Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Mini-Review Article

Efflux Pump and its Inhibitors: Novel Targets to Combat Drug Resistance

Author(s): Bhawna Chopra* and Ashwani Kumar Dhingra

Volume 19, Issue 3, 2021

Published on: 23 November, 2020

Page: [231 - 251] Pages: 21

DOI: 10.2174/2211352518999201123191915

Price: $65

Abstract

The rapid emergence of resistant bacteria is occurring worldwide, endangering the efficacy of antibiotics, which have transformed medicine and saved millions of lives. Antibiotic resistance has become a major clinical problem today. In addition, multidrug resistance also develops various structurally and functionally unrelated toxic compounds. To overcome this problem, a new target efflux pump was recognized that, if inhibited, reduces the level of resistance or potentiates or produces a synergistic effect in combination with antibiotics. Keeping this in view, the present review article aims to describe the families of efflux pumps and the various natural components to be employed as good efflux pump inhibitors.

Keywords: Efflux pump, EPIs, families, MDR, drug resistance, piperine.

Graphical Abstract

[1]
Soejarto, D.D.; Farnsworth, N.R. Tropical rain forests: potential source of new drugs? Perspect. Biol. Med., 1989, 32(2), 244-256.
[http://dx.doi.org/10.1353/pbm.1989.0003] [PMID: 2648321]
[2]
Farnsworth, N.R.; Akerele, O.; Bingel, A.S.; Soejarto, D.D.; Guo, Z. Medicinal plants in therapy. Bull. World Health Organ., 1985, 63(6), 965-981.
[PMID: 3879679]
[3]
Topless, J.G. Natural and synthetic substances related to human health. Pure Appl. Chem., 2002, 74(10), 1957-1985.
[http://dx.doi.org/10.1351/pac200274101957]
[4]
Koul, S.; Koul, J.; Taneja, S.; Gupta, P.; Khan, I.; Mirza, Z.; Kumar, A.; Johri, R.; Pandita, M.; Khosa, A.; Tikoo, A.; Sharma, S.; Verma, V.; Qazi, G. Aromatic amides as potentiators of bioefficacy of anti-infective drugs. WO/2006/103527, 2006.
[5]
Spratt, B.G. Resistance to antibiotics mediated by target alterations. Science, 1994, 264(5157), 388-93.
[http://dx.doi.org/10.1126/science.8153626]
[6]
Morel, C.; Stermitz, F.R.; Tegos, G.; Lewis, K. Isoflavones as potentiators of antibacterial activity. J. Agric. Food Chem., 2003, 51(19), 5677-5679.
[http://dx.doi.org/10.1021/jf0302714] [PMID: 12952418]
[7]
Nikaido, H. Antibiotic resistance caused by gram-negative multidrug efflux pumps. Clin. Infect. Dis., 1998, 27(1)(Suppl. 1), S32-S41.
[http://dx.doi.org/10.1086/514920] [PMID: 9710669]
[8]
Nikaido, H. Multiple antibiotic resistance and efflux. Curr. Opin. Microbiol., 1998, 1(5), 516-523.
[http://dx.doi.org/10.1016/S1369-5274(98)80083-0] [PMID: 10066525]
[9]
Van Bambeke, F.; Balzi, E.; Tulkens, P.M. Antibiotic efflux pumps. Biochem. Pharmacol., 2000, 60(4), 457-470.
[http://dx.doi.org/10.1016/S0006-2952(00)00291-4] [PMID: 10874120]
[10]
Pereda-Miranda, R.; Kaatz, G.W.; Gibbons, S. Polyacylated oligosaccharides from medicinal Mexican morning glory species as antibacterials and inhibitors of multidrug resistance in Staphylococcus aureus. J. Nat. Prod., 2006, 69(3), 406-409.
[http://dx.doi.org/10.1021/np050227d] [PMID: 16562846]
[11]
Babayan, A.; Nikaido, H. In Pseudomonas aeruginosa ethidium bromide does not induce its own degradation or the assembly of pumps involved in its efflux. Biochem. Biophys. Res. Commun., 2004, 324(3), 1065-1068.
[http://dx.doi.org/10.1016/j.bbrc.2004.09.146] [PMID: 15485663]
[12]
Ball, P.R.; Shales, S.W.; Chopra, I. Plasmid-mediated tetracycline resistance in Escherichia coli involves increased efflux of the antibiotic. Biochem. Biophys. Res. Commun., 1980, 93(1), 74-81.
[http://dx.doi.org/10.1016/S0006-291X(80)80247-6] [PMID: 6990931]
[13]
McMurry, L.; Petrucci, R.E., Jr; Levy, S.B. Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc. Natl. Acad. Sci. USA, 1980, 77(7), 3974-3977.
[http://dx.doi.org/10.1073/pnas.77.7.3974] [PMID: 7001450]
[14]
Du, D.; van Veen, H.W.; Murakami, S.; Pos, K.M.; Luisi, B.F. Structure, mechanism and cooperation of bacterial multidrug transporters. Curr. Opin. Struct. Biol., 2015, 33, 76-91.
[http://dx.doi.org/10.1016/j.sbi.2015.07.015] [PMID: 26282926]
[15]
Putman, M.; van Veen, H.W.; Konings, W.N. Molecular properties of bacterial multidrug transporters. Microbiol. Mol. Biol. Rev., 2000, 64(4), 672-693.
[http://dx.doi.org/10.1128/MMBR.64.4.672-693.2000] [PMID: 11104814]
[16]
Law, C.J.; Maloney, P.C.; Wang, D.N. Ins and outs of major facilitator superfamily antiporters. Annu. Rev. Microbiol., 2008, 62, 289-305.
[http://dx.doi.org/10.1146/annurev.micro.61.080706.093329] [PMID: 18537473]
[17]
Spengler, G.; Kincses, A.; Gajdács, M.; Amaral, L. New roads leading to old destinations: efflux pumps as targets to reverse multidrug resistance in bacteria. Molecule, 2017, 22, 468.
[http://dx.doi.org/10.3390/molecules22030468] [PMID: 28294992]
[18]
Yin, Y.; He, X.; Szewczyk, P.; Nguyen, T.; Chang, G. Structure of the multidrug transporter EmrD from Escherichia coli. Science, 2006, 312(5774), 741-744.
[http://dx.doi.org/10.1126/science.1125629] [PMID: 16675700]
[19]
Iancu, C.V.; Zamoon, J.; Woo, S.B.; Aleshin, A.; Choe, J.Y. Crystal structure of a glucose/H+ symporter and its mechanism of action. Proc. Natl. Acad. Sci. USA, 2013, 110(44), 17862-17867.
[http://dx.doi.org/10.1073/pnas.1311485110] [PMID: 24127585]
[20]
Newstead, S.; Drew, D.; Cameron, A.D.; Postis, V.L.; Xia, X.; Fowler, P.W.; Ingram, J.C.; Carpenter, E.P.; Sansom, M.S.; McPherson, M.J.; Baldwin, S.A.; Iwata, S. Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2. EMBO J., 2011, 30(2), 417-426.
[http://dx.doi.org/10.1038/emboj.2010.309] [PMID: 21131908]
[21]
Pedersen, B.P.; Kumar, H.; Waight, A.B.; Risenmay, A.J.; Roe-Zurz, Z.; Chau, B.H.; Schlessinger, A.; Bonomi, M.; Harries, W.; Sali, A.; Johri, A.K.; Stroud, R.M. Crystal structure of a eukaryotic phosphate transporter. Nature, 2013, 496(7446), 533-536.
[http://dx.doi.org/10.1038/nature12042] [PMID: 23542591]
[22]
Nomura, N.; Verdon, G.; Kang, H.J.; Shimamura, T.; Nomura, Y.; Sonoda, Y.; Hussien, S.A.; Qureshi, A.A.; Coincon, M.; Sato, Y.; Abe, H.; Nakada-Nakura, Y.; Hino, T.; Arakawa, T.; Kusano-Arai, O.; Iwanari, H.; Murata, T.; Kobayashi, T.; Hamakubo, T.; Kasahara, M.; Iwata, S.; Drew, D. Structure and mechanism of the mammalian fructose transporter GLUT5. Nature, 2015, 526(7573), 397-401.
[http://dx.doi.org/10.1038/nature14909] [PMID: 26416735]
[23]
Schindler, B.D.; Kaatz, G.W. Multidrug efflux pumps of Gram- positive bacteria. Drug Resist. Updat., 2016, 27, 1-13.
[http://dx.doi.org/10.1016/j.drup.2016.04.003] [PMID: 27449594]
[24]
Alcalde-Rico, M.; Hernando-Amado, S.; Blanco, P.; Martínez, J.L. Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence. Front. Microbiol., 2016, 7, 1483.
[http://dx.doi.org/10.3389/fmicb.2016.01483] [PMID: 27708632]
[25]
Tanabe, M.; Szakonyi, G.; Brown, K.A.; Henderson, P.J.; Nield, J.; Byrne, B. The multidrug resistance efflux complex, EmrAB from Escherichia coli forms a dimer in vitro. Biochem. Biophys. Res. Commun., 2009, 380(2), 338-342.
[http://dx.doi.org/10.1016/j.bbrc.2009.01.081] [PMID: 19171121]
[26]
Engelhardt, H.; Heinz, C.; Niederweis, M. A tetrameric porin limits the cell wall permeability of Mycobacterium smegmatis. J. Biol. Chem., 2002, 277(40), 37567-37572.
[http://dx.doi.org/10.1074/jbc.M206983200] [PMID: 12130659]
[27]
Langton, K.P.; Henderson, P.J.; Herbert, R.B. Antibiotic resistance: multidrug efflux proteins, a common transport mechanism? Nat. Prod. Rep., 2005, 22(4), 439-451.
[http://dx.doi.org/10.1039/b413734p] [PMID: 16047044]
[28]
Masaoka, Y.; Ueno, Y.; Morita, Y.; Kuroda, T.; Mizushima, T.; Tsuchiya, T. A two-component multidrug efflux pump, EbrAB, in Bacillus subtilis. J. Bacteriol., 2000, 182(8), 2307-2310.
[http://dx.doi.org/10.1128/JB.182.8.2307-2310.2000] [PMID: 10735876]
[29]
Narui, K.; Noguchi, N.; Wakasugi, K.; Sasatsu, M. Cloning and characterization of a novel chromosomal drug efflux gene in Staphylococcus aureus. Biol. Pharm. Bull., 2002, 25(12), 1533-1536.
[http://dx.doi.org/10.1248/bpb.25.1533] [PMID: 12499635]
[30]
Arkin, I.T.; Russ, W.P.; Lebendiker, M.; Schuldiner, S. Determining the secondary structure and orientation of EmrE, a multi-drug transporter, indicates a transmembrane four-helix bundle. Biochemistry, 1996, 35(22), 7233-7238.
[http://dx.doi.org/10.1021/bi960094i] [PMID: 8679552]
[31]
Du, D.; Wang, Z.; James, N.R.; Voss, J.E.; Klimont, E.; Ohene-Agyei, T.; Venter, H.; Chiu, W.; Luisi, B.F. Structure of the AcrAB-TolC multidrug efflux pump. Nature, 2014, 509(7501), 512-515.
[http://dx.doi.org/10.1038/nature13205] [PMID: 24747401]
[32]
Venter, H.; Mowla, R.; Ohene-Agyei, T.; Ma, S. RND-type drug efflux pumps from Gram-negative bacteria: molecular mechanism and inhibition. Front. Microbiol., 2015, 6, 377.
[http://dx.doi.org/10.3389/fmicb.2015.00377] [PMID: 25972857]
[33]
Desai, H.; Wong, R.; Pasha, A.K. A novel way of treating multidrug-resistant Enterococci. N. Am. J. Med. Sci., 2016, 8(5), 229-231.
[http://dx.doi.org/10.4103/1947-2714.183015] [PMID: 27298819]
[34]
Dreier, J.; Ruggerone, P. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Front. Microbiol., 2015, 6, 660.
[http://dx.doi.org/10.3389/fmicb.2015.00660] [PMID: 26217310]
[35]
Yang, L.; Lu, S.; Belardinelli, J.; Huc-Claustre, E.; Jones, V.; Jackson, M.; Zgurskaya, H.I. RND transporters protect Corynebacterium glutamicum from antibiotics by assembling the outer membrane. MicrobiologyOpen, 2014, 3(4), 484-496.
[http://dx.doi.org/10.1002/mbo3.182] [PMID: 24942069]
[36]
Alnaseri, H.; Arsic, B.; Schneider, J.E.; Kaiser, J.C.; Scinocca, Z.C.; Heinrichs, D.E.; McGavin, M.J. Inducible expression of a Resistance Nodulation Division-type efflux pump in Staphylococcus aureus provides resistance to linoleic and arachidonic acids. J. Bacteriol., 2015, 197(11), 1893-1905.
[http://dx.doi.org/10.1128/JB.02607-14] [PMID: 25802299]
[37]
Nikaido, H.; Takatsuka, Y. Mechanisms of RND multidrug efflux pumps. Biochim. Biophys. Acta, 2009, 1794(5), 769-781.
[http://dx.doi.org/10.1016/j.bbapap.2008.10.004] [PMID: 19026770]
[38]
Nikaido, H. Multidrug efflux pumps of gram-negative bacteria. J. Bacteriol., 1996, 178(20), 5853-5859.
[http://dx.doi.org/10.1128/JB.178.20.5853-5859.1996] [PMID: 8830678]
[39]
Nikaido, H.; Zgurskaya, H.I. AcrAB and related multidrug efflux pumps of Escherichia coli. J. Mol. Microbiol. Biotechnol., 2001, 3(2), 215-218.
[PMID: 11321576]
[40]
Bolhuis, H.; Molenaar, D.; Poelarends, G.; van Veen, H.W.; Poolman, B.; Driessen, A.J.; Konings, W.N. Proton motive force-driven and ATP-dependent drug extrusion systems in multidrug-resistant Lactococcus lactis. J. Bacteriol., 1994, 176(22), 6957-6964.
[http://dx.doi.org/10.1128/JB.176.22.6957-6964.1994] [PMID: 7961458]
[41]
Higgins, C.F. ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol., 1992, 8, 67-113.
[http://dx.doi.org/10.1146/annurev.cb.08.110192.000435] [PMID: 1282354]
[42]
Dawson, R.J.; Locher, K.P. Structure of a bacterial multidrug ABC transporter. Nature, 2006, 443(7108), 180-185.
[http://dx.doi.org/10.1038/nature05155] [PMID: 16943773]
[43]
Steinfels, E.; Orelle, C.; Fantino, J.R.; Dalmas, O.; Rigaud, J.L.; Denizot, F.; Di Pietro, A.; Jault, J.M. Characterization of YvcC (BmrA), a multidrug ABC transporter constitutively expressed in Bacillus subtilis. Biochemistry, 2004, 43(23), 7491-7502.
[http://dx.doi.org/10.1021/bi0362018] [PMID: 15182191]
[44]
Boncoeur, E.; Durmort, C.; Bernay, B.; Ebel, C.; Di Guilmi, A.M.; Croizé, J.; Vernet, T.; Jault, J.M. PatA and PatB form a functional heterodimeric ABC multidrug efflux transporter responsible for the resistance of Streptococcus pneumoniae to fluoroquinolones. Biochemistry, 2012, 51(39), 7755-7765.
[http://dx.doi.org/10.1021/bi300762p] [PMID: 22950454]
[45]
Ward, A.; Reyes, C.L.; Yu, J.; Roth, C.B.; Chang, G. Flexibility in the ABC transporter MsbA: Alternating access with a twist. Proc. Natl. Acad. Sci. USA, 2007, 104(48), 19005-19010.
[http://dx.doi.org/10.1073/pnas.0709388104] [PMID: 18024585]
[46]
Brown, M.H.; Paulsen, I.T.; Skurray, R.A. The multidrug efflux protein NorM is a prototype of a new family of transporters. Mol. Microbiol., 1999, 31(1), 394-395.
[http://dx.doi.org/10.1046/j.1365-2958.1999.01162.x] [PMID: 9987140]
[47]
Hernando-Amado, S.; Blanco, P.; Alcalde-Rico, M.; Corona, F.; Reales-Calderón, J.A.; Sánchez, M.B.; Martínez, J.L. Multidrug efflux pumps as main players in intrinsic and acquired resistance to antimicrobials. Drug Resist. Updat., 2016, 28, 13-27.
[http://dx.doi.org/10.1016/j.drup.2016.06.007] [PMID: 27620952]
[48]
Piddock, L.J.V. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin. Microbiol. Rev., 2006, 19(2), 382-402.
[http://dx.doi.org/10.1128/CMR.19.2.382-402.2006] [PMID: 16614254]
[49]
Garima, K.; Pathak, R.; Tandon, R.; Rathor, N.; Sinha, R.; Bose, M.; Varma-Basil, M. Differential expression of efflux pump genes of Mycobacterium tuberculosis in response to varied subinhibitory concentrations of antituberculosis agents. Tuberculosis (Edinb.), 2015, 95(2), 155-161.
[http://dx.doi.org/10.1016/j.tube.2015.01.005] [PMID: 25680943]
[50]
Nikaido, H. Multidrug resistance in bacteria. Annu. Rev. Biochem., 2009, 78, 119-146.
[http://dx.doi.org/10.1146/annurev.biochem.78.082907.145923] [PMID: 19231985]
[51]
Li, X.Z.; Nikaido, H. Efflux-mediated drug resistance in bacteria: an update. Drugs, 2009, 69(12), 1555-1623.
[http://dx.doi.org/10.2165/11317030-000000000-00000] [PMID: 19678712]
[52]
Krishan, A.; Arya, P. Monitoring of cellular resistance to cancer chemotherapy. Hematol. Oncol. Clin. North Am., 2002, 16(2), 357-372, vi.
[http://dx.doi.org/10.1016/S0889-8588(01)00016-8] [PMID: 12094476]
[53]
Hamilton-Miller, J.M.T.; Shah, S. Disorganization of cell division of methicillin-resistant Staphylococcus aureus by a component of tea (Camellia sinensis): a study by electron microscopy. FEMS Microbiol Lett, 1999, 176(2), 463-469.
[54]
Hamilton-Miller, J.M.T.; Shah, S. Activity of the tea component epicatechin gallate and analogues against methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother., 2000, 46(5), 852-853.
[http://dx.doi.org/10.1093/jac/46.5.852] [PMID: 11062217]
[55]
Centers for Disease Control and Prevention (CDC). Staphylococcus aureus resistant to vancomycin-United States MMWR Morb. Mortal. Wkly. Rep., 2002, 51(26), 565-567.
[PMID: 12139181]
[56]
Tsiodras, S.; Gold, H.S.; Sakoulas, G.; Eliopoulos, G.M.; Wennersten, C.; Venkataraman, L.; Moellering, R.C.; Ferraro, M.J. Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet, 2001, 358(9277), 207-208.
[http://dx.doi.org/10.1016/S0140-6736(01)05410-1] [PMID: 11476839]
[57]
Perl, T.M. The threat of vancomycin resistance. Am. J. Med., 1999, 106(26), 375.
[http://dx.doi.org/10.1016/S0002-9343(98)00354-4]
[58]
Rotun, S.S.; McMath, V.; Schoonmaker, D.J.; Maupin, P.S.; Tenover, F.C.; Hill, B.C.; Ackman, D.M. Staphylococcus aureus with reduced susceptibility to vancomycin isolated from a patient with fatal bacteremia. Emerg. Infect. Dis., 1999, 5(1), 147-149.
[http://dx.doi.org/10.3201/eid0501.990118] [PMID: 10081683]
[59]
Blumberg, H.M.; Rimland, D.; Carroll, D.J.; Terry, P.; Wachsmuth, I.K. Rapid development of ciprofloxacin resistance in methicillin-susceptible and -resistant Staphylococcus aureus. J. Infect. Dis., 1991, 163(6), 1279-1285.
[http://dx.doi.org/10.1093/infdis/163.6.1279] [PMID: 2037793]
[60]
Harnett, N.; Brown, S.; Krishnan, C. Emergence of quinolone resistance among clinical isolates of methicillin-resistant Staphylococcus aureus in Ontario, Canada. Antimicrob. Agents Chemother., 1991, 35(9), 1911-1913.
[http://dx.doi.org/10.1128/AAC.35.9.1911] [PMID: 1952866]
[61]
Coronado, V.G.; Edwards, J.R.; Culver, D.H.; Gaynes, R.P. National Nosocomial Infections Surveillance (NNIS) System. Ciprofloxacin resistance among nosocomial Pseudomonas aeruginosa and Staphylococcus aureus in the United States. Infect. Control Hosp. Epidemiol., 1995, 16(2), 71-75.
[http://dx.doi.org/10.2307/30140945] [PMID: 7759821]
[62]
Centers for Disease Control and Prevention (CDC). Vancomycin-resistant Staphylococcus aureus-Pennsylvania, 2002. MMWR Morb. Mortal. Wkly. Rep., 2002, 51(40), 902.
[PMID: 12418544]
[63]
Fournier Dit Chabert, J.; Marquez, B.; Neville, L.; Joucla, L.; Broussous, S.; Bouhours, P.; David, E.; Pellet-Rostaing, S.; Marquet, B.; Moreau, N.; Lemaire, M. Synthesis and evaluation of new arylbenzo[b]thiophene and diarylthiophene derivatives as inhibitors of the NorA multidrug transporter of Staphylococcus aureus. Bioorg. Med. Chem., 2007, 15(13), 4482-4497.
[http://dx.doi.org/10.1016/j.bmc.2007.04.023] [PMID: 17498961]
[64]
Prasch, S.; Bucar, F. Plant derived inhibitors of bacterial efflux pumps: An update. Phytochem. Rev., 2015, 14, 961-974.
[http://dx.doi.org/10.1007/s11101-015-9436-y]
[65]
Stavri, M.; Piddock, L.J.; Gibbons, S. Bacterial efflux pump inhibitors from natural sources. J. Antimicrob. Chemother., 2007, 59(6), 1247-1260.
[http://dx.doi.org/10.1093/jac/dkl460] [PMID: 17145734]
[66]
Gibbons, S. Phytochemicals for bacterial resistance--strengths, weaknesses and opportunities. Planta Med., 2008, 74(6), 594-602.
[http://dx.doi.org/10.1055/s-2008-1074518] [PMID: 18446673]
[67]
Neyfakh, A.A.; Borsch, C.M.; Kaatz, G.W. Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter. Antimicrob. Agents Chemother., 1993, 37(1), 128-129.
[http://dx.doi.org/10.1128/AAC.37.1.128] [PMID: 8431010]
[68]
Stermitz, F.R.; Lorenz, P.; Tawara, J.N.; Zenewicz, L.A.; Lewis, K. Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. Proc. Natl. Acad. Sci. USA, 2000, 97(4), 1433-1437.
[http://dx.doi.org/10.1073/pnas.030540597] [PMID: 10677479]
[69]
Marquez, B.; Neuville, L.; Moreau, N.J.; Genet, J.P.; dos Santos, A.F.; Caño de Andrade, M.C.; Sant’Ana, A.E. Multidrug resistance reversal agent from Jatropha elliptica. Phytochemistry, 2005, 66(15), 1804-1811.
[http://dx.doi.org/10.1016/j.phytochem.2005.06.008] [PMID: 16051285]
[70]
Oluwatuyi, M.; Kaatz, G.W.; Gibbons, S. Antibacterial and resistance modifying activity of Rosmarinus officinalis. Phytochemistry, 2004, 65(24), 3249-3254.
[http://dx.doi.org/10.1016/j.phytochem.2004.10.009] [PMID: 15561190]
[71]
Kalia, N.P.; Mahajan, P.; Mehra, R.; Nargotra, A.; Sharma, J.P.; Koul, S.; Khan, I.A. Capsaicin, a novel inhibitor of the NorA efflux pump, reduces the intracellular invasion of Staphylococcus aureus. J. Antimicrob. Chemother., 2012, 67(10), 2401-2408.
[http://dx.doi.org/10.1093/jac/dks232] [PMID: 22807321]
[72]
Marquez, B. Bacterial efflux systems and efflux pumps inhibitors. Biochimie, 2005, 87(12), 1137-1147.
[http://dx.doi.org/10.1016/j.biochi.2005.04.012] [PMID: 15951096]
[73]
Khan, I.A.; Mirza, Z.M.; Kumar, A.; Verma, V.; Qazi, G.N. Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus. Antimicrob. Agents Chemother., 2006, 50(2), 810-812.
[http://dx.doi.org/10.1128/AAC.50.2.810-812.2006] [PMID: 16436753]
[74]
Sharma, S.; Kumar, M.; Sharma, S.; Nargotra, A.; Koul, S.; Khan, I.A. Piperine as an inhibitor of Rv1258c, a putative multidrug efflux pump of Mycobacterium tuberculosis. J. Antimicrob. Chemother., 2010, 65(8), 1694-1701.
[http://dx.doi.org/10.1093/jac/dkq186] [PMID: 20525733]
[75]
Brenwald, N.P.; Gill, M.J.; Wise, R. The effect of reserpine, an inhibitor of multi-drug efflux pumps, on the in-vitro susceptibilities of fluoroquinolone-resistant strains of Streptococcus pneumoniae to norfloxacin. J. Antimicrob. Chemother., 1997, 40(3), 458-460.
[http://dx.doi.org/10.1093/jac/40.3.458] [PMID: 9338508]
[76]
Aeschlimann, J.R.; Dresser, L.D.; Kaatz, G.W.; Rybak, M.J. Effects of NorA inhibitors on in vitro antibacterial activities and postantibiotic effects of levofloxacin, ciprofloxacin, and norfloxacin in genetically related strains of Staphylococcus aureus. Antimicrob. Agents Chemother., 1999, 43(2), 335-340.
[http://dx.doi.org/10.1128/AAC.43.2.335] [PMID: 9925528]
[77]
Schmitz, F.J.; Fluit, A.C.; Lückefahr, M.; Engler, B.; Hofmann, B.; Verhoef, J.; Heinz, H.P.; Hadding, U.; Jones, M.E. The effect of reserpine, an inhibitor of multidrug efflux pumps, on the in-vitro activities of ciprofloxacin, sparfloxacin and moxifloxacin against clinical isolates of Staphylococcus aureus. J. Antimicrob. Chemother., 1998, 42(6), 807-810.
[http://dx.doi.org/10.1093/jac/42.6.807] [PMID: 10052906]
[78]
Gibbons, S.; Udo, E.E. The effect of reserpine, a modulator of multidrug efflux pumps, on the in vitro activity of tetracycline against clinical isolates of methicillin resistant Staphylococcus aureus (MRSA) possessing the tet(K) determinant. Phytother. Res., 2000, 14(2), 139-140.
[http://dx.doi.org/10.1002/(SICI)1099-1573(200003)14:2<139::AID-PTR608>3.0.CO;2-8] [PMID: 10685116]
[79]
Hiramatsu, K.; Cui, L.; Kuroda, M.; Ito, T. The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends Microbiol., 2001, 9(10), 486-493.
[http://dx.doi.org/10.1016/S0966-842X(01)02175-8] [PMID: 11597450]
[80]
Holler, J.G.; Slotved, H.C.; Mølgaard, P.; Olsen, C.E.; Christensen, S.B. Chalcone inhibitors of the NorA efflux pump in Staphylococcus aureus whole cells and enriched everted membrane vesicles. Bioorg. Med. Chem., 2012, 20(14), 4514-4521.
[http://dx.doi.org/10.1016/j.bmc.2012.05.025] [PMID: 22682300]
[81]
Michalet, S.; Cartier, G.; David, B.; Mariotte, A.M.; Dijoux-franca, M.G.; Kaatz, G.W.; Stavri, M.; Gibbons, S. N-caffeoylphenalkylamide derivatives as bacterial efflux pump inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(6), 1755-1758.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.059] [PMID: 17275293]
[82]
Musumeci, R.; Speciale, A.; Costanzo, R.; Annino, A.; Ragusa, S.; Rapisarda, A.; Pappalardo, M.S.; Iauk, L. Berberis aetnensis C. Presl. extracts: antimicrobial properties and interaction with ciprofloxacin. Int. J. Antimicrob. Agents, 2003, 22(1), 48-53.
[http://dx.doi.org/10.1016/S0924-8579(03)00085-2] [PMID: 12842327]
[83]
Leclercq, R.; Courvalin, P. Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob. Agents Chemother., 1991, 35(7), 1267-1272.
[http://dx.doi.org/10.1128/AAC.35.7.1267] [PMID: 1929280]
[84]
Cetinkaya, Y.; Falk, P.; Mayhall, C.G. Vancomycin-resistant enterococci. Clin. Microbiol. Rev., 2000, 13(4), 686-707.
[http://dx.doi.org/10.1128/CMR.13.4.686] [PMID: 11023964]
[85]
Roberts, M.C. Update on acquired tetracycline resistance genes. FEMS Microbiol. Lett., 2005, 245(2), 195-203.
[http://dx.doi.org/10.1016/j.femsle.2005.02.034] [PMID: 15837373]
[86]
Belofsky, G.; Percivill, D.; Lewis, K.; Tegos, G.P.; Ekart, J. Phenolic metabolites of Dalea versicolor that enhance antibiotic activity against model pathogenic bacteria. J. Nat. Prod., 2004, 67(3), 481-484.
[http://dx.doi.org/10.1021/np030409c] [PMID: 15043439]
[87]
Sudano Roccaro, A.; Blanco, A.R.; Giuliano, F.; Rusciano, D.; Enea, V. Epigallocatechin-gallate enhances the activity of tetracycline in staphylococci by inhibiting its efflux from bacterial cells. Antimicrob. Agents Chemother., 2004, 48(6), 1968-1973.
[http://dx.doi.org/10.1128/AAC.48.6.1968-1973.2004] [PMID: 15155186]
[88]
Fujita, M.; Shiota, S.; Kuroda, T.; Hatano, T.; Yoshida, T.; Mizushima, T.; Tsuchiya, T. Remarkable synergies between baicalein and tetracycline, and baicalein and β-lactams against methicillin-resistant Staphylococcus aureus. Microbiol. Immunol., 2005, 49(4), 391-396.
[http://dx.doi.org/10.1111/j.1348-0421.2005.tb03732.x] [PMID: 15840965]
[89]
Kristiansen, M.M.; Leandro, C.; Ordway, D.; Martins, M.; Viveiros, M.; Pacheco, T.; Kristiansen, J.E.; Amaral, L. Phenothiazines alter resistance of methicillin-resistant strains of Staphylococcus aureus (MRSA) to oxacillin in vitro. Int. J. Antimicrob. Agents, 2003, 22(3), 250-253.
[http://dx.doi.org/10.1016/S0924-8579(03)00200-0] [PMID: 13678829]
[90]
Chérigo, L.; Pereda-Miranda, R.; Fragoso-Serrano, M.; Jacobo-Herrera, N.; Kaatz, G.W.; Gibbons, S. Inhibitors of bacterial multidrug efflux pumps from the resin glycosides of Ipomoea murucoides. J. Nat. Prod., 2008, 71(6), 1037-1045.
[http://dx.doi.org/10.1021/np800148w] [PMID: 18500841]
[91]
Price, C.T.D.; Kaatz, G.W.; Gustafson, J.E. The multidrug efflux pump NorA is not required for salicylate-induced reduction in drug accumulation by Staphylococcus aureus. Int. J. Antimicrob. Agents, 2002, 20(3), 206-213.
[http://dx.doi.org/10.1016/S0924-8579(02)00162-0] [PMID: 12385700]
[92]
Ramalhete, C.; Spengler, G.; Martins, A.; Martins, M.; Viveiros, M.; Mulhovo, S.; Ferreira, M.J.; Amaral, L. Inhibition of efflux pumps in methicillin-resistant Staphylococcus aureus and Enterococcus faecalis resistant strains by triterpenoids from Momordica balsamina. Int. J. Antimicrob. Agents, 2011, 37(1), 70-74.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.09.011] [PMID: 21075604]
[93]
Stermitz, F.R.; Scriven, L.N.; Tegos, G.; Lewis, K. Two flavonols from Artemisa annua which potentiate the activity of berberine and norfloxacin against a resistant strain of Staphylococcus aureus. Planta Med., 2002, 68(12), 1140-1141.
[http://dx.doi.org/10.1055/s-2002-36347] [PMID: 12494348]
[94]
Falcão-Silva, V.S.; Silva, D.A.; Souza, Mde.F.; Siqueira-Junior, J.P. Modulation of drug resistance in Staphylococcus aureus by a kaempferol glycoside from Herissantia tiubae (Malvaceae). Phytother. Res., 2009, 23(10), 1367-1370.
[http://dx.doi.org/10.1002/ptr.2695] [PMID: 19224523]
[95]
Kourtesi, C.; Ball, R.A.; Huang, Y.Y.; Jachak, M.S.; Vera, A.M.D.; Gibbons, S.K.P.; Hamblin, R.M.; Tegos, P. G. Microbial efflux systems and inhibitors: approaches to drug discovery and the challenge of clinical implementation. The Open Microbio. J., 2013, 7(1-M3), 34-52.
[96]
Fazly Bazzaz, B.S.; Iranshahi, M.; Naderinasab, M.; Hajian, S.; Sabeti, Z.; Masumi, E. Evaluation of the effects of galbanic acid from Ferula szowitsiana and conferol from F. badrakema, as modulators of multi-drug resistance in clinical isolates of Escherichia coli and Staphylococcus aureus. Res. Pharm. Sci., 2010, 5(1), 21-28.
[PMID: 21589765]
[97]
Smith, E.C.; Kaatz, G.W.; Seo, S.M.; Wareham, N.; Williamson, E.M.; Gibbons, S. The phenolic diterpene totarol inhibits multidrug efflux pump activity in Staphylococcus aureus. Antimicrob. Agents Chemother., 2007, 51(12), 4480-4483.
[http://dx.doi.org/10.1128/AAC.00216-07] [PMID: 17664318]
[98]
Smith, E.C.J.; Williamson, E.M.; Wareham, N.; Kaatz, G.W.; Gibbons, S. Antibacterials and modulators of bacterial resistance from the immature cones of Chamaecyparis lawsoniana. Phytochemistry, 2007, 68(2), 210-217.
[http://dx.doi.org/10.1016/j.phytochem.2006.10.001] [PMID: 17109904]
[99]
Martins, A.; Vasas, A.; Viveiros, M.; Molnár, J.; Hohmann, J.; Amaral, L. Antibacterial properties of compounds isolated from Carpobrotus edulis. Int. J. Antimicrob. Agents, 2011, 37(5), 438-444.
[http://dx.doi.org/10.1016/j.ijantimicag.2011.01.016] [PMID: 21411294]
[100]
Jin, J.; Zhang, J.Y.; Guo, N.; Sheng, H.; Li, L.; Liang, J.C.; Wang, X.L.; Li, Y.; Liu, M.Y.; Wu, X.P.; Yu, L. Farnesol, a potential efflux pump inhibitor in Mycobacterium smegmatis. Molecules, 2010, 15(11), 7750-7762.
[http://dx.doi.org/10.3390/molecules15117750] [PMID: 21042264]
[101]
Lechner, D.; Gibbons, S.; Jachak, S.; Srivastava, A.; Bucar, F. Curcuminoids as efflux pump inhibitors (EPIs) in Mycobacterium smegmatis mc2155 Skaltsounis, L; Magiatis, P. Book of Abstracts-7th Joint Meeting of GA, AFERP, ASP, PSI   SIF, Athens, Greece2008, 12
[102]
Lechner, D.; Gibbons, S.; Bucar, F. Plant phenolic compounds as ethidium bromide efflux inhibitors in Mycobacterium smegmatis. J. Antimicrob. Chemother., 2008, 62(2), 345-348.
[http://dx.doi.org/10.1093/jac/dkn178] [PMID: 18430720]
[103]
Mossa, J.S.; El-Feraly, F.S.; Muhammad, I. Antimycobacterial constituents from Juniperus procera, Ferula communis and Plumbago zeylanica and their in vitro synergistic activity with isonicotinic acid hydrazide. Phytother. Res., 2004, 18(11), 934-937.
[http://dx.doi.org/10.1002/ptr.1420] [PMID: 15597311]
[104]
Lechner, D.; Gibbons, S.; Bucar, F. Modulation of isoniazid susceptibility by flavonoids in Mycobacterium. Phytochem. Lett., 2008, 1, 71-75.
[http://dx.doi.org/10.1016/j.phytol.2008.01.002]
[105]
Piddock, L.J.V.; Garvey, M.I.; Rahman, M.M.; Gibbons, S. Natural and synthetic compounds such as trimethoprim behave as inhibitors of efflux in Gram-negative bacteria. J. Antimicrob. Chemother., 2010, 65(6), 1215-1223.
[http://dx.doi.org/10.1093/jac/dkq079] [PMID: 20304975]
[106]
Koul, S.; Reddy, M.; Thota, N.; Koul, J.L.; Sangwan, P.L.; Taneja, S.C. Novel aromatic amides as Potentiator of bioefficacy of drugs. U.S. Patent NF0113, 2008.
[107]
Kumar, A.; Khan, I.A.; Koul, S.; Koul, J.L.; Taneja, S.C.; Ali, I.; Ali, F.; Sharma, S.; Mirza, Z.M.; Kumar, M.; Sangwan, P.L.; Gupta, P.; Thota, N.; Qazi, G.N. Novel structural analogues of piperine as inhibitors of the NorA efflux pump of Staphylococcus aureus. J. Antimicrob. Chemother., 2008, 61(6), 1270-1276.
[http://dx.doi.org/10.1093/jac/dkn088] [PMID: 18334493]
[108]
Barrett, J.F. MC-207110 Daiichi Seiyaku/Microcide Pharmaceuticals. Curr. Opin. Investig. Drugs, 2001, 2(2), 212-215.
[PMID: 11816833]
[109]
Hannula, M.; Hänninen, M.L. Effect of putative efflux pump inhibitors and inducers on the antimicrobial susceptibility of Campylobacter jejuni and Campylobacter coli. J. Med. Microbiol., 2008, 57(Pt 7), 851-855.
[http://dx.doi.org/10.1099/jmm.0.47823-0] [PMID: 18566143]
[110]
Gomes, C.; Ruiz, L.; Pons, M.J.; Ochoa, T.J.; Ruiz, J. Relevant role of efflux pumps in high levels of rifaximin resistance in Escherichia coli clinical isolates. Trans. R. Soc. Trop. Med. Hyg., 2013, 107(9), 545-549.
[http://dx.doi.org/10.1093/trstmh/trt059] [PMID: 23843564]
[111]
Cetinkaya, E.; Coban, A.Y.; Durupinar, B. Investigation of the effect of efflux pump inhibitors to MIC values of ciprofloxacin in clinical isolates of Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii and Staphylococcus aureus. Mikrobiyol. Bul., 2008, 42(4), 553-561.
[PMID: 19149076]
[112]
Hasdemir, U.O.; Chevalier, J.; Nordmann, P.; Pagès, J.M. Detection and prevalence of active drug efflux mechanism in various multidrug-resistant Klebsiella pneumoniae strains from Turkey. J. Clin. Microbiol., 2004, 42(6), 2701-2706.
[http://dx.doi.org/10.1128/JCM.42.6.2701-2706.2004] [PMID: 15184455]
[113]
Renau, T.E.; Léger, R.; Flamme, E.M.; Sangalang, J.; She, M.W.; Yen, R.; Gannon, C.L.; Griffith, D.; Chamberland, S.; Lomovskaya, O.; Hecker, S.J.; Lee, V.J.; Ohta, T.; Nakayama, K. Inhibitors of efflux pumps in Pseudomonas aeruginosa potentiate the activity of the fluoroquinolone antibacterial levofloxacin. J. Med. Chem., 1999, 42(24), 4928-4931.
[http://dx.doi.org/10.1021/jm9904598] [PMID: 10585202]
[114]
Mazzariol, A.; Tokue, Y.; Kanegawa, T.M.; Cornaglia, G.; Nikaido, H. High-level fluoroquinolone-resistant clinical isolates of Escherichia coli overproduce multidrug efflux protein AcrA. Antimicrob. Agents Chemother., 2000, 44(12), 3441-3443.
[http://dx.doi.org/10.1128/AAC.44.12.3441-3443.2000] [PMID: 11083655]
[115]
Baucheron, S.H.; Imberechts, D.E.; Chaslus, A. Cloeckaert. The AcrB multidrug transporters plasy a major role in high-level fluorquinolone resistance in Salmonella enterica serovar thyphimurium phage typer DT 204. Microb. Drug Resist., 2002, 8, 281-289.
[http://dx.doi.org/10.1089/10766290260469543] [PMID: 12523625]
[116]
Bohnert, J.A.; Kern, W.V. Selected arylpiperazines are capable of reversing multidrug resistance in Escherichia coli overexpressing RND efflux pumps. Antimicrob. Agents Chemother., 2005, 49(2), 849-852.
[http://dx.doi.org/10.1128/AAC.49.2.849-852.2005] [PMID: 15673787]
[117]
Mahamoud, A.; Chevalier, J.; Davin-Regli, A.; Barbe, J.; Pagès, J.M. Quinoline derivatives as promising inhibitors of antibiotic efflux pump in multidrug resistant Enterobacter aerogenes isolates. Curr. Drug Targets, 2006, 7(7), 843-847.
[http://dx.doi.org/10.2174/138945006777709557] [PMID: 16842215]
[118]
Chevalier, J.; Bredin, J.; Mahamoud, A.; Malléa, M.; Barbe, J.; Pagès, J.M. Inhibitors of antibiotic efflux in resistant Enterobacter aerogenes and Klebsiella pneumoniae strains. Antimicrob. Agents Chemother., 2004, 48(3), 1043-1046.
[http://dx.doi.org/10.1128/AAC.48.3.1043-1046.2004] [PMID: 14982806]
[119]
Choudhuri, S.; Sen, S.; Chakrabarti, P. Isoniazid accumulation in Mycobacterium smegmatiss modulated by proton motive force-driven and ATP-dependent extrusion systems. Biochem. Biophys. Res. Commun., 1999, 256(3), 682-684.
[http://dx.doi.org/10.1006/bbrc.1999.0357] [PMID: 10080959]
[120]
Ramón-García, S.; Otal, I.; Martín, C.; Gómez-Lus, R.; Aínsa, J.A. Novel streptomycin resistance gene from Mycobacterium fortuitum. Antimicrob. Agents Chemother., 2006, 50(11), 3920-3922.
[http://dx.doi.org/10.1128/AAC.00223-06] [PMID: 16954315]
[121]
Amaral, L.; Viveiros, M. Why thioridazine in combination with antibiotics cures extensively drug-resistant Mycobacterium tuberculosis infections. Int. J. Antimicrob. Agents, 2012, 39(5), 376-380.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.01.012] [PMID: 22445204]
[122]
Chan, Y.Y.; Chua, K.L. The Burkholderia pseudomallei BpeAB-OprB efflux pump: expression and impact on quorum sensing and virulence. J. Bacteriol., 2005, 187(14), 4707-4719.
[http://dx.doi.org/10.1128/JB.187.14.4707-4719.2005] [PMID: 15995185]
[123]
Martins, M.; Dastidar, S.G.; Fanning, S.; Kristiansen, J.E.; Molnar, J.; Pagès, J.M.; Schelz, Z.; Spengler, G.; Viveiros, M.; Amaral, L. Potential role of non-antibiotics (helper compounds) in the treatment of multidrug-resistant Gram-negative infections: mechanisms for their direct and indirect activities. Int. J. Antimicrob. Agents, 2008, 31(3), 198-208.
[http://dx.doi.org/10.1016/j.ijantimicag.2007.10.025] [PMID: 18180147]
[124]
Garvey, M.I.; Piddock, L.J.V. The efflux pump inhibitor reserpine selects multidrug-resistant Streptococcus pneumoniae strains that overexpress the ABC transporters PatA and PatB. Antimicrob. Agents Chemother., 2008, 52(5), 1677-1685.
[http://dx.doi.org/10.1128/AAC.01644-07] [PMID: 18362193]
[125]
Sumithra, T.G.; Chaturvedi, V.K.; Cherian, S.; Krishnan, B.B.; Jacob, S.S. Efflux pump inhibitors for antibacterial Therapy. JIVA, 2012, 10(1), 69-75.
[126]
Rothstein, D.M.; McGlynn, M.; Bernan, V.; McGahren, J.; Zaccardi, J.; Cekleniak, N.; Bertrand, K.P. Detection of tetracyclines and efflux pump inhibitors. Antimicrob. Agents Chemother., 1993, 37(8), 1624-1629.
[http://dx.doi.org/10.1128/AAC.37.8.1624] [PMID: 8215274]
[127]
Chabert, F.D.; Marquez, B.; Neville, L.; Joucla, L; Broussous, S.; Bouhours, P.; David, E.; Pellet, R.S.; Marquet, B.; Moreau, N.; Lemaire, M. Synthesis and evaluation of new aryl benzothiophene and diarylthiophene derivatives as inhibitors of the NorA multidrug transporter of S. aureus. Bioorg. Med. Chem., 2007, 15(13), 4482-4497.
[http://dx.doi.org/10.1016/j.bmc.2007.04.023] [PMID: 17498961]
[128]
Ambrus, J.I.; Kelso, M.J.; Bremner, J.B.; Ball, A.R.; Casadei, G.; Lewis, K. Structure-activity relationships of 2-aryl-1H-indole inhibitors of the NorA efflux pump in Staphylococcus aureus. Bioorg. Med. Chem. Lett., 2008, 18(15), 4294-4297.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.093] [PMID: 18632270]
[129]
Zeng, B.; Wang, H.; Zou, L.; Zhang, A.; Yang, X.; Guan, Z. Evaluation and target validation of indole derivatives as inhibitors of the AcrAB-TolC efflux pump. Biosci. Biotechnol. Biochem., 2010, 74(11), 2237-2241.
[http://dx.doi.org/10.1271/bbb.100433] [PMID: 21071837]
[130]
Mullin, S.; Mani, N.; Grossman, T.H. Inhibition of antibiotic efflux in bacteria by the novel multidrug resistance inhibitors biricodar (VX-710) and timcodar (VX-853). Antimicrob. Agents Chemother., 2004, 48(11), 4171-4176.
[http://dx.doi.org/10.1128/AAC.48.11.4171-4176.2004] [PMID: 15504837]
[131]
Gupta, S.; Tyagi, S.; Almeida, D.V.; Maiga, M.C.; Ammerman, N.C.; Bishai, W.R. Acceleration of tuberculosis treatment by adjunctive therapy with verapamil as an efflux inhibitor. Am. J. Respir. Crit. Care Med., 2013, 188(5), 600-607.
[http://dx.doi.org/10.1164/rccm.201304-0650OC] [PMID: 23805786]
[132]
van Veen, H.W.; Venema, K.; Bolhuis, H.; Oussenko, I.; Kok, J.; Poolman, B.; Driessen, A.J.; Konings, W.N. Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1. Proc. Natl. Acad. Sci. USA, 1996, 93(20), 10668-10672.
[http://dx.doi.org/10.1073/pnas.93.20.10668] [PMID: 8855237]
[133]
Wei, P.; Kaatz, G.W.; Kerns, R.J. Structural differences between paroxetine and femoxetine responsible for differential inhibition of Staphylococcus aureus efflux pumps. Bioorg. Med. Chem. Lett., 2004, 14(12), 3093-3097.
[http://dx.doi.org/10.1016/j.bmcl.2004.04.018] [PMID: 15149651]
[134]
Kaatz, G.W.; Moudgal, V.V.; Seo, S.M.; Hansen, J.B.; Kristiansen, J.E. Phenylpiperidine selective serotonin reuptake inhibitors interfere with multidrug efflux pump activity in Staphylococcus aureus. Int. J. Antimicrob. Agents, 2003, 22(3), 254-261.
[http://dx.doi.org/10.1016/S0924-8579(03)00220-6] [PMID: 13678830]
[135]
Lomovskaya, O.; Watkins, W.J. Efflux pumps: their role in antibacterial drug discovery. Curr. Med. Chem., 2001, 8(14), 1699-1711.
[http://dx.doi.org/10.2174/0929867013371743] [PMID: 11562289]
[136]
Colclough, A.L.; Alav, I.; Whittle, E.E.; Pugh, H.L.; Darby, E.M.; Legood, S.W.; McNeil, H.E.; Blair, J.M. RND efflux pumps in Gram-negative bacteria; regulation, structure and role in antibiotic resistance. Future Microbiol., 2020, 15(2), 143-157.
[http://dx.doi.org/10.2217/fmb-2019-0235] [PMID: 32073314]
[137]
Leopoldo, M.; Nardulli, P.; Contino, M.; Leonetti, F.; Luurtsema, G.; Colabufo, N.A. An updated patent review on P-glycoprotein inhibitors (2011-2018). Expert Opin. Ther. Pat., 2019, 29(6), 455-461.
[http://dx.doi.org/10.1080/13543776.2019.1618273] [PMID: 31079547]
[138]
Urmila, J.; Mehta, J.; Mohan, M. Synergestic and efflux pump inhibitory activity of plant extracts and antibiotics on Staphylococcus aureus strains. Asian J. Pharm. Clin. Res, 2016, 9(2), 277-282.
[139]
Handzlik, J.; Matys, A.; Kieć-Kononowicz, K. Recent advances in multidrug resistance (MDR) efflux pump inhibitors of gram-positive bacteria S. aureus. Antibiotics (Basel), 2013, 2(1), 28-45.
[http://dx.doi.org/10.3390/antibiotics2010028] [PMID: 27029290]
[140]
Pule, C.M.; Sampson, S.L.; Warren, R.M.; Black, P.A.; van Helden, P.D.; Victor, T.C.; Louw, G.E. Efflux pump inhibitors: targeting mycobacterial efflux systems to enhance TB therapy. J. Antimicrob. Chemother., 2016, 71(1), 17-26.
[http://dx.doi.org/10.1093/jac/dkv316] [PMID: 26472768]
[141]
Lamut, A.; Peterlin Mašič, L.; Kikelj, D.; Tomašič, T. Efflux pump inhibitors of clinically relevant multidrug resistant bacteria. Med. Res. Rev., 2019, 39(6), 2460-2504.
[http://dx.doi.org/10.1002/med.21591] [PMID: 31004360]
[142]
Lee, M.D.; Galazzo, J.L.; Staley, A.L.; Lee, J.C.; Warren, M.S.; Fuernkranz, H.; Chamberland, S.; Lomovskaya, O.; Miller, G.H. Microbial fermentation-derived inhibitors of efflux-pump-mediated drug resistance. Farmaco, 2001, 56(1-2), 81-85.
[http://dx.doi.org/10.1016/S0014-827X(01)01002-3] [PMID: 11347972]
[143]
Mu, H.; Tang, J.; Liu, Q.; Sun, C.; Wang, T.; Duan, J. Potent antibacterial nanoparticles against biofilm and intracellular bacteria. Sci. Rep., 2016, 6, 18877-77.
[http://dx.doi.org/10.1038/srep18877] [PMID: 26728712]
[144]
LewisOscar, F.; MubarakAli, D.; Nithya, C.; Priyanka, R.; Gopinath, V.; Alharbi, N.S.; Thajuddin, N. One pot synthesis and anti-biofilm potential of copper nanoparticles (CuNPs) against clinical strains of Pseudomonas aeruginosa. Biofouling, 2015, 31(4), 379-391.
[http://dx.doi.org/10.1080/08927014.2015.1048686] [PMID: 26057498]
[145]
Li, P.; Li, J.; Wu, C.; Wu, Q.; Li, J. Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotec., 2005, 16, 1912.
[http://dx.doi.org/10.1088/0957-4484/16/9/082]
[146]
Fayaz, A.M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P.T.; Venketesan, R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine (Lond.), 2010, 6(1), 103-109.
[http://dx.doi.org/10.1016/j.nano.2009.04.006] [PMID: 19447203]
[147]
Kulshrestha, S.; Khan, S.; Hasan, S.; Khan, M.E.; Misba, L.; Khan, A.U. Calcium fluoride nanoparticles induced suppression of Streptococcus mutans biofilm: an in vitro and in vivo approach. Appl. Microbiol. Biotechnol., 2016, 100(4), 1901-1914.
[http://dx.doi.org/10.1007/s00253-015-7154-4] [PMID: 26610805]
[148]
Banoee, M.; Seif, S.; Nazari, Z.E.; Jafari-Fesharaki, P.; Shahverdi, H.R.; Moballegh, A.; Moghaddam, K.M.; Shahverdi, A.R. ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. J. Biomed. Mater. Res. B Appl. Biomater., 2010, 93(2), 557-561.
[http://dx.doi.org/10.1002/jbm.b.31615] [PMID: 20225250]
[149]
Padwal, P.; Bandyopadhyaya, R.; Mehra, S. Biocompatible citric acid‐coated iron oxide nanoparticles to enhance the activity of first‐line anti‐TB drugs in Mycobacterium smegmatis. J. Chem. Technol. Biotechnol., 2015, 90, 1773-1781.
[http://dx.doi.org/10.1002/jctb.4766]
[150]
Nallathamby, P.D.; Lee, K.J.; Desai, T.; Xu, X.H. Study of the multidrug membrane transporter of single living Pseudomonas aeruginosa cells using size-dependent plasmonic nanoparticle optical probes. Biochemistry, 2010, 49(28), 5942-5953.
[http://dx.doi.org/10.1021/bi100268k] [PMID: 20540528]
[151]
Ashajyothi, C.; Harish, K.H.; Dubey, N.; Chandrakanth, R.K. Antibiofilm activity of biogenic copper and zinc oxide nanoparticles-antimicrobials collegiate against multiple drug resistant bacteria: a nanoscale approach. J. Nanostruct. Chem, 2016, 6, 329-341.
[http://dx.doi.org/10.1007/s40097-016-0205-2]
[152]
Nassar, T.; Rom, A.; Nyska, A.; Benita, S. Novel double coated nanocapsules for intestinal delivery and enhanced oral bioavailability of tacrolimus, a P-gp substrate drug. J. Control. Release, 2009, 133(1), 77-84.
[http://dx.doi.org/10.1016/j.jconrel.2008.08.021] [PMID: 18822327]
[153]
Kon, K.V.; Rai, M.K. Plant essential oils and their constituents in coping with multidrug-resistant bacteria. Expert Rev. Anti Infect. Ther., 2012, 10(7), 775-790.
[http://dx.doi.org/10.1586/eri.12.57] [PMID: 22943401]
[154]
Kalan, L.; Wright, G.D. Antibiotic adjuvants: multicomponent anti-infective strategies. Expert Rev. Mol. Med., 2011, 13, e5.
[http://dx.doi.org/10.1017/S1462399410001766] [PMID: 21342612]
[155]
Sousa Silveira, Z.; Macêdo, N.S.; Sampaio Dos Santos, J.F.; Sampaio de Freitas, T.; Rodrigues Dos Santos Barbosa, C.; Júnior, D.L.S.; Muniz, D.F.; Castro de Oliveira, L.C.; Júnior, J.P.S.; Cunha, F.A.B.D.; Melo Coutinho, H.D.; Balbino, V.Q.; Martins, N. Evaluation of the antibacterial activity and efflux pump reversal of thymol and carvacrol against Staphylococcus aureus and their toxicity in Drosophila melanogaster. Molecules, 2020, 25(9), 2103.
[http://dx.doi.org/10.3390/molecules25092103] [PMID: 32365898]
[156]
Gajare, S.; Chaudhari, A.; Juvatkar, P.V.; Waghulde, S.; Gorde, N.; Naik, P.; Kale, M.K. Phytoconstituents as an EPI in antimicrobial resistance. J. Pharmacog. Phytochem, 2018, SP6, 64-67.
[157]
Sun, P.; Zhang, Y.; Ran, X. Phytochemical-encapsulated nanoplatform for “on-demand” synergistic treatment of multidrug-resistant bacteria. Nano Res., 2018, 11, 3762-3770.
[http://dx.doi.org/10.1007/s12274-017-1947-y]
[158]
Fiamegos, Y.; Kastritis, P.L.; Exarchou, V. Antimicrobial and efflux pump inhibitory activity of caffeoylquinic acids from Artemisia absinthium against gram-positive pathogenic bacteria. PLoS ONE, 2011, 6(4), e18127.
[159]
Bazzaz, B.S.; Memariani, Z.; Khashiarmanesh, Z.; Iranshahi, M.; Naderinasab, M. Effect of galbanic Acid, a sesquiterpene coumarin from ferula szowitsiana, as an inhibitor of efflux mechanism in resistant clinical isolates of Staphylococcus aureus. Braz. J. Microbiol., 2010, 41(3), 574-580.
[http://dx.doi.org/10.1590/S1517-83822010000300006] [PMID: 24031531]
[160]
Chan, B.C.; Ip, M.; Lau, C.B.; Lui, S.L.; Jolivalt, C.; Ganem-Elbaz, C.; Litaudon, M.; Reiner, N.E.; Gong, H.; See, R.H.; Fung, K.P.; Leung, P.C. Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. J. Ethnopharmacol., 2011, 137(1), 767-773.
[http://dx.doi.org/10.1016/j.jep.2011.06.039] [PMID: 21782012]
[161]
Ponnusamy, K.; Ramasamy, M.; Savarimuthu, I.; Paulraj, M.G. Indirubin potentiates ciprofloxacin activity in the NorA efflux pump of Staphylococcus aureus. Scand. J. Infect. Dis., 2010, 42(6-7), 500-505.
[http://dx.doi.org/10.3109/00365541003713630] [PMID: 20380543]
[162]
Gibbons, S.; Oluwatuyi, M.; Kaatz, G.W. A novel inhibitor of multidrug efflux pumps in Staphylococcus aureus. J. Antimicrob. Chemother., 2004, 48, 1968-1973.
[PMID: 12493782]
[163]
Dickson, R.A.; Houghton, P.J.; Hylands, P.J.; Gibbons, S. Antimicrobial, resistance-modifying effects, antioxidant and free radical scavenging activities of Mezoneuron benthamianum Baill., Securinega virosa Roxb. &Wlld. and Microglossa pyrifolia Lam. Phytother. Res., 2006, 20(1), 41-45.
[http://dx.doi.org/10.1002/ptr.1799] [PMID: 16397919]
[164]
Rosato, A.; Vitali, C.; De Laurentis, N.; Armenise, D.; Antonietta Milillo, M. Antibacterial effect of some essential oils administered alone or in combination with Norfloxacin. Phytomedicine, 2007, 14(11), 727-732.
[http://dx.doi.org/10.1016/j.phymed.2007.01.005] [PMID: 17303397]
[165]
Coutinho, H.D.M.; Falca˜o-Silva, V.S.; Siqueira-Ju´nior, J.P. Use of aromatherapy associated with antibiotic therapy: modulation of the antibiotic activity by the essential oil of Zanthoxylum articulatum using gaseous contact. J. Essent. Oil Bear., 2010, 13 , 670 -675 .
[166]
Gibbons, S.; Oluwatuyi, M.; Veitch, N.C.; Gray, A.I. Bacterial resistance modifying agents from Lycopus europaeus. Phytochemistry, 2003, 62(1), 83-87.
[http://dx.doi.org/10.1016/S0031-9422(02)00446-6] [PMID: 12475623]
[167]
de Oliveira, S.M.S.; Falca˜o-Silva, V.S.; Siqueira-Junior, J.P. Modulation of drug resistance in Staphylococcus aureus by extract of mango (Mangifera indica) peel. Rev. Bras. Farmacogn., 2011, 21, 190-193.
[http://dx.doi.org/10.1590/S0102-695X2011005000014]
[168]
Cirino, I.C.; Menezes-Silva, S.M.; Silva, H.T.; de Souza, E.L.; Siqueira-Júnior, J.P. The essential oil from Origanum vulgare L. and its individual constituents carvacrol and thymol enhance the effect of tetracycline against Staphylococcus aureus. Chemotherapy, 2014, 60(5-6), 290-293.
[http://dx.doi.org/10.1159/000381175] [PMID: 25999020]
[169]
Barreto, H.M.; Fontinele, F.C.; de Oliveira, A.P. Phytochemical prospection and modulation of antibiotic activity in vitro by Lippia origanoides H.B.K. in methicillin resistant Staphylococcus aureus. BioMed. Res. Int., 2014.
[170]
Mahmood, H.Y.; Jamshidi, S.; Sutton, J.M.; Rahman, K.M. Current advances in developing inhibitors of bacterial multidrug efflux pumps. Curr. Med. Chem., 2016, 23(10), 1062-1081.
[http://dx.doi.org/10.2174/0929867323666160304150522] [PMID: 26947776]
[171]
Rana, T.; Singh, S.; Kaur, N.; Pathania, K.; Farooq, U. A review on efflux pump inhibitors of medically important bacteria from plant sources. Int. J. Pharm. Sci. Rev. Res., 2014, 26(2), 101-111.
[172]
Seukep, A.J. Plant-derived secondary metabolites as the main source of efflux pump inhibitors and methods for identification. 2019,
[http://dx.doi.org/10.1016/j.jpha.2019.11.002]
[173]
Mitchell, C.J.; Stone, T.A.; Deber, C.M. Peptide-based efflux pump inhibitors of the small multidrug resistance 6 protein from Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2019, 63(9), e00730-19.
[http://dx.doi.org/10.1128/AAC.00730-19] [PMID: 31209007]
[174]
Kapp, E.; Malan, S.F.; Joubert, J.; Sampson, S.L. Small molecule efflux pump inhibitors in Mycobacterium tuberculosis: A rational drug design perspective. Mini Rev. Med. Chem., 2018, 18(1), 72-86.
[PMID: 28494730]
[175]
Sharma, A.; Gupta, V.K.; Pathania, R. Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Indian J. Med. Res., 2019, 149(2), 129-145.
[http://dx.doi.org/10.4103/ijmr.IJMR_2079_17] [PMID: 31219077]
[176]
Bame, J.R.; Graf, T.N.; Junio, H.A.; Bussey, R.O., III; Jarmusch, S.A.; El-Elimat, T.; Falkinham, J.O., III; Oberlies, N.H.; Cech, R.A.; Cech, N.B. Sarothrin from Alkanna orientalis is an antimicrobial agent and efflux pump inhibitor. Planta Med., 2013, 79(5), 327-329.
[http://dx.doi.org/10.1055/s-0032-1328259] [PMID: 23468310]
[177]
Cabral, V.; Luo, X.; Junqueira, E.; Costa, S.S.; Mulhovo, S.; Duarte, A.; Couto, I.; Viveiros, M.; Ferreira, M.J. Enhancing activity of antibiotics against Staphylococcus aureus: Zanthoxylum capense constituents and derivatives. Phytomedicine, 2015, 22(4), 469-476.
[http://dx.doi.org/10.1016/j.phymed.2015.02.003] [PMID: 25925969]
[178]
Shiu, W.K.; Malkinson, J.P.; Rahman, M.M.; Curry, J.; Stapleton, P.; Gunaratnam, M.; Neidle, S.; Mushtaq, S.; Warner, M.; Livermore, D.M.; Evangelopoulos, D.; Basavannacharya, C.; Bhakta, S.; Schindler, B.D.; Seo, S.M.; Coleman, D.; Kaatz, G.W.; Gibbons, S. A new plant-derived antibacterial is an inhibitor of efflux pumps in Staphylococcus aureus. Int. J. Antimicrob. Agents, 2013, 42(6), 513-518.
[http://dx.doi.org/10.1016/j.ijantimicag.2013.08.007] [PMID: 24119569]
[179]
Chan, B.C.; Han, X.Q.; Lui, S.L.; Wong, C.W.; Wang, T.B.; Cheung, D.W.; Cheng, S.W.; Ip, M.; Han, S.Q.; Yang, X.S.; Jolivalt, C.; Lau, C.B.; Leung, P.C.; Fung, K.P. Combating against methicillin-resistant Staphylococcus aureus - two fatty acids from Purslane (Portulaca oleracea L.) exhibit synergistic effects with erythromycin. J. Pharm. Pharmacol., 2015, 67(1), 107-116.
[http://dx.doi.org/10.1111/jphp.12315] [PMID: 25212982]
[180]
Smith, E.; Williamson, E.; Zloh, M.; Gibbons, S. Isopimaric acid from Pinus nigra shows activity against multidrug-resistant and EMRSA strains of Staphylococcus aureus. Phytother. Res., 2005, 19(6), 538-542.
[http://dx.doi.org/10.1002/ptr.1711] [PMID: 16114093]
[181]
Chitemerere, T.A.; Mukanganyama, S. In vitro antibacterial activity of selected medicinal plants from Zimbabwe. 2011, 5 , 1 -7 .
[182]
Braga, L.C.; Leite, A.A.; Xavier, K.G.; Takahashi, J.A.; Bemquerer, M.P.; Chartone-Souza, E.; Nascimento, A.M. Synergic interaction between pomegranate extract and antibiotics against Staphylococcus aureus. Can. J. Microbiol., 2005, 51(7), 541-547.
[http://dx.doi.org/10.1139/w05-022] [PMID: 16175202]
[183]
Roy, S.K.; Kumari, N.; Pahwa, S.; Agrahari, U.C.; Bhutani, K.K.; Jachak, S.M.; Nandanwar, H. NorA efflux pump inhibitory activity of coumarins from Mesua ferrea. Fitoterapia, 2013, 90, 140-150.
[http://dx.doi.org/10.1016/j.fitote.2013.07.015] [PMID: 23892000]
[184]
Ettefagh, K.A.; Burns, J.T.; Junio, H.A.; Kaatz, G.W.; Cech, N.B. Goldenseal (Hydrastis canadensis L.) extracts synergistically enhance the antibacterial activity of berberine via efflux pump inhibition. Planta Med., 2011, 77(8), 835-840.
[http://dx.doi.org/10.1055/s-0030-1250606] [PMID: 21157683]
[185]
Chopra, B.; Dhingra, A.K.; Dhar, K.L. Synthesis and characterization of piperine analogs as potent Staphylococcus aureus nora efflux pump inhibitors. Chem. Methodol, 2018, 3, 104-114.
[186]
Chopra, B.; Dhingra, A.K.; Prasad, D.N. Modification in the natural bioactive molecule: piperine; a continuing source for the drug development. Curr. Bioact. Compd., 2020, 16(6), 714-725.
[http://dx.doi.org/10.2174/1573407215666190318125023]
[187]
Chopra, B.; Dhingra, A.K.; Kapoor, R.P.; Prasad, D.N. Piperine and its various physicochemical and biological aspects: a review. Open Chem. J., 2016, 3, 75-96.
[http://dx.doi.org/10.2174/1874842201603010075]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy