Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Anti-Neuroinflammatory Potential of Polyphenols by Inhibiting NF-κB to Halt Alzheimer's Disease

Author(s): Md. Sahab Uddin*, Sharifa Hasana, Jamil Ahmad, Md. Farhad Hossain, Md. Mosiqur Rahman, Tapan Behl, Abdur Rauf, Ausaf Ahmad, Abdul Hafeez, Asma Perveen and Ghulam Md Ashraf*

Volume 27, Issue 3, 2021

Published on: 18 November, 2020

Page: [402 - 414] Pages: 13

DOI: 10.2174/1381612826666201118092422

Price: $65

Abstract

Alzheimer's disease (AD) is an irrevocable chronic brain disorder featured by neuronal loss, microglial accumulation, and progressive cognitive impairment. The proper pathophysiology of this life-threatening disorder is not completely understood and no exact remedies have been found yet. Over the last few decades, research on AD has mainly highlighted pathomechanisms linked to a couple of the major pathological hallmarks, including extracellular senile plaques made of amyloid-β (Aβ) peptides, and intracellular neurofibrillary tangles (NFTs) made of tau proteins. Aβ can induce apoptosis, trigger an inflammatory response, and inhibit the synaptic plasticity of the hippocampus, which ultimately contributes to reducing cognitive functions and memory impairment. Recently, a third disease hallmark, the neuroinflammatory reaction that is mediated by cerebral innate immune cells, has become a spotlight in the current research area, assured by pre-clinical, clinical, and genetic investigations. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a cytokine producer, is significantly associated with physiological inflammatory proceedings and thus shows a promising candidate for inflammation- based AD therapy. Recent data reveal that phytochemicals, mainly polyphenol compounds, exhibit potential neuroprotective functions and these may be considered as a vital resource for discovering several drug candidates against AD. Interestingly, phytochemicals can easily interfere with the signaling pathway of NF-κB. This review represents the anti-neuroinflammatory potential of polyphenols as inhibitors of NF-κB to combat AD pathogenesis.

Keywords: Polyphenols, neuroinflammation, NF-κB, Alzheimer's disease, anti-neuroinflammatory, pathomechanisms.

[1]
DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 2019; 14(1): 32.
[http://dx.doi.org/10.1186/s13024-019-0333-5] [PMID: 31375134]
[2]
Uddin MS, Kabir MT, Tewari D, et al. Revisiting the role of brain and peripheral Aβ in the pathogenesis of Alzheimer’s disease. J Neurol Sci 2020; 416116974
[http://dx.doi.org/10.1016/j.jns.2020.116974] [PMID: 32559516]
[3]
Parent MJ, Zimmer ER, Shin M, et al. Multimodal imaging in rat model recapitulates Alzheimer’s disease biomarkers abnormalities. J Neurosci 2017; 37(50): 12263-71.
[http://dx.doi.org/10.1523/JNEUROSCI.1346-17.2017] [PMID: 29097597]
[4]
Hossain MF, Uddin MS, Uddin GMS, et al. Melatonin in Alzheimer’s disease: a latent endogenous regulator of neurogenesis to mitigate Alzheimer’s neuropathology. Mol Neurobiol 2019; 56(12): 8255-76.
[http://dx.doi.org/10.1007/s12035-019-01660-3] [PMID: 31209782]
[5]
Kommaddi RP, Das D, Karunakaran S, et al. Aβ mediates F-actin disassembly in dendritic spines leading to cognitive deficits in Alzheimer’s disease. J Neurosci 2018; 38(5): 1085-99.
[http://dx.doi.org/10.1523/JNEUROSCI.2127-17.2017] [PMID: 29246925]
[6]
Uddin MS, Kabir MT, Rahman MS, et al. Revisiting the amyloid cascade hypothesis: From anti-Aβ therapeutics to auspicious new ways for Alzheimer’s disease. Int J Mol Sci 2020; 21(16): 5858.
[http://dx.doi.org/10.3390/ijms21165858] [PMID: 32824102]
[7]
Uddin MS, Kabir MT, Jakaria M, et al. Exploring the potential of neuroproteomics in Alzheimer’s disease. Curr Top Med Chem 2020; 20: 2263-78.
[http://dx.doi.org/10.2174/1568026620666200603112030]]
[8]
Uddin MS, Al Mamun A, Rahman MA, et al. Emerging proof of protein misfolding and interactions in multifactorial Alzheimer’s disease. Curr Top Med Chem 2020; 20: 2380-90.
[http://dx.doi.org/10.2174/1568026620666200601161703]
[9]
Mamun AA, Uddin MS, Mathew B, Ashraf GM. Toxic tau: structural origins of tau aggregation in Alzheimer’s disease. Neural Regen Res 2020; 15(8): 1417-20.
[http://dx.doi.org/10.4103/1673-5374.274329] [PMID: 31997800]
[10]
WHO. Dementia cases set to triple by 2050 but still largely ignoredAvailable from: https://www.who.int/mediacentre/news/releases/2012/dementia_20120411/en/
[11]
Ferri CP, Prince M, Brayne C, et al. Alzheimer’s disease international. Global prevalence of dementia: a Delphi consensus study. Lancet 2005; 366(9503): 2112-7.
[http://dx.doi.org/10.1016/S0140-6736(05)67889-0] [PMID: 16360788]
[12]
Hollingworth P, Harold D, Jones L, Owen MJ, Williams J. Alzheimer’s disease genetics: current knowledge and future challenges. Int J Geriatr Psychiatry 2011; 26(8): 793-802.
[http://dx.doi.org/10.1002/gps.2628] [PMID: 20957767]
[13]
Mayeux R, Stern Y. Epidemiology of Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2(8): 2.
[http://dx.doi.org/10.1101/cshperspect.a006239] [PMID: 22908189]
[14]
Heneka MT, O’Banion MK. Inflammatory processes in Alzheimer’s disease. J Neuroimmunol 2007; 184(1-2): 69-91.
[http://dx.doi.org/10.1016/j.jneuroim.2006.11.017] [PMID: 17222916]
[15]
Ibrahim AM, Pottoo FH, Dahiya ES, Khan FA, Kumar JBS. Neuron-glia interactions: Molecular basis of Alzheimer’s disease and applications of neuroproteomics. Eur J Neurosci 2020; 52(2): 2931-43.
[http://dx.doi.org/10.1111/ejn.14838] [PMID: 32463535]
[16]
Uddin MS, Kabir MT, Al Mamun A, et al. Exploring potential of alkaloidal phytochemicals targeting neuroinflammatory signaling of Alzheimer’s disease. Curr Pharm Des 2020; 26
[http://dx.doi.org/10.2174/1381612826666200531151004]] [PMID: 32473620]
[17]
Rogers J, Cooper NR, Webster S, et al. Complement activation by β-amyloid in Alzheimer disease. Proc Natl Acad Sci USA 1992; 89(21): 10016-20.
[http://dx.doi.org/10.1073/pnas.89.21.10016] [PMID: 1438191]
[18]
Fassbender K, Walter S, Kühl S, et al. The LPS receptor (CD14) links innate immunity with Alzheimer’s disease. FASEB J 2004; 18(1): 203-5.
[http://dx.doi.org/10.1096/fj.03-0364fje] [PMID: 14597556]
[19]
RAGE-Abeta interactions in the pathophysiology of Alzheimer’s disease. Available from:. https://kuscholarworks.ku.edu/handle/1808/17866?show=full
[20]
Paresce DM, Ghosh RN, Maxfield FR. Microglial cells internalize aggregates of the Alzheimer’s disease amyloid β-protein via a scavenger receptor. Neuron 1996; 17(3): 553-65.
[http://dx.doi.org/10.1016/S0896-6273(00)80187-7] [PMID: 8816718]
[21]
Xu PX, Wang SW, Yu XL, et al. Rutin improves spatial memory in Alzheimer’s disease transgenic mice by reducing Aβ oligomer level and attenuating oxidative stress and neuroinflammation. Behav Brain Res 2014; 264: 173-80.
[http://dx.doi.org/10.1016/j.bbr.2014.02.002] [PMID: 24512768]
[22]
Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging 2000; 21(3): 383-421.
[http://dx.doi.org/10.1016/S0197-4580(00)00124-X] [PMID: 10858586]
[23]
Boissière F, Hunot S, Faucheux B, et al. Nuclear translocation of NF-kappaB in cholinergic neurons of patients with Alzheimer’s disease. Neuroreport 1997; 8(13): 2849-52.
[http://dx.doi.org/10.1097/00001756-199709080-00009] [PMID: 9376517]
[24]
Liao Y, Qi X-L, Cao Y, et al. Elevations in the levels of NF-κB and inflammatory chemotactic factors in the brains with alzheimer’s disease - one mechanism may involve α3 nicotinic acetylcholine receptor. Curr Alzheimer Res 2016; 13(11): 1290-301.
[http://dx.doi.org/10.2174/1567205013666160703174254] [PMID: 27396406]
[25]
Kawai T, Akira S. Signaling to NF-kappaB by toll-like receptors. Trends Mol Med 2007; 13(11): 460-9.
[http://dx.doi.org/10.1016/j.molmed.2007.09.002] [PMID: 18029230]
[26]
Chen R, Zhang H, Liu P, Wu X, Chen B. Gambogenic acid synergistically potentiates bortezomib-induced apoptosis in multiple myeloma. J Cancer 2017; 8(5): 839-51.
[http://dx.doi.org/10.7150/jca.17657] [PMID: 28382147]
[27]
Walter S, Letiembre M, Liu Y, et al. Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol Biochem 2007; 20(6): 947-56.
[http://dx.doi.org/10.1159/000110455] [PMID: 17982277]
[28]
Okun E, Griffioen KJ, Lathia JD, Tang SC, Mattson MP, Arumugam TV. Toll-like receptors in neurodegeneration. Brain Res Brain Res Rev 2009; 59(2): 278-92.
[http://dx.doi.org/10.1016/j.brainresrev.2008.09.001] [PMID: 18822314]
[29]
Yoshiyama Y, Higuchi M, Zhang B, et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 2007; 53(3): 337-51.
[http://dx.doi.org/10.1016/j.neuron.2007.01.010] [PMID: 17270732]
[30]
Arulselvan P, Fard MT, Tan WS, et al. Role of antioxidants and natural products in inflammation. Oxid Med Cell Longev 2016; 20165276130
[http://dx.doi.org/10.1155/2016/5276130]
[31]
Latruffe N. Natural products and inflammation. Molecules 2017; 22(1): 120.
[http://dx.doi.org/10.3390/molecules22010120] [PMID: 28085099]
[32]
Shal B, Ding W, Ali H, Kim YS, Khan S. Anti-neuroinflammatory potential of natural products in attenuation of Alzheimer’s disease. Front Pharmacol 2018; 9: 548.
[http://dx.doi.org/10.3389/fphar.2018.00548] [PMID: 29896105]
[33]
Uddin MS, Uddin GMS, Begum MM, et al. Inspection of phytochemical content and in vitro antioxidant profile of Gnaphalium luteoalbum L.: An unexplored phytomedicine. J Pharm Nutr Sci 2017; 7: 136-46.
[http://dx.doi.org/10.6000/1927-5951.2017.07.03.10]
[34]
Uddin MS, Hossain MS, Kabir MT, et al. Phytochemical Screening and Antioxidant Profile of Syngonium podophyllum Schott Stems: A Fecund Phytopharmakon. J Pharm Nutr Sci 2018; 8: 120-8.
[http://dx.doi.org/10.6000/1927-5951.2018.08.03.6]
[35]
Howes MJR, Simmonds MSJ. The role of phytochemicals as micronutrients in health and disease. Curr Opin Clin Nutr Metab Care 2014; 17(6): 558-66.
[http://dx.doi.org/10.1097/MCO.0000000000000115] [PMID: 25252018]
[36]
Manach C, Mazur A, Scalbert A. Polyphenols and prevention of cardiovascular diseases. Curr Opin Lipidol 2005; 16(1): 77-84.
[http://dx.doi.org/10.1097/00041433-200502000-00013] [PMID: 15650567]
[37]
Duthie SJ. Berry phytochemicals, genomic stability and cancer: evidence for chemoprotection at several stages in the carcinogenic process. Mol Nutr Food Res 2007; 51(6): 665-74.
[http://dx.doi.org/10.1002/mnfr.200600257] [PMID: 17487926]
[38]
Uddin MS, Al Mamun A, Kabir MT, et al. Nootropic and anti-Alzheimer’s actions of medicinal plants: molecular insight into therapeutic potential to alleviate Alzheimer’s neuropathology. Mol Neurobiol 2019; 56(7): 4925-44.
[http://dx.doi.org/10.1007/s12035-018-1420-2] [PMID: 30414087]
[39]
Samsuzzaman M, Uddin MS, Shah MA, Mathew B. Natural inhibitors on airway mucin: Molecular insight into the therapeutic potential targeting MUC5AC expression and production. Life Sci 2019; 231116485
[http://dx.doi.org/10.1016/j.lfs.2019.05.041] [PMID: 31116959]
[40]
Uddin MS, Hossain MS, Al Mamun A, et al. Phytochemical analysis and antioxidant profile of methanolic extract of seed, pulp and peel of Baccaurea ramiflora Lour. Asian Pac J Trop Med 2018; 11: 443-50.
[41]
Begum MM, Islam A, Begum R, et al. Ethnopharmacological inspections of organic extract of Oroxylum indicum in rat models: a promising natural gift. Evid Based Complement Alternat Med 2019; 20191562038
[http://dx.doi.org/10.1155/2019/1562038] [PMID: 31073315]
[42]
Kumar R, Harilal S, Parambi DGT, et al. Fascinating chemo preventive story of wogonin: A chance to hit on the head in cancer treatment Curr Pharm Des 2020; 26 Online ahead of print PMID: 32338206
[43]
Zaplatic E, Bule M, Shah SZA, Uddin MS, Niaz K. Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer’s disease. Life Sci 2019; 224: 109-19.
[http://dx.doi.org/10.1016/j.lfs.2019.03.055] [PMID: 30914316]
[44]
Uddin MS, Kabir MT, Tewari D, Mathew B, Aleya L. Emerging signal regulating potential of small molecule biflavonoids to combat neuropathological insults of Alzheimer’s disease. Sci Total Environ 2020; 700134836
[http://dx.doi.org/10.1016/j.scitotenv.2019.134836] [PMID: 31704512]
[45]
Obrenovich ME, Nair NG, Beyaz A, Aliev G, Reddy VP. The role of polyphenolic antioxidants in health, disease, and aging. Rejuvenation Res 2010; 13(6): 631-43.
[http://dx.doi.org/10.1089/rej.2010.1043] [PMID: 20818981]
[46]
Uddin MS, Hossain MF, Mamun AA, et al. Exploring the multimodal role of phytochemicals in the modulation of cellular signaling pathways to combat age-related neurodegeneration. Sci Total Environ 2020; 725138313
[http://dx.doi.org/10.1016/j.scitotenv.2020.138313] [PMID: 32464743]
[47]
Kim J, Lee HJ, Lee KW. Naturally occurring phytochemicals for the prevention of Alzheimer’s disease. J Neurochem 2010; 112(6): 1415-30.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06562.x] [PMID: 20050972]
[48]
Sochocka M, Diniz BS, Leszek J. Inflammatory response in the CNS: Friend or foe? Mol Neurobiol 2017; 54(10): 8071-89.
[http://dx.doi.org/10.1007/s12035-016-0297-1] [PMID: 27889895]
[49]
Yin J, Valin KL, Dixon ML, Leavenworth JW. The Role of microglia and macrophages in CNS homeostasis. Autoimmunity, and Cancer 2017; 20175150678
[50]
Uddin MS, Kabir MT, Mamun AA, et al. Pharmacological approaches to mitigate neuroinflammation in Alzheimer’s disease. Int Immunopharmacol 2020; 84106479
[http://dx.doi.org/10.1016/j.intimp.2020.106479] [PMID: 32353686]
[51]
Vilhardt F, Haslund-Vinding J, Jaquet V, McBean G. Microglia antioxidant systems and redox signalling. Br J Pharmacol 2017; 174(12): 1719-32.
[http://dx.doi.org/10.1111/bph.13426] [PMID: 26754582]
[52]
Niraula A, Sheridan JF, Godbout JP. Microglia priming with aging and stress. Neuropsychopharmacology 2017; 42(1): 318-33.
[http://dx.doi.org/10.1038/npp.2016.185] [PMID: 27604565]
[53]
von Bernhardi R, Eugenín-von Bernhardi L, Eugenín J. Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci 2015; 7: 124.
[http://dx.doi.org/10.3389/fnagi.2015.00124] [PMID: 26257642]
[54]
Norden DM, Muccigrosso MM, Godbout JP. Norden DM, Muccigrosso MM, Godbout JP Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury, and neurodegenerative disease Neuropharmacology 2015; 96(Pt A): 29-41 http://dxdoiorg/101016/jneuropharm201410028 PMID: 25445485
[55]
Perry VH, Holmes C. Microglial priming in neurodegenerative disease. Nat Rev Neurol 2014; 10(4): 217-24.
[http://dx.doi.org/10.1038/nrneurol.2014.38] [PMID: 24638131]
[56]
Vincent AJ, Gasperini R, Foa L, Small DH. Astrocytes in Alzheimer’s disease: emerging roles in calcium dysregulation and synaptic plasticity. J Alzheimers Dis 2010; 22(3): 699-714.
[http://dx.doi.org/10.3233/JAD-2010-101089] [PMID: 20847426]
[57]
Halassa MM, Haydon PG. Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 2010; 72: 335-55.
[http://dx.doi.org/10.1146/annurev-physiol-021909-135843] [PMID: 20148679]
[58]
Sofroniew MV, Vinters HV. Astrocytes: Biology and Pathology. Acta Neuropathol 2009; 119(1): 7-35.
[59]
Henneberger C, Papouin T, Oliet SHR, Rusakov DA. Long-term potentiation depends on release of D-serine from astrocytes. Nature 2010; 463(7278): 232-6.
[http://dx.doi.org/10.1038/nature08673] [PMID: 20075918]
[60]
Meraz-Ríos MA, Toral-Rios D, Franco-Bocanegra D, Villeda-Hernández J, Campos-Peña V. Inflammatory process in Alzheimer’s disease. Front Integr Nuerosci 2013; 7: 59.
[61]
Olabarria M, Noristani HN, Verkhratsky A, Rodríguez JJ. Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer’s disease. Glia 2010; 58(7): 831-8.
[http://dx.doi.org/10.1002/glia.20967] [PMID: 20140958]
[62]
Olabarria M, Noristani HN, Verkhratsky A, Rodríguez JJ. Age-dependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer’s disease mouse model: mechanism for deficient glutamatergic transmission? Mol Neurodegener 2011; 6: 55.
[http://dx.doi.org/10.1186/1750-1326-6-55] [PMID: 21801442]
[63]
Yeh CY, Vadhwana B, Verkhratsky A, Rodríguez JJ. Early astrocytic atrophy in the entorhinal cortex of a triple transgenic animal model of Alzheimer’s disease. ASN Neuro 2011; 3(5): 271-9.
[http://dx.doi.org/10.1042/AN20110025] [PMID: 22103264]
[64]
Carrero I, Gonzalo MR, Martin B, Sanz-Anquela JM, Arévalo-Serrano J, Gonzalo-Ruiz A. Oligomers of β-amyloid protein (Aβ1-42) induce the activation of cyclooxygenase-2 in astrocytes via an interaction with interleukin-1β, tumour necrosis factor-α, and a nuclear factor κ-B mechanism in the rat brain. Exp Neurol 2012; 236(2): 215-27.
[http://dx.doi.org/10.1016/j.expneurol.2012.05.004] [PMID: 22617488]
[65]
Urrutia PJ, Mena NP, Núñez MT. The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front Pharmacol 2014; 5: 38.
[http://dx.doi.org/10.3389/fphar.2014.00038] [PMID: 24653700]
[66]
Niranjan R. The role of inflammatory and oxidative stress mechanisms in the pathogenesis of Parkinson’s disease: focus on astrocytes. Mol Neurobiol 2014; 49(1): 28-38.
[http://dx.doi.org/10.1007/s12035-013-8483-x] [PMID: 23783559]
[67]
Fischer R, Maier O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxid Med Cell Longev 2015; 2015610813
[http://dx.doi.org/10.1155/2015/610813] [PMID: 25834699]
[68]
Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell 2010; 140(6): 918-34.
[http://dx.doi.org/10.1016/j.cell.2010.02.016] [PMID: 20303880]
[69]
Rojo AI, McBean G, Cindric M, et al. Redox control of microglial function: molecular mechanisms and functional significance. Antioxid Redox Signal 2014; 21(12): 1766-801.
[http://dx.doi.org/10.1089/ars.2013.5745] [PMID: 24597893]
[70]
Hsieh HL, Yang CM. Role of redox signaling in neuroinflammation and neurodegenerative diseases. BioMed Res Int 2013; 2013484613
[http://dx.doi.org/10.1155/2013/484613] [PMID: 24455696]
[71]
Godbout JP, Johnson RW. Interleukin-6 in the aging brain. J Neuroimmunol 2004; 147(1-2): 141-4.
[http://dx.doi.org/10.1016/j.jneuroim.2003.10.031] [PMID: 14741447]
[72]
Chung HY, Cesari M, Anton S, et al. Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev 2009; 8(1): 18-30.
[http://dx.doi.org/10.1016/j.arr.2008.07.002] [PMID: 18692159]
[73]
Granic I, Dolga AM, Nijholt IM, van Dijk G, Eisel ULM. Inflammation and NF-kappaB in Alzheimer’s disease and diabetes. J Alzheimers Dis 2009; 16(4): 809-21.
[http://dx.doi.org/10.3233/JAD-2009-0976] [PMID: 19387114]
[74]
Beg A, Ruben S RS-G. & U I Kappa B Interacts with the nuclear localization sequences of the subunits of NF-kappa b: A mechanism for cytoplasmic retention Genes Dev 1992; 10: 1899-913.
[75]
Zhang ZH, Yu LJ, Hui XC, et al. Hydroxy-safflor yellow A attenuates Aβ1−42-induced inflammation by modulating the JAK2/STAT3/NF-κB pathway. Brain Res 2014; 1563: 72-80.
[http://dx.doi.org/10.1016/j.brainres.2014.03.036] [PMID: 24690200]
[76]
Chen G, Zhang S, Shi J, Ai J, Qi M, Neurology CH-E. Simvastatin reduces secondary brain injury caused by cortical contusion in rats: possible involvement of tlr4/NF-ΚB pathway. 2009; 216(398): 406.
[77]
Barton GM, Medzhitov R. Control of adaptive immune responses by Toll-like receptors. Curr Opin Immunol 2002; 14(3): 380-3.
[http://dx.doi.org/10.1016/S0952-7915(02)00343-6] [PMID: 11973138]
[78]
Chen L, Hu L, Zhao J, et al. Chotosan improves Aβ1-42-induced cognitive impairment and neuroinflammatory and apoptotic responses through the inhibition of TLR-4/NF-κB signaling in mice. J Ethnopharmacol 2016; 191: 398-407.
[http://dx.doi.org/10.1016/j.jep.2016.03.038] [PMID: 26994819]
[79]
Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 2011; 21(1): 103-15.
[http://dx.doi.org/10.1038/cr.2010.178] [PMID: 21187859]
[80]
Chen CH, Zhou W, Liu S, et al. Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. Int J Neuropsychopharmacol 2012; 15(1): 77-90.
[http://dx.doi.org/10.1017/S1461145711000149] [PMID: 21329555]
[81]
Paris D, Patel N, Quadros A, et al. Inhibition of Abeta production by NF-kappaB inhibitors. Neurosci Lett 2007; 415(1): 11-6.
[http://dx.doi.org/10.1016/j.neulet.2006.12.029] [PMID: 17223266]
[82]
Wang R, Chen S, Liu Y, et al. All-trans-retinoic acid reduces BACE1 expression under inflammatory conditions via modulation of nuclear factor κB (NFκB) signaling. J Biol Chem 2015; 290(37): 22532-42.
[http://dx.doi.org/10.1074/jbc.M115.662908] [PMID: 26240147]
[83]
Yoon JH, Youn K, Ho CT, Karwe MV, Jeong WS, Jun M. p-Coumaric acid and ursolic acid from Corni fructus attenuated β-amyloid(25-35)-induced toxicity through regulation of the NF-κB signaling pathway in PC12 cells. J Agric Food Chem 2014; 62(21): 4911-6.
[http://dx.doi.org/10.1021/jf501314g] [PMID: 24815946]
[84]
Zou J, Cai PS, Xiong CM, Ruan JL. Neuroprotective effect of peptides extracted from walnut (Juglans Sigilata Dode) proteins on Aβ25-35-induced memory impairment in mice. J Huazhong Univ Sci Technolog Med Sci 2016; 36(1): 21-30.
[http://dx.doi.org/10.1007/s11596-016-1536-4] [PMID: 26838735]
[85]
Fillit H, Ding WH, Buee L, et al. Elevated circulating tumor necrosis factor levels in Alzheimer’s disease. Neurosci Lett 1991; 129(2): 318-20.
[http://dx.doi.org/10.1016/0304-3940(91)90490-K] [PMID: 1745413]
[86]
Perry RT, Collins JS, Wiener H, Acton R, Go RCP. The role of TNF and its receptors in Alzheimer’s disease. Neurobiol Aging 2001; 22(6): 873-83.
[http://dx.doi.org/10.1016/S0197-4580(01)00291-3] [PMID: 11754994]
[87]
Li R, Yang L, Lindholm K, et al. Tumor necrosis factor death receptor signaling cascade is required for amyloid-β protein-induced neuron death. J Neurosci 2004; 24(7): 1760-71.
[http://dx.doi.org/10.1523/JNEUROSCI.4580-03.2004] [PMID: 14973251]
[88]
He P, Zhong Z, Lindholm K, et al. Deletion of tumor necrosis factor death receptor inhibits amyloid β generation and prevents learning and memory deficits in Alzheimer’s mice. J Cell Biol 2007; 178(5): 829-41.
[http://dx.doi.org/10.1083/jcb.200705042] [PMID: 17724122]
[89]
Buchhave P, Zetterberg H, Blennow K, Minthon L, Janciauskiene S, Hansson O. Soluble TNF receptors are associated with Aβ metabolism and conversion to dementia in subjects with mild cognitive impairment. Neurobiol Aging 2010; 31(11): 1877-84.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.10.012] [PMID: 19070941]
[90]
Chang R, Yee K-L, Sumbria RK. Tumor necrosis factor α Inhibition for Alzheimer’s disease. J Cent Nerv Syst Dis 2017; 91179573517709278
[http://dx.doi.org/10.1177/1179573517709278] [PMID: 28579870]
[91]
Combs CK, Karlo JC, Kao SC, Landreth GE. β-Amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci 2001; 21(4): 1179-88.
[http://dx.doi.org/10.1523/JNEUROSCI.21-04-01179.2001] [PMID: 11160388]
[92]
Liao YF, Wang BJ, Cheng HT, Kuo LH, Wolfe MS. Tumor necrosis factor-α, interleukin-1β, and interferon-γ stimulate γ-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway. J Biol Chem 2004; 279(47): 49523-32.
[http://dx.doi.org/10.1074/jbc.M402034200] [PMID: 15347683]
[93]
Yamamoto M, Kiyota T, Horiba M, et al. Interferon-γ and tumor necrosis factor-α regulate amyloid-β plaque deposition and β-secretase expression in Swedish mutant APP transgenic mice. Am J Pathol 2007; 170(2): 680-92.
[http://dx.doi.org/10.2353/ajpath.2007.060378] [PMID: 17255335]
[94]
Forlenza OV, Diniz BS, Talib LL, et al. Increased serum IL-1beta level in Alzheimer’s disease and mild cognitive impairment. Dement Geriatr Cogn Disord 2009; 28(6): 507-12.
[http://dx.doi.org/10.1159/000255051] [PMID: 19996595]
[95]
Di Bona D, Plaia A, Vasto S, et al. Association between the interleukin-1β polymorphisms and Alzheimer’s disease: a systematic review and meta-analysis. Brain Res Brain Res Rev 2008; 59(1): 155-63.
[http://dx.doi.org/10.1016/j.brainresrev.2008.07.003] [PMID: 18675847]
[96]
Pantel J, Schröder J, Essig M, et al. In vivo quantification of brain volumes in subcortical vascular dementia and Alzheimer’s disease. An MRI-based study. Dement Geriatr Cogn Disord 1998; 9(6): 309-16.
[http://dx.doi.org/10.1159/000017082] [PMID: 9769443]
[97]
Farrar WL, Kilian P, Hill JM, Ruff MR, Pert CB. Visualization of cytokine and virus receptors common to the immune and central nervous system. Lymphokine Res 1987; 6(1): 29-34.
[PMID: 2950283]
[98]
Buxbaum JD, Oishi M, Chen HI, et al. Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer β/A4 amyloid protein precursor. Proc Natl Acad Sci USA 1992; 89(21): 10075-8.
[http://dx.doi.org/10.1073/pnas.89.21.10075] [PMID: 1359534]
[99]
Chong Y. Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Life Sci 1997; 61: 2323-33.
[http://dx.doi.org/10.1016/S0024-3205(97)00936-3] [PMID: 9408055]
[100]
Barger SW, Harmon AD. Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Nature 1997; 388(6645): 878-81.
[http://dx.doi.org/10.1038/42257] [PMID: 9278049]
[101]
Sheng JG, Zhu SG, Jones RA, Griffin WST, Mrak RE. Interleukin-1 promotes expression and phosphorylation of neurofilament and tau proteins in vivo. Exp Neurol 2000; 163(2): 388-91.
[http://dx.doi.org/10.1006/exnr.2000.7393] [PMID: 10833312]
[102]
Li Y, Liu L, Barger SW, Griffin WST. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J Neurosci 2003; 23(5): 1605-11.
[http://dx.doi.org/10.1523/JNEUROSCI.23-05-01605.2003] [PMID: 12629164]
[103]
Bui NT, Livolsi A, Peyron JF, Prehn JHM. Activation of nuclear factor kappaB and Bcl-x survival gene expression by nerve growth factor requires tyrosine phosphorylation of IkappaBalpha. J Cell Biol 2001; 152(4): 753-64.
[http://dx.doi.org/10.1083/jcb.152.4.753] [PMID: 11266466]
[104]
Carter BD, Kaltschmidt C, Kaltschmidt B, et al. Selective activation of NF-κB by nerve growth factor through the neurotrophin receptor P75. Science (80- ) 1996; 272: 542-5.
[105]
Wood JN. Regulation of NF-kappa B activity in rat dorsal root ganglia and PC12 cells by tumour necrosis factor and nerve growth factor. Neurosci Lett 1995; 192(1): 41-4.
[http://dx.doi.org/10.1016/0304-3940(95)11603-T] [PMID: 7675306]
[106]
Furukawa K, Mattson MP. The transcription factor NF-kappaB mediates increases in calcium currents and decreases in NMDA- and AMPA/kainate-induced currents induced by tumor necrosis factor-α in hippocampal neurons. J Neurochem 1998; 70(5): 1876-86.
[http://dx.doi.org/10.1046/j.1471-4159.1998.70051876.x] [PMID: 9572271]
[107]
Uddin MS, Al Mamun A, Kabir MT, et al. Neuroprotective role of polyphenols against oxidative stress-mediated neurodegeneration. Eur J Pharmacol 2020; 886173412
[http://dx.doi.org/10.1016/j.ejphar.2020.173412] [PMID: 32771668]
[108]
Aqeel Y, Iqbal J, Siddiqui R, Gilani AH, Khan NA. Anti-Acanthamoebic properties of resveratrol and demethoxycurcumin. Exp Parasitol 2012; 132(4): 519-23.
[http://dx.doi.org/10.1016/j.exppara.2012.09.007] [PMID: 23010569]
[109]
Bellaver B, Souza DG, Souza DO, Quincozes-Santos A. Resveratrol increases antioxidant defenses and decreases proinflammatory cytokines in hippocampal astrocyte cultures from newborn, adult and aged Wistar rats. Toxicol In Vitro 2014; 28(4): 479-84.
[http://dx.doi.org/10.1016/j.tiv.2014.01.006] [PMID: 24462605]
[110]
Kuršvietienė L, Stanevičienė I, Mongirdienė A, Bernatonienė J. Multiplicity of effects and health benefits of resveratrol Medicina (Lithuania) 2016; 52: 148-55
[111]
Zhao H, Niu Q, Li X, et al. Long-term resveratrol consumption protects ovariectomized rats chronically treated with D-galactose from developing memory decline without effects on the uterus. Brain Res 2012; 1467: 67-80.
[http://dx.doi.org/10.1016/j.brainres.2012.05.040] [PMID: 22647751]
[112]
Vingtdeux V, Giliberto L, Zhao H, et al. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-β peptide metabolism. J Biol Chem 2010; 285(12): 9100-13.
[http://dx.doi.org/10.1074/jbc.M109.060061] [PMID: 20080969]
[113]
Pallàs M, Ortuño-Sahagún D, Andrés-Benito P, Ponce-Regalado MD, Rojas-Mayorquín AE. Resveratrol in epilepsy: preventive or treatment opportunities? Front Biosci 2014; 19: 1057-64.
[http://dx.doi.org/10.2741/4267] [PMID: 24896336]
[114]
Annabi B, Lord-Dufour S, Vézina A, Béliveau R. Resveratrol targeting of carcinogen-induced brain endothelial cell inflammation biomarkers MMP-9 and COX-2 is Sirt1-independent. Drug Target Insights 2012; 6: 1-11.
[http://dx.doi.org/10.4137/DTI.S9442] [PMID: 22523472]
[115]
Yang SJ, Lim Y. Resveratrol ameliorates hepatic metaflammation and inhibits NLRP3 inflammasome activation. Metabolism 2014; 63(5): 693-701.
[http://dx.doi.org/10.1016/j.metabol.2014.02.003] [PMID: 24629563]
[116]
Capiralla H, Vingtdeux V, Zhao H, et al. Resveratrol mitigates lipopolysaccharide- and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade. J Neurochem 2012; 120(3): 461-72.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07594.x] [PMID: 22118570]
[117]
Kim YA, Lim SY, Rhee SH, et al. Resveratrol inhibits inducible nitric oxide synthase and cyclooxygenase-2 expression in β-amyloid-treated C6 glioma cells. Int J Mol Med 2006; 17(6): 1069-75.
[http://dx.doi.org/10.3892/ijmm.17.6.1069] [PMID: 16685418]
[118]
Marini H, Polito F, Adamo EB, Bitto A, Squadrito F, Benvenga S. Update on genistein and thyroid: an overall message of safety. Front Endocrinol (Lausanne) 2012; 3: 94.
[http://dx.doi.org/10.3389/fendo.2012.00094] [PMID: 23060856]
[119]
Uddin MS, Kabir MT. Emerging signal regulating potential of genistein against Alzheimer’s disease: A promising molecule of interest. Front Cell Dev Biol 2019; 7: 197.
[http://dx.doi.org/10.3389/fcell.2019.00197] [PMID: 31620438]
[120]
Xi YD, Yu HL, Ma WW, et al. Genistein inhibits mitochondrial-targeted oxidative damage induced by beta-amyloid peptide 25-35 in PC12 cells. J Bioenerg Biomembr 2011; 43(4): 399-407.
[http://dx.doi.org/10.1007/s10863-011-9362-7] [PMID: 21732176]
[121]
Valles SL, Dolz-Gaiton P, Gambini J, et al. Estradiol or genistein prevent Alzheimer’s disease-associated inflammation correlating with an increase PPAR γ expression in cultured astrocytes. Brain Res 2010; 1312: 138-44.
[http://dx.doi.org/10.1016/j.brainres.2009.11.044] [PMID: 19948157]
[122]
Isoda H, Talorete TPN, Kimura M, et al. Phytoestrogens genistein and daidzin enhance the acetylcholinesterase activity of the rat pheochromocytoma cell line pc12 by binding to the estrogen receptor. Cytotechnology 40: 117-23.
[http://dx.doi.org/10.1023/A:1023903220539]
[123]
Zhou X, Yuan L, Zhao X, et al. Genistein antagonizes inflammatory damage induced by β-amyloid peptide in microglia through TLR4 and NF-κB. Nutrition 2014; 30(1): 90-5.
[http://dx.doi.org/10.1016/j.nut.2013.06.006] [PMID: 24290604]
[124]
Zhong Z, Han J, Zhang J, Xiao Q, Hu J, Chen L. Pharmacological activities, mechanisms of action, and safety of salidroside in the central nervous system. Drug Des Devel Ther 2018; 12: 1479-89.
[http://dx.doi.org/10.2147/DDDT.S160776] [PMID: 29872270]
[125]
Zhu Y, Shi YP, Wu D, et al. Salidroside protects against hydrogen peroxide-induced injury in cardiac H9c2 cells via PI3K-Akt dependent pathway. DNA Cell Biol 2011; 30(10): 809-19.
[http://dx.doi.org/10.1089/dna.2010.1183] [PMID: 21563965]
[126]
Tan CB, Gao M, Xu WR, Yang XY, Zhu XM, Du GH. Protective effects of salidroside on endothelial cell apoptosis induced by cobalt chloride. Biol Pharm Bull 2009; 32(8): 1359-63.
[http://dx.doi.org/10.1248/bpb.32.1359] [PMID: 19652374]
[127]
Chen X, Zhang Q, Cheng Q, Ding F. Protective effect of salidroside against H2O2-induced cell apoptosis in primary culture of rat hippocampal neurons. Mol Cell Biochem 2009; 332(1-2): 85-93.
[http://dx.doi.org/10.1007/s11010-009-0177-3] [PMID: 19554425]
[128]
Zhang L, Yu H, Sun Y, et al. Protective effects of salidroside on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells. Eur J Pharmacol 2007; 564(1-3): 18-25.
[http://dx.doi.org/10.1016/j.ejphar.2007.01.089] [PMID: 17349619]
[129]
Cao LL, Du GH, Wang MW. The effect of salidroside on cell damage induced by glutamate and intracellular free calcium in PC12 cells. J Asian Nat Prod Res 2006; 8(1-2): 159-65.
[http://dx.doi.org/10.1080/1028602042000325645] [PMID: 16753799]
[130]
Gao J, He H, Jiang W, et al. Salidroside ameliorates cognitive impairment in a d-galactose-induced rat model of Alzheimer’s disease. Behav Brain Res 2015; 293: 27-33.
[http://dx.doi.org/10.1016/j.bbr.2015.06.045] [PMID: 26192909]
[131]
Hu W, Wang G, Li P, et al. Neuroprotective effects of macranthoin G from Eucommia ulmoides against hydrogen peroxide-induced apoptosis in PC12 cells via inhibiting NF-κB activation. Chem Biol Interact 2014; 224: 108-16.
[http://dx.doi.org/10.1016/j.cbi.2014.10.011] [PMID: 25451577]
[132]
Choi SZ, Choi SU, Lee KR. Phytochemical constituents of the aerial parts from Solidago virga-aurea var. gigantea. Arch Pharm Res 2004; 27(2): 164-8.
[http://dx.doi.org/10.1007/BF02980100] [PMID: 15022716]
[133]
Kim JY, Cho JY, Ma YK, et al. Dicaffeoylquinic acid derivatives and flavonoid glucosides from glasswort (Salicornia herbacea l.) and their antioxidative activity. Food Chem 2011; 125: 55-62.
[http://dx.doi.org/10.1016/j.foodchem.2010.08.035]
[134]
Poivre M, Duez P. Biological activity and toxicity of the Chinese herb Magnolia officinalis Rehder & E. Wilson (Houpo) and its constituents. J Zhejiang Univ Sci B 2017; 18(3): 194-214.
[http://dx.doi.org/10.1631/jzus.B1600299] [PMID: 28271656]
[135]
Ock J, Han HS, Hong SH, et al. Obovatol attenuates microglia-mediated neuroinflammation by modulating redox regulation. Br J Pharmacol 2010; 159(8): 1646-62.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00659.x] [PMID: 20397299]
[136]
Choi DY, Lee JW, Peng J, et al. Obovatol improves cognitive functions in animal models for Alzheimer’s disease. J Neurochem 2012; 120(6): 1048-59.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07642.x] [PMID: 22212065]
[137]
Kapoor LD. Handbook of ayurverdic medicinal plants. CRC Press 1990.
[138]
Ooko E, Kadioglu O, Greten HJ, Efferth T. Pharmacogenomic characterization and isobologram analysis of the combination of ascorbic acid and curcumin-two main metabolites of Curcuma longa-in cancer cells. Front Pharmacol 2017; 8: 38.
[http://dx.doi.org/10.3389/fphar.2017.00038] [PMID: 28210221]
[139]
Wei Y, Pu X, Zhao L. Preclinical studies for the combination of paclitaxel and curcumin in cancer therapy.(Review). Oncol Rep 2017; 37(6): 3159-66.
[http://dx.doi.org/10.3892/or.2017.5593] [PMID: 28440434]
[140]
Zhou S, Li J, Xu H, et al. Liposomal curcumin alters chemosensitivity of breast cancer cells to Adriamycin via regulating microRNA expression. Gene 2017; 622: 1-12.
[http://dx.doi.org/10.1016/j.gene.2017.04.026] [PMID: 28431975]
[141]
Abe Y, Hashimoto S, Horie T. Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages. Pharmacol Res 1999; 39(1): 41-7.
[http://dx.doi.org/10.1006/phrs.1998.0404] [PMID: 10051376]
[142]
Ambegaokar SS, Wu L, Alamshahi K, et al. Curcumin inhibits dose-dependently and time-dependently neuroglial cell proliferation and growth. Neuroendocrinol Lett 2003; 24(6): 469-73.
[PMID: 15073579]
[143]
Shakibaei M, John T, Schulze-Tanzil G, Lehmann I, Mobasheri A. Suppression of NF-kappaB activation by curcumin leads to inhibition of expression of cyclo-oxygenase-2 and matrix metalloproteinase-9 in human articular chondrocytes: Implications for the treatment of osteoarthritis. Biochem Pharmacol 2007; 73(9): 1434-45.
[http://dx.doi.org/10.1016/j.bcp.2007.01.005] [PMID: 17291458]
[144]
Singh S, Aggarwal BB. Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane). J Biol Chem 1995; 270(42): 24995-5000.
[http://dx.doi.org/10.1074/jbc.270.42.24995] [PMID: 7559628]
[145]
Liu ZJ, Li ZH, Liu L, et al. Curcumin attenuates beta-amyloid-induced neuroinflammation via activation of peroxisome proliferator-activated receptor-gamma function in a rat model of Alzheimer ’s disease. Front Pharmacol 2016; 7: 261.
[http://dx.doi.org/10.3389/fphar.2016.00261] [PMID: 27594837]
[146]
Salehi B, Mishra AP, Nigam M, et al. Resveratrol: A double-edged sword in health benefits. Biomedicines 2018; 6(3): 91.
[http://dx.doi.org/10.3390/biomedicines6030091] [PMID: 30205595]
[147]
Casadesus G, Shukitt-Hale B, Stellwagen HM, et al. Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats. Nutr Neurosci 2004; 7(5-6): 309-16.
[http://dx.doi.org/10.1080/10284150400020482] [PMID: 15682927]
[148]
Ding G, Fu M, Qin Q, et al. Cardiac peroxisome proliferator-activated receptor γ is essential in protecting cardiomyocytes from oxidative damage. Cardiovasc Res 2007; 76(2): 269-79.
[http://dx.doi.org/10.1016/j.cardiores.2007.06.027] [PMID: 17678635]
[149]
Chang J, Rimando A, Pallas M, et al. Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer’s disease. Neurobiol Aging 2012; 33(9): 2062-71.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.08.015] [PMID: 21982274]
[150]
Martínez de Ubago M, García-Oya I, Pérez-Pérez A, et al. Oleoylethanolamide, a natural ligand for PPAR-alpha, inhibits insulin receptor signalling in HTC rat hepatoma cells. Biochim Biophys Acta 2009; 1791(8): 740-5.
[http://dx.doi.org/10.1016/j.bbalip.2009.03.014] [PMID: 19345745]
[151]
Cichocki M, Paluszczak J, Szaefer H, Piechowiak A, Rimando AM, Baer-Dubowska W. Pterostilbene is equally potent as resveratrol in inhibiting 12-O-tetradecanoylphorbol-13-acetate activated NFkappaB, AP-1, COX-2, and iNOS in mouse epidermis. Mol Nutr Food Res 2008; 52(Suppl. 1): S62-70.
[PMID: 18551458]
[152]
Delerive P, De Bosscher K, Besnard S, et al. Peroxisome proliferator-activated receptor α negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. J Biol Chem 1999; 274(45): 32048-54.
[http://dx.doi.org/10.1074/jbc.274.45.32048] [PMID: 10542237]
[153]
Dragomir E, Tircol M, Manduteanu I, Voinea M, Simionescu M. Aspirin and PPAR-α activators inhibit monocyte chemoattractant protein-1 expression induced by high glucose concentration in human endothelial cells. Vascul Pharmacol 2006; 44(6): 440-9.
[http://dx.doi.org/10.1016/j.vph.2006.02.006] [PMID: 16600694]
[154]
Nunn AVW, Bell J, Barter P. The integration of lipid-sensing and anti-inflammatory effects: how the PPARs play a role in metabolic balance. Nucl Recept 2007; 5(1): 1.
[http://dx.doi.org/10.1186/1478-1336-5-1] [PMID: 17531095]
[155]
Marzouk MSA, El-Toumy SAA, Moharram FA, Shalaby NMM, Ahmed AAE. Pharmacologically active ellagitannins from Terminalia myriocarpa. Planta Med 2002; 68(6): 523-7.
[http://dx.doi.org/10.1055/s-2002-32549] [PMID: 12094296]
[156]
Lin CC, Hsu YF, Lin TC. Effects of punicalagin and punicalin on carrageenan-induced inflammation in rats. Am J Chin Med 1999; 27(3-4): 371-6.
[http://dx.doi.org/10.1142/S0192415X99000422] [PMID: 10592846]
[157]
Watson RR, Preedy VR, Zibadi S. Polyphenols in human health and disease. Elsevier Inc. 2013; pp. 1-2.
[158]
Adams LS, Seeram NP, Aggarwal BB, Takada Y, Sand D, Heber D. Pomegranate juice, total pomegranate ellagitannins, and punicalagin suppress inflammatory cell signaling in colon cancer cells. J Agric Food Chem 2006; 54(3): 980-5.
[http://dx.doi.org/10.1021/jf052005r] [PMID: 16448212]
[159]
Xu X, Yin P, Wan C, et al. Punicalagin inhibits inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4-mediated MAPKs and NF-κB activation. Inflammation 2014; 37(3): 956-65.
[http://dx.doi.org/10.1007/s10753-014-9816-2] [PMID: 24473904]
[160]
Kim T, Lee YK, Park SG, et al. L-theanine, an amino acid in green tea, attenuates β-amyloid-induced cognitive dysfunction and neurotoxicity: Reduction in oxidative damage and inactivation of ERK/P38 kinase and NF-KB pathways. Free Radic Biol Med 2009; 47: 1601-10.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.09.008] [PMID: 19766184]
[161]
Di Mascio P, Kaiser S, Sies H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 1989; 274(2): 532-8.
[http://dx.doi.org/10.1016/0003-9861(89)90467-0] [PMID: 2802626]
[162]
Liu C-C, Huang C-C, Lin W-T, et al. Lycopene supplementation attenuated xanthine oxidase and myeloperoxidase activities in skeletal muscle tissues of rats after exhaustive exercise. Br J Nutr 2005; 94(4): 595-601.
[http://dx.doi.org/10.1079/BJN20051541] [PMID: 16197586]
[163]
Kuhad A, Sharma S, Chopra K. Lycopene attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. Eur J Pain 2008; 12(5): 624-32.
[http://dx.doi.org/10.1016/j.ejpain.2007.10.008] [PMID: 18055235]
[164]
Hsiao G, Fong TH, Tzu NH, Lin KH, Chou DS, Sheu JR. A potent antioxidant, lycopene, affords neuroprotection against microglia activation and focal cerebral ischemia in rats.In Vivo (Brooklyn). 2004; 18: 351-6.
[165]
Fuhrman B, Elis A, Aviram M. Hypocholesterolemic effect of lycopene and β-carotene is related to suppression of cholesterol synthesis and augmentation of LDL receptor activity in macrophages. Biochem Biophys Res Commun 1997; 233(3): 658-62.
[http://dx.doi.org/10.1006/bbrc.1997.6520] [PMID: 9168909]
[166]
Heber D, Lu QY. Overview of mechanisms of action of lycopene. Exp Biol Med (Maywood) 2002; 227(10): 920-3.
[http://dx.doi.org/10.1177/153537020222701013] [PMID: 12424335]
[167]
Riso P, Visioli F, Grande S, et al. Effect of a tomato-based drink on markers of inflammation, immunomodulation, and oxidative stress. J Agric Food Chem 2006; 54(7): 2563-6.
[http://dx.doi.org/10.1021/jf053033c] [PMID: 16569044]
[168]
Gunasekera RS, Sewgobind K, Desai S, et al. Lycopene and lutein inhibit proliferation in rat prostate carcinoma cells. Nutr Cancer 2007; 58(2): 171-7.
[http://dx.doi.org/10.1080/01635580701328339] [PMID: 17640163]
[169]
Lee W, Ku SK, Bae JW, Bae JS. Inhibitory effects of lycopene on HMGB1-mediated pro-inflammatory responses in both cellular and animal models. Food Chem Toxicol 2012; 50(6): 1826-33.
[http://dx.doi.org/10.1016/j.fct.2012.03.003] [PMID: 22429818]
[170]
Marcotorchino J, Romier B, Gouranton E, et al. Lycopene attenuates LPS-induced TNF-α secretion in macrophages and inflammatory markers in adipocytes exposed to macrophage-conditioned media. Mol Nutr Food Res 2012; 56(5): 725-32.
[http://dx.doi.org/10.1002/mnfr.201100623] [PMID: 22648619]
[171]
Sachdeva AK, Chopra K. Lycopene abrogates Aβ(1-42)-mediated neuroinflammatory cascade in an experimental model of Alzheimer’s disease. J Nutr Biochem 2015; 26(7): 736-44.
[http://dx.doi.org/10.1016/j.jnutbio.2015.01.012] [PMID: 25869595]
[172]
Negi AS, Darokar MP, Chattopadhyay SK, et al. Synthesis of a novel plant growth promoter from gallic acid. Bioorg Med Chem Lett 2005; 15(4): 1243-7.
[http://dx.doi.org/10.1016/j.bmcl.2004.11.079] [PMID: 15686951]
[173]
Choi KC, Lee YH, Jung MG, et al. Gallic acid suppresses lipopolysaccharide-induced nuclear factor-kappaB signaling by preventing RelA acetylation in A549 lung cancer cells. Mol Cancer Res 2009; 7(12): 2011-21.
[http://dx.doi.org/10.1158/1541-7786.MCR-09-0239] [PMID: 19996305]
[174]
Kim MJ, Seong AR, Yoo JY, et al. Gallic acid, a histone acetyltransferase inhibitor, suppresses β-amyloid neurotoxicity by inhibiting microglial-mediated neuroinflammation. Mol Nutr Food Res 2011; 55(12): 1798-808.
[http://dx.doi.org/10.1002/mnfr.201100262] [PMID: 22038937]
[175]
Lee YK, Choi IS, Kim YH, et al. Neurite outgrowth effect of 4-O-methylhonokiol by induction of neurotrophic factors through ERK activation. Neurochem Res 2009; 34(12): 2251-60.
[http://dx.doi.org/10.1007/s11064-009-0024-7] [PMID: 19557513]
[176]
Oh JH, La Kang L, Ban JO, et al. Anti-inflammatory effect of 4-o-methylhonokiol, a novel compound isolated from Magnolia officinalis through inhibition of NF-KB. Chem Biol Interact 2009; 180: 506-14.
[http://dx.doi.org/10.1016/j.cbi.2009.03.014] [PMID: 19539808]
[177]
Chen YH, Lin FY, Liu PL, et al. Antioxidative and hepatoprotective effects of magnolol on acetaminophen-induced liver damage in rats. Arch Pharm Res 2009; 32(2): 221-8.
[http://dx.doi.org/10.1007/s12272-009-1139-8] [PMID: 19280152]
[178]
Lee JW, Lee YK, Lee BJ, et al. Inhibitory effect of ethanol extract of Magnolia officinalis and 4-O-methylhonokiol on memory impairment and neuronal toxicity induced by beta-amyloid. Pharmacol Biochem Behav 2010; 95(1): 31-40.
[http://dx.doi.org/10.1016/j.pbb.2009.12.003] [PMID: 20004682]
[179]
Lee JW, Lee YK, Ban JO, et al. Green tea (-)-epigallocatechin-3-gallate inhibits β-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB pathways in mice. J Nutr 2009; 139(10): 1987-93.
[http://dx.doi.org/10.3945/jn.109.109785] [PMID: 19656855]
[180]
Lee YJ, Choi IS, Park MH, et al. 4-O-Methylhonokiol attenuates memory impairment in presenilin 2 mutant mice through reduction of oxidative damage and inactivation of astrocytes and the ERK pathway. Free Radic Biol Med 2011; 50(1): 66-77.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.10.698] [PMID: 20974250]
[181]
Lee YJ, Choi DY, Choi IS, et al. Inhibitory effect of 4-O-methylhonokiol on lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment via inhibition of nuclear factor-kappaB in vitro and in vivo models. J Neuroinflammation 2012; 9: 35.
[http://dx.doi.org/10.1186/1742-2094-9-35] [PMID: 22339795]
[182]
Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther 2017; 2: 17023.
[http://dx.doi.org/10.1038/sigtrans.2017.23] [PMID: 29158945]
[183]
Jha NK, Jha SK, Kar R, Nand P, Swati K, Goswami VK. Nuclear factor-kappa β as a therapeutic target for Alzheimer’s disease. J Neurochem 2019; 150(2): 113-37.
[http://dx.doi.org/10.1111/jnc.14687] [PMID: 30802950]
[184]
Ebrahimi A, Schluesener H. Natural polyphenols against neurodegenerative disorders: potentials and pitfalls. Ageing Res Rev 2012; 11(2): 329-45.
[http://dx.doi.org/10.1016/j.arr.2012.01.006] [PMID: 22336470]
[185]
Millington C, Sonego S, Karunaweera N, et al. Chronic neuroinflammation in Alzheimer’s disease: new perspectives on animal models and promising candidate drugs. BioMed Res Int 2014; 2014309129
[186]
Fraser CC. Exploring the positive and negative consequences of NF-kappaB inhibition for the treatment of human disease. Cell Cycle 2006; 5(11): 1160-3.
[http://dx.doi.org/10.4161/cc.5.11.2773] [PMID: 16721061]
[187]
Bennett J, Capece D, Begalli F, et al. NF-κB in the crosshairs: Rethinking an old riddle. Int J Biochem Cell Biol 2018; 95: 108-12.
[http://dx.doi.org/10.1016/j.biocel.2017.12.020] [PMID: 29277662]
[188]
Kelley BJ, Knopman DS. Alternative medicine and Alzheimer disease. Neurologist 2008; 14(5): 299-306.
[http://dx.doi.org/10.1097/NRL.0b013e318172cf4d] [PMID: 18784599]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy