency HRV and peak alpha frequency higher in PTSD. Appl Psychophysiol Biofeedback 2013; 38(1): 57-69.
[http://dx.doi.org/10.1007/s10484-012-9208-z] [PMID: 23178990]
[213]
Metzger LJ, Paige SR, Carson MA, et al. PTSD arousal and depression symptoms associated with increased right-sided parietal EEG asymmetry. J Abnorm Psychol 2004; 113(2): 324-9.
[http://dx.doi.org/10.1037/0021-843X.113.2.324] [PMID: 15122952]
[214]
Jokić-Begić N, Begić D. Quantitative electroencephalogram (qEEG) in combat veterans with post-traumatic stress disorder (PTSD). Nord J Psychiatry 2003; 57(5): 351-5.
[http://dx.doi.org/10.1080/08039480310002688] [PMID: 14522608]
[215]
Begić D, Hotujac L, Jokić-Begić N. Electroencephalographic comparison of veterans with combat-related post-traumatic stress disorder and healthy subjects. Int J Psychophysiol 2001; 40(2): 167-72.
[http://dx.doi.org/10.1016/S0167-8760(00)00153-7] [PMID: 11165355]
[216]
Imperatori C, Farina B, Quintiliani MI, et al. Aberrant EEG functional connectivity and EEG power spectra in resting state post-traumatic stress disorder: a sLORETA study. Biol Psychol 2014; 102: 10-7.
[http://dx.doi.org/10.1016/j.biopsycho.2014.07.011] [PMID: 25046862]
[217]
Loganovsky KN, Zdanevich NA. Cerebral basis of posttraumatic stress disorder following the Chernobyl disaster. CNS Spectr 2013; 18(2): 95-102.
[http://dx.doi.org/10.1017/S109285291200096X] [PMID: 23445934]
[218]
Faraone SV, Biederman J, Mick E. The age-dependent decline of attention deficit hyperactivity disorder: a meta-analysis of follow-up studies. Psychol Med 2006; 36(2): 159-65.
[http://dx.doi.org/10.1017/S003329170500471X] [PMID: 16420712]
[219]
Loo SK, Hale TS, Macion J, et al. Cortical activity patterns in ADHD during arousal, activation and sustained attention. Neuropsychologia 2009; 47(10): 2114-9.
[http://dx.doi.org/10.1016/j.neuropsychologia.2009.04.013] [PMID: 19393254]
[220]
Simon V, Czobor P, Bálint S, Mészáros A, Bitter I. Prevalence and correlates of adult attention-deficit hyperactivity disorder: meta-analysis. Br J Psychiatry 2009; 194(3): 204-11.
[http://dx.doi.org/10.1192/bjp.bp.107.048827] [PMID: 19252145]
[221]
Chabot RJ, Serfontein G. Quantitative electroencephalographic profiles of children with attention deficit disorder. Biol Psychiatry 1996; 40(10): 951-63.
[http://dx.doi.org/10.1016/0006-3223(95)00576-5] [PMID: 8915554]
[222]
Clarke AR, Barry RJ, McCarthy R, Selikowitz M. EEG analysis in attention-deficit/hyperactivity disorder: a comparative study of two subtypes. Psychiatry Res 1998; 81(1): 19-29.
[http://dx.doi.org/10.1016/S0165-1781(98)00072-9] [PMID: 9829647]
[223]
Lubar JF. Discourse on the development of EEG diagnostics and biofeedback for attention-deficit/hyperactivity disorders. Biofeedback Self Regul 1991; 16(3): 201-25.
[http://dx.doi.org/10.1007/BF01000016] [PMID: 1932259]
[224]
Mann CA, Lubar JF, Zimmerman AW, Miller CA, Muenchen RA. Quantitative analysis of EEG in boys with attention-deficit-hyperactivity disorder: controlled study with clinical implications. Pediatr Neurol 1992; 8(1): 30-6.
[http://dx.doi.org/10.1016/0887-8994(92)90049-5] [PMID: 1558573]
[225]
Clarke AR, Barry RJ, McCarthy R, Selikowitz M. Electroencephalogram differences in two subtypes of attention-deficit/hyperactivity disorder. Psychophysiology 2001; 38(2): 212-21.
[http://dx.doi.org/10.1111/1469-8986.3820212] [PMID: 11347867]
[226]
Clarke AR, Barry RJ, Dupuy FE, et al. Behavioural differences between EEG-defined subgroups of children with attention-deficit/hyperactivity disorder. Clin Neurophysiol 2011; 122(7): 1333-41.
[http://dx.doi.org/10.1016/j.clinph.2010.12.038] [PMID: 21247797]
[227]
Clarke AR, Barry RJ, McCarthy R, Selikowitz M. EEG differences between good and poor responders to methylphenidate and dexamphetamine in children with attention-deficit/hyperactivity disorder. Clin Neurophysiol 2002; 113(2): 194-205.
[http://dx.doi.org/10.1016/S1388-2457(01)00736-2] [PMID: 11856625]
[228]
Poil S-S, Bollmann S, Ghisleni C, et al. Age dependent electroencephalographic changes in attention-deficit/hyperactivity disorder (ADHD). Clin Neurophysiol 2014; 125(8): 1626-38.
[http://dx.doi.org/10.1016/j.clinph.2013.12.118] [PMID: 24582383]
[229]
Arns M, Conners CK, Kraemer HC. A decade of EEG theta/beta ratio research in ADHD: a meta-analysis. J Atten Disord 2013; 17(5): 374-83.
[http://dx.doi.org/10.1177/1087054712460087] [PMID: 23086616]
[230]
Barry RJ, Clarke AR, Johnstone SJ. A review of electrophysiology in attention-deficit/hyperactivity disorder: I. Qualitative and quantitative electroencephalography. Clin Neurophysiol 2003; 114(2): 171-83.
[http://dx.doi.org/10.1016/S1388-2457(02)00362-0] [PMID: 12559224]
[231]
Barry RJ, Clarke AR, Johnstone SJ, McCarthy R, Selikowitz M. Electroencephalogram θ/β ratio and arousal in attention-deficit/hyperactivity disorder: evidence of independent processes. Biol Psychiatry 2009; 66(4): 398-401.
[http://dx.doi.org/10.1016/j.biopsych.2009.04.027] [PMID: 19500774]
[232]
Bresnahan SM, Anderson JW, Barry RJ. Age-related changes in quantitative EEG in attention-deficit/hyperactivity disorder. Biol Psychiatry 1999; 46(12): 1690-7.
[http://dx.doi.org/10.1016/S0006-3223(99)00042-6] [PMID: 10624551]
[233]
Clarke AR, Barry RJ, McCarthy R, Selikowitz M. Excess beta activity in children with attention-deficit/hyperactivity disorder: an atypical electrophysiological group. Psychiatry Res 2001; 103(2-3): 205-18.
[http://dx.doi.org/10.1016/S0165-1781(01)00277-3] [PMID: 11549408]
[234]
Magee CA, Clarke AR, Barry RJ, McCarthy R, Selikowitz M. Examining the diagnostic utility of EEG power measures in children with attention deficit/hyperactivity disorder. Clin Neurophysiol 2005; 116(5): 1033-40.
[http://dx.doi.org/10.1016/j.clinph.2004.12.007] [PMID: 15826843]
[235]
Snyder SM, Hall JR. A meta-analysis of quantitative EEG power associated with attention-deficit hyperactivity disorder. J Clin Neurophysiol 2006; 23(5): 440-55.
[http://dx.doi.org/10.1097/01.wnp.0000221363.12503.78] [PMID: 17016156]
[236]
Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM, Carper RA, Webb SJ. Autism and abnormal development of brain connectivity. J Neurosci 2004; 24(42): 9228-31.
[http://dx.doi.org/10.1523/JNEUROSCI.3340-04.2004] [PMID: 15496656]
[237]
Hill EL. Executive dysfunction in autism. Trends Cogn Sci 2004; 8(1): 26-32.
[http://dx.doi.org/10.1016/j.tics.2003.11.003] [PMID: 14697400]
[238]
McAlonan GM, Cheung V, Cheung C, et al. Mapping the brain in autism. A voxel-based MRI study of volumetric differences and intercorrelations in autism. Brain 2005; 128(Pt 2): 268-76.
[http://dx.doi.org/10.1093/brain/awh332] [PMID: 15548557]
[239]
Rapin I, Dunn M. Update on the language disorders of individuals on the autistic spectrum. Brain Dev 2003; 25(3): 166-72.
[http://dx.doi.org/10.1016/S0387-7604(02)00191-2] [PMID: 12689694]
[240]
Coben R, Chabot RJ, Hirshberg L. EEG analyses in the assessment of autistic disorders Imaging the brain in autism. Springer 2013; pp. 349-70.
[http://dx.doi.org/10.1007/978-1-4614-6843-1_12]
[241]
Cantor DS, Thatcher RW, Hrybyk M, Kaye H. Computerized EEG analyses of autistic children. J Autism Dev Disord 1986; 16(2): 169-87.
[http://dx.doi.org/10.1007/BF01531728] [PMID: 3722118]
[242]
Dawson G, Warrenburg S, Fuller P. Cerebral lateralization in individuals diagnosed as autistic in early childhood. Brain Lang 1982; 15(2): 353-68.
[http://dx.doi.org/10.1016/0093-934X(82)90065-7] [PMID: 7074350]
[243]
Chan AS, Leung WW. Differentiating autistic children with quantitative encephalography: a 3-month longitudinal study. J Child Neurol 2006; 21(5): 391-9.
[http://dx.doi.org/10.1177/08830738060210050501] [PMID: 16901444]
[244]
Coben R, Clarke AR, Hudspeth W, Barry RJ. EEG power and coherence in autistic spectrum disorder. Clin Neurophysiol 2008; 119(5): 1002-9.
[http://dx.doi.org/10.1016/j.clinph.2008.01.013] [PMID: 18331812]
[245]
Rossi PG, Parmeggiani A, Bach V, Santucci M, Visconti P. EEG features and epilepsy in patients with autism. Brain Dev 1995; 17(3): 169-74.
[http://dx.doi.org/10.1016/0387-7604(95)00019-8] [PMID: 7573755]
[246]
Orekhova E, Stroganova T, Nygren G, Posikera I, Gillberg C, Elam M. P21. 5 High frequency activity in ongoing EEG from young children with autism: a two sample study. Clin Neurophysiol 2006; 117: 218.
[http://dx.doi.org/10.1016/j.clinph.2006.06.417]
[247]
Wilson TW, Rojas DC, Reite ML, Teale PD, Rogers SJ. Children and adolescents with autism exhibit reduced MEG steady-state gamma responses. Biol Psychiatry 2007; 62(3): 192-7.
[http://dx.doi.org/10.1016/j.biopsych.2006.07.002] [PMID: 16950225]
[248]
Stroganova TA, Nygren G, Tsetlin MM, et al. Abnormal EEG lateralization in boys with autism. Clin Neurophysiol 2007; 118(8): 1842-54.
[http://dx.doi.org/10.1016/j.clinph.2007.05.005] [PMID: 17581774]
[249]
Coben R, Myers TE. Connectivity theory of autism: use of connectivity measures in assessing and treating autistic disorders. J Neurother 2008; 12(2-3): 161-79.
[http://dx.doi.org/10.1080/10874200802398824]
[250]
Olbrich S, Arns M. EEG biomarkers in major depressive disorder: discriminative power and prediction of treatment response. Int Rev Psychiatry 2013; 25(5): 604-18.
[http://dx.doi.org/10.3109/09540261.2013.816269] [PMID: 24151805]
[251]
Hale TS, Smalley SL, Dang J, et al. ADHD familial loading and abnormal EEG alpha asymmetry in children with ADHD. J Psychiatr Res 2010; 44(9): 605-15.
[http://dx.doi.org/10.1016/j.jpsychires.2009.11.012] [PMID: 20006344]
[252]
Moscovitch DA, Santesso DL, Miskovic V, McCabe RE, Antony MM, Schmidt LA. Frontal EEG asymmetry and symptom response to cognitive behavioral therapy in patients with social anxiety disorder. Biol Psychol 2011; 87(3): 379-85.
[http://dx.doi.org/10.1016/j.biopsycho.2011.04.009] [PMID: 21571033]
[253]
Newson JJ, Thiagarajan TC. EEG frequency bands in psychiatric disorders: a review of resting state studies. Front Hum Neurosci 2019; 12: 521.
[http://dx.doi.org/10.3389/fnhum.2018.00521] [PMID: 30687041]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy