Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Concomitant Expression of Inhibitory Molecules for T cell Activation Predicts Poor Survival in Patients with Esophageal Squamous Cell Carcinoma

Author(s): Zhijun Chen, Kexin Cao, Jinghang Zhang, Zhuangzhuang Liu, Liaoxun Lu, Bo Qi, Lijin Shi, Rong Huang* and Song Zhao*

Volume 21, Issue 3, 2021

Published on: 20 November, 2020

Page: [244 - 253] Pages: 10

DOI: 10.2174/1568009620666201120152333

Price: $65

Abstract

Background: Esophageal squamous cell carcinoma (ESCC) is a major subtype of esophageal cancers. The five-year survival rate of ESCC is low, and molecular targets for ESCC treatment and prognosis assessment are very limited. T cells are critical for the clearance of cancer cells, and blockade of co-inhibitory molecules for T cell activation has emerged as a promising therapy to treat cancer patients. However, in ESCC patients, co-inhibitory molecules regulating T cell activation are poorly documented.

Objective: We aim to evaluate how the presence of inhibitory check-point molecules in T cells could impact the survival of patients.

Methods: We performed a follow-up study of 161 patients undergoing resection of esophageal carcinoma from February 2014 to December 2015, by immunohistochemical staining of six co-inhibitory molecules for T cell activation, namely PD-1, CTLA-4, TIM-3, LAG-3, BTLA and A2AR. Expression of each of the six co-inhibitory molecules was analyzed for its correlation with patient survival by Kaplan-Meier survival analysis. We also applied Kaplan-Meier analyses to evaluate the concomitant expression of co-inhibitory molecules and their correlation with patient survival.

Results: We found that levels of PD-1, TIM-3 and BTLA can be used as independent prognostic factors for the overall survival of patients with ESCC. More importantly, our study found that the co-expression of PD-1 and TIM-3, PD-1 and BTLA, TIM-3 and BTLA significantly reduced the survival of patients with ESCC (P<0.05).

Conclusion: Therefore, our results suggest the necessity of evaluating the tumor tissue expression of co-inhibitory molecules and targeting co-expressed molecules in immunotherapies for ESCC patients.

Keywords: ESCC, T cells, PD-1, TIM-3, BTLA, survival.

Graphical Abstract

[1]
Castro, C.; Bosetti, C.; Malvezzi, M.; Bertuccio, P.; Levi, F.; Negri, E.; La Vecchia, C.; Lunet, N. Patterns and trends in esophageal cancer mortality and incidence in Europe (1980-2011) and predictions to 2015. Ann. Oncol., 2014, 25(1), 283-290.
[http://dx.doi.org/10.1093/annonc/mdt486] [PMID: 24356640]
[2]
Abbas, G.; Krasna, M. Overview of esophageal cancer. Ann. Cardiothorac. Surg., 2017, 6(2), 131-136.
[http://dx.doi.org/10.21037/acs.2017.03.03] [PMID: 28447001]
[3]
Arnold, M.; Laversanne, M.; Brown, L.M.; Devesa, S.S.; Bray, F. Predicting the future burden of esophageal cancer by histological subtype: international trends in incidence up to 2030. Am. J. Gastroenterol., 2017, 112(8), 1247-1255.
[http://dx.doi.org/10.1038/ajg.2017.155] [PMID: 28585555]
[4]
Pakzad, R.; Mohammadian-Hafshejani, A.; Khosravi, B.; Soltani, S.; Pakzad, I.; Mohammadian, M.; Salehiniya, H.; Momenimovahed, Z. The incidence and mortality of esophageal cancer and their relationship to development in Asia. Ann. Transl. Med., 2016, 4(2), 29.
[PMID: 26889482]
[5]
Chen, R.; Zheng, R.S.; Zhang, S.W.; Zeng, H.M.; Wang, S.M.; Sun, K.X.; Gu, X.Y.; Wei, W.W.; He, J. Analysis of incidence and mortality of esophageal cancer in China, 2015. Zhonghua Yu Fang Yi Xue Za Zhi, 2019, 53(11), 1094-1097.
[PMID: 31683393]
[6]
Liang, H.; Fan, J.H.; Qiao, Y.L. Epidemiology, etiology, and prevention of esophageal squamous cell carcinoma in China. Cancer Biol. Med., 2017, 14(1), 33-41.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0093] [PMID: 28443201]
[7]
Lin, Y.; Totsuka, Y.; Shan, B.; Wang, C.; Wei, W.; Qiao, Y.; Kikuchi, S.; Inoue, M.; Tanaka, H.; He, Y. Esophageal cancer in high-risk areas of China: research progress and challenges. Ann. Epidemiol., 2017, 27(3), 215-221.
[http://dx.doi.org/10.1016/j.annepidem.2016.11.004] [PMID: 28007352]
[8]
Nagami, Y.; Ominami, M.; Shiba, M.; Minamino, H.; Fukunaga, S.; Kameda, N.; Sugimori, S.; Machida, H.; Tanigawa, T.; Yamagami, H.; Watanabe, T.; Tominaga, K.; Fujiwara, Y.; Arakawa, T. The five-year survival rate after endoscopic submucosal dissection for superficial esophageal squamous cell neoplasia. Dig. Liver Dis., 2017, 49(4), 427-433.
[http://dx.doi.org/10.1016/j.dld.2016.12.009] [PMID: 28096057]
[9]
Napier, K.J.; Scheerer, M.; Misra, S. Esophageal cancer: A Review of epidemiology, pathogenesis, staging workup and treatment modalities. World J. Gastrointest. Oncol., 2014, 6(5), 112-120.
[http://dx.doi.org/10.4251/wjgo.v6.i5.112] [PMID: 24834141]
[10]
Nassri, A.; Zhu, H.; Muftah, M.; Ramzan, Z. Epidemiology and survival of esophageal cancer patients in an american cohort. Cureus, 2018, 10(4)
[http://dx.doi.org/10.7759/cureus.2507] [PMID: 29930885]
[11]
Shin, A.; Won, Y.J.; Jung, H.K.; Kong, H.J.; Jung, K.W.; Oh, C.M.; Choe, S.; Lee, J. Trends in incidence and survival of esophageal cancer in Korea: Analysis of the Korea Central Cancer Registry Database. J. Gastroenterol. Hepatol., 2018, 33(12), 1961-1968.
[http://dx.doi.org/10.1111/jgh.14289] [PMID: 29802647]
[12]
Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin., 2019, 69(5), 363-385.
[http://dx.doi.org/10.3322/caac.21565] [PMID: 31184787]
[13]
Simeone, E.; Ascierto, P.A. Immunomodulating antibodies in the treatment of metastatic melanoma: the experience with anti-CTLA-4, anti-CD137, and anti-PD1. J. Immunotoxicol., 2012, 9(3), 241-247.
[http://dx.doi.org/10.3109/1547691X.2012.678021] [PMID: 22524673]
[14]
Merelli, B.; Massi, D.; Cattaneo, L.; Mandalà, M. Targeting the PD1/PD-L1 axis in melanoma: biological rationale, clinical challenges and opportunities. Crit. Rev. Oncol. Hematol., 2014, 89(1), 140-165.
[http://dx.doi.org/10.1016/j.critrevonc.2013.08.002] [PMID: 24029602]
[15]
Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; O’Brien, M.; Rao, S.; Hotta, K.; Leiby, M.A.; Lubiniecki, G.M.; Shentu, Y.; Rangwala, R.; Brahmer, J.R.; Investigators, K. KEYNOTE-024 investigators. pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med., 2016, 375(19), 1823-1833.
[http://dx.doi.org/10.1056/NEJMoa1606774] [PMID: 27718847]
[16]
Preusser, M.; Lim, M.; Hafler, D.A.; Reardon, D.A.; Sampson, J.H. Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat. Rev. Neurol., 2015, 11(9), 504-514.
[http://dx.doi.org/10.1038/nrneurol.2015.139] [PMID: 26260659]
[17]
Kononen, J.; Bubendorf, L.; Kallioniemi, A.; Bärlund, M.; Schraml, P.; Leighton, S.; Torhorst, J.; Mihatsch, M.J.; Sauter, G.; Kallioniemi, O.P. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat. Med., 1998, 4(7), 844-847.
[http://dx.doi.org/10.1038/nm0798-844] [PMID: 9662379]
[18]
Wang, J.C.; Xu, Y.; Huang, Z.M.; Lu, X.J. T cell exhaustion in cancer: Mechanisms and clinical implications. J. Cell. Biochem., 2018, 119(6), 4279-4286.
[http://dx.doi.org/10.1002/jcb.26645] [PMID: 29274296]
[19]
Sadelain, M.; Rivière, I.; Riddell, S. Therapeutic T cell engineering. Nature, 2017, 545(7655), 423-431.
[http://dx.doi.org/10.1038/nature22395] [PMID: 28541315]
[20]
Alsaab, H.O.; Sau, S.; Alzhrani, R.; Tatiparti, K.; Bhise, K.; Kashaw, S.K.; Iyer, A.K. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front. Pharmacol., 2017, 8, 561.
[http://dx.doi.org/10.3389/fphar.2017.00561] [PMID: 28878676]
[21]
Wang, X.; Yang, X.; Zhang, C.; Wang, Y.; Cheng, T.; Duan, L.; Tong, Z.; Tan, S.; Zhang, H.; Saw, P.E.; Gu, Y.; Wang, J.; Zhang, Y.; Shang, L.; Liu, Y.; Jiang, S.; Yan, B.; Li, R.; Yang, Y.; Yu, J.; Chen, Y.; Gao, G.F.; Ye, Q.; Gao, S. Tumor cell-intrinsic PD-1 receptor is a tumor suppressor and mediates resistance to PD-1 blockade therapy. Proc. Natl. Acad. Sci. USA, 2020, 117(12), 6640-6650.
[http://dx.doi.org/10.1073/pnas.1921445117] [PMID: 32161124]
[22]
Taube, J.M.; Klein, A.; Brahmer, J.R.; Xu, H.; Pan, X.; Kim, J.H.; Chen, L.; Pardoll, D.M.; Topalian, S.L.; Anders, R.A. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin. Cancer Res., 2014, 20(19), 5064-5074.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-3271] [PMID: 24714771]
[23]
Stathopoulou, C.; Gangaplara, A.; Mallett, G.; Flomerfelt, F. A.; Liniany, L. P.; Knight, D.; Samsel, L. A.; Berlinguer-Palmini, R.; Yim, J. J.; Felizardo, T. C.; Eckhaus, M. A.; Edgington-Mitchell, L.; Martinez-Fabregas, J.; Zhu, J.; Fowler, D. H.; van Kasteren, S. I.; Laurence, A.; Bogyo, M.; Watts, C.; Shevach, E. M.; Amarnath, S. PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity, 2018, 49(2), 247-263.
[24]
Boutros, C.; Tarhini, A.; Routier, E.; Lambotte, O.; Ladurie, F.L.; Carbonnel, F.; Izzeddine, H.; Marabelle, A.; Champiat, S.; Berdelou, A.; Lanoy, E.; Texier, M.; Libenciuc, C.; Eggermont, A.M.; Soria, J.C.; Mateus, C.; Robert, C. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat. Rev. Clin. Oncol., 2016, 13(8), 473-486.
[http://dx.doi.org/10.1038/nrclinonc.2016.58] [PMID: 27141885]
[25]
Gunturi, A.; McDermott, D.F. Potential of new therapies like anti-PD1 in kidney cancer. Curr. Treat. Options Oncol., 2014, 15(1), 137-146.
[http://dx.doi.org/10.1007/s11864-013-0268-y] [PMID: 24504486]
[26]
Gong, J.; Chehrazi-Raffle, A.; Reddi, S.; Salgia, R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J. Immunother. Cancer, 2018, 6(1), 8.
[http://dx.doi.org/10.1186/s40425-018-0316-z] [PMID: 29357948]
[27]
Fujii, T.; Hirakata, T.; Kurozumi, S.; Tokuda, S.; Nakazawa, Y.; Obayashi, S.; Yajima, R.; Oyama, T.; Shirabe, K. VEGF-A Is Associated With the Degree of TILs and PD-L1 Expression in Primary Breast Cancer. In Vivo, 2020, 34(5), 2641-2646.
[http://dx.doi.org/10.21873/invivo.12082] [PMID: 32871794]
[28]
Shin, S.J.; Jeon, Y.K.; Kim, P.J.; Cho, Y.M.; Koh, J.; Chung, D.H.; Go, H. Clinicopathologic Analysis of PD-L1 and PD-L2 Expression in Renal Cell Carcinoma: Association with Oncogenic Proteins Status. Ann. Surg. Oncol., 2016, 23(2), 694-702.
[http://dx.doi.org/10.1245/s10434-015-4903-7] [PMID: 26464193]
[29]
Schmittnaegel, M.; Rigamonti, N.; Kadioglu, E.; Cassará, A.; Wyser Rmili, C.; Kiialainen, A.; Kienast, Y.; Mueller, H.J.; Ooi, C.H.; Laoui, D.; De Palma, M. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci. Transl. Med., 2017, 9(385)
[http://dx.doi.org/10.1126/scitranslmed.aak9670] [PMID: 28404865]
[30]
Xue, S.; Hu, M.; Li, P.; Ma, J.; Xie, L.; Teng, F.; Zhu, Y.; Fan, B.; Mu, D.; Yu, J. Relationship between expression of PD-L1 and tumor angiogenesis, proliferation, and invasion in glioma. Oncotarget, 2017, 8(30), 49702-49712.
[http://dx.doi.org/10.18632/oncotarget.17922] [PMID: 28591697]
[31]
Allen, E.; Jabouille, A.; Rivera, L.B.; Lodewijckx, I.; Missiaen, R.; Steri, V.; Feyen, K.; Tawney, J.; Hanahan, D.; Michael, I.P.; Bergers, G. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci. Transl. Med., 2017, 9(385)
[http://dx.doi.org/10.1126/scitranslmed.aak9679] [PMID: 28404866]
[32]
Schoenfeld, J.; Jinushi, M.; Nakazaki, Y.; Wiener, D.; Park, J.; Soiffer, R.; Neuberg, D.; Mihm, M.; Hodi, F.S.; Dranoff, G. Active immunotherapy induces antibody responses that target tumor angiogenesis. Cancer Res., 2010, 70(24), 10150-10160.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1852] [PMID: 21159637]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy