Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Recent Advances in Molecular Hydrogen Research Reducing Exercise-Induced Oxidative Stress and Inflammation

Author(s): Jonatas E. Nogueira and Luiz G.S. Branco*

Volume 27, Issue 5, 2021

Published on: 13 November, 2020

Page: [731 - 736] Pages: 6

DOI: 10.2174/1381612826666201113100245

Price: $65

Abstract

Physical exercise-induced oxidative stress and inflammation may be beneficial when exercise is a regular activity, but it is rather harmful when exercise is exhaustive and performed by unaccustomed organisms. Molecular hydrogen (H2) has recently appeared as a potent antioxidant and anti-inflammatory molecule in numerous pathological conditions. However, its role is relatively unknown under physiological conditions such as physical exercise. Therefore, this review summarizes the current knowledge of the H2, reducing oxidative stress and inflammation in physical exercise, reporting data from both animal and human studies.

Keywords: Physical exercise, cytokines, ROS, muscle, inflammatory response, plasma, rats, human.

[1]
Kawamura T, Higashida K, Muraoka I. Application of molecular hydrogen as a novel antioxidant in sports science. Oxid Med Cell Longev 2020; 20202328768
[http://dx.doi.org/10.1155/2020/2328768] [PMID: 32015786]
[2]
Pedersen BK, Hoffman-Goetz L. Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev 2000; 80(3): 1055-81.
[http://dx.doi.org/10.1152/physrev.2000.80.3.1055] [PMID: 10893431]
[3]
Kakanis MW, Peake J, Brenu EW, et al. The open window of susceptibility to infection after acute exercise in healthy young male elite athletes. Exerc Immunol Rev 2010; 16: 119-37.
[http://dx.doi.org/10.1016/j.jsams.2010.10.642] [PMID: 20839496]
[4]
Mars M, Govender S, Weston A, Naicker V, Chuturgoon A. High intensity exercise: a cause of lymphocyte apoptosis? Biochem Biophys Res Commun 1998; 249(2): 366-70.
[http://dx.doi.org/10.1006/bbrc.1998.9156] [PMID: 9712702]
[5]
Neves G, Cooke SF, Bliss TV. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 2008; 9(1): 65-75.
[http://dx.doi.org/10.1038/nrn2303] [PMID: 18094707]
[6]
Phaneuf S, Leeuwenburgh C. Apoptosis and exercise. Med Sci Sports Exerc 2001; 33(3): 393-6.
[http://dx.doi.org/10.1097/00005768-200103000-00010] [PMID: 11252065]
[7]
He F, Li J, Liu Z, Chuang CC, Yang W, Zuo L. Redox mechanism of reactive oxygen species in exercise. Front Physiol 2016; 7: 486.
[http://dx.doi.org/10.3389/fphys.2016.00486] [PMID: 27872595]
[8]
Pervaiz N, Hoffman-Goetz L. Immune cell inflammatory cytokine responses differ between central and systemic compartments in response to acute exercise in mice. Exerc Immunol Rev 2012; 18: 142-57.
[PMID: 22876726]
[9]
Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol 2014; 24(10): R453-62.
[http://dx.doi.org/10.1016/j.cub.2014.03.034] [PMID: 24845678]
[10]
Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. FASEB J 1996; 10(7): 709-20.
[http://dx.doi.org/10.1096/fasebj.10.7.8635688] [PMID: 8635688]
[11]
Finkel T. Oxidant signals and oxidative stress. Curr Opin Cell Biol 2003; 15(2): 247-54.
[http://dx.doi.org/10.1016/S0955-0674(03)00002-4] [PMID: 12648682]
[12]
Emerit J, Edeas M, Bricaire F. Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 2004; 58(1): 39-46.
[http://dx.doi.org/10.1016/j.biopha.2003.11.004] [PMID: 14739060]
[13]
Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem 2017; 86: 715-48.
[http://dx.doi.org/10.1146/annurev-biochem-061516-045037] [PMID: 28441057]
[14]
Chen L, Deng H, Cui H, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2017; 9(6): 7204-18.
[http://dx.doi.org/10.18632/oncotarget.23208] [PMID: 29467962]
[15]
Nogueira JE, Passaglia P, Mota CMD, et al. Molecular hydrogen reduces acute exercise-induced inflammatory and oxidative stress status. Free Radic Biol Med 2018; 129: 186-93.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.09.028] [PMID: 30243702]
[16]
Nogueira JE, de Deus JL, Amorim MR, et al. Inhaled molecular hydrogen attenuates intense acute exercise-induced hippocampal inflammation in sedentary rats. Neurosci Lett 2020; 715134577
[http://dx.doi.org/10.1016/j.neulet.2019.134577] [PMID: 31715290]
[17]
Goutianos G, Veskoukis AS, Tzioura A, et al. Plasma from exercised rats administered to sedentary rats induces systemic and tissue inflammation. Physiol Rep 2016; 4(24): 4.
[http://dx.doi.org/10.14814/phy2.13087] [PMID: 28003566]
[18]
Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta 2014; 1843(11): 2563-82.
[http://dx.doi.org/10.1016/j.bbamcr.2014.05.014] [PMID: 24892271]
[19]
Saramago EA, Borges GS, Singolani-Jr CG, et al. Molecular hydrogen potentiates hypothermia and prevents hypotension and fever in LPS-induced systemic inflammation. Brain Behav Immun 2019; 75: 119-28.
[http://dx.doi.org/10.1016/j.bbi.2018.09.027] [PMID: 30261305]
[20]
Yao Y, Zhao D, Li N, et al. Multifunctional Fe3O4@polydopamine@DNA-fueled molecular machine for magnetically targeted intracellular Zn2+ imaging and fluorescence/MRI guided photodynamic-photothermal therapy. Anal Chem 2019; 91(12): 7850-7.
[http://dx.doi.org/10.1021/acs.analchem.9b01591] [PMID: 31117411]
[21]
Yao Y, Li N, Zhang X, et al. DNA-Templated silver nanocluster/porphyrin/MnO2 platform for label-free intracellular Zn2+ imaging and fluorescence-/magnetic resonance imaging-guided photodynamic therapy. ACS Appl Mater Interfaces 2019; 11(15): 13991-4003.
[http://dx.doi.org/10.1021/acsami.9b01530] [PMID: 30901195]
[22]
Zhang Q, Solanki A, Parida K, et al. Tunable ferroelectricity in ruddlesden-popper halide perovskites. ACS Appl Mater Interfaces 2019; 11(14): 13523-32.
[http://dx.doi.org/10.1021/acsami.8b21579] [PMID: 30854841]
[23]
Wu J, Li N, Yao Y, et al. DNA-stabilized silver nanoclusters for label-free fluorescence imaging of cell surface glycans and fluorescence guided photothermal therapy. Anal Chem 2018; 90(24): 14368-75.
[http://dx.doi.org/10.1021/acs.analchem.8b03837] [PMID: 30484316]
[24]
Ge L, Yang M, Yang NN, Yin XX, Song WG. Molecular hydrogen: a preventive and therapeutic medical gas for various diseases. Oncotarget 2017; 8(60): 102653-73.
[http://dx.doi.org/10.18632/oncotarget.21130] [PMID: 29254278]
[25]
Huang L. Molecular hydrogen: a therapeutic antioxidant and beyond. Med Gas Res 2016; 6(4): 219-22.
[http://dx.doi.org/10.4103/2045-9912.196904] [PMID: 28217294]
[26]
Kura B, Bagchi AK, Singal PK, et al. Molecular hydrogen: potential in mitigating oxidative-stress-induced radiation injury. Can J Physiol Pharmacol 2019; 97(4): 287-92.
[http://dx.doi.org/10.1139/cjpp-2018-0604] [PMID: 30543459]
[27]
Ohta S. Recent progress toward hydrogen medicine: potential of molecular hydrogen for preventive and therapeutic applications. Curr Pharm Des 2011; 17(22): 2241-52.
[http://dx.doi.org/10.2174/138161211797052664] [PMID: 21736547]
[28]
Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 2007; 13(6): 688-94.
[http://dx.doi.org/10.1038/nm1577] [PMID: 17486089]
[29]
Qiu P, Liu Y, Zhang J. Recent advances in studies of molecular hydrogen against sepsis. Int J Biol Sci 2019; 15(6): 1261-75.
[http://dx.doi.org/10.7150/ijbs.30741] [PMID: 31223285]
[30]
Dole M, Wilson FR, Fife WP. Hyperbaric hydrogen therapy: a possible treatment for cancer. Science 1975; 190(4210): 152-4.
[http://dx.doi.org/10.1126/science.1166304] [PMID: 1166304]
[31]
Ohta S. Molecular hydrogen as a preventive and therapeutic medical gas: initiation, development and potential of hydrogen medicine. Pharmacol Ther 2014; 144(1): 1-11.
[http://dx.doi.org/10.1016/j.pharmthera.2014.04.006] [PMID: 24769081]
[32]
Cai WW, Zhang MH, Yu YS, Cai JH. Treatment with hydrogen molecule alleviates TNFα-induced cell injury in osteoblast. Mol Cell Biochem 2013; 373(1-2): 1-9.
[http://dx.doi.org/10.1007/s11010-012-1450-4] [PMID: 23212446]
[33]
Itoh T, Hamada N, Terazawa R, et al. Molecular hydrogen inhibits lipopolysaccharide/interferon γ-induced nitric oxide production through modulation of signal transduction in macrophages. Biochem Biophys Res Commun 2011; 411(1): 143-9.
[http://dx.doi.org/10.1016/j.bbrc.2011.06.116] [PMID: 21723254]
[34]
Nakao A, Toyoda Y, Sharma P, Evans M, Guthrie N. Effectiveness of hydrogen rich water on antioxidant status of subjects with potential metabolic syndrome-an open label pilot study. J Clin Biochem Nutr 2010; 46(2): 140-9.
[http://dx.doi.org/10.3164/jcbn.09-100] [PMID: 20216947]
[35]
Qiu X, Li H, Tang H, et al. Hydrogen inhalation ameliorates lipopolysaccharide-induced acute lung injury in mice. Int Immunopharmacol 2011; 11(12): 2130-7.
[http://dx.doi.org/10.1016/j.intimp.2011.09.007] [PMID: 22015602]
[36]
Ikeda M, Shimizu K, Ogura H, et al. Hydrogen-rich saline regulates intestinal barrier dysfunction, dysbiosis, and bacterial translocation in a murine model of sepsis. Shock 2018; 50(6): 640-7.
[http://dx.doi.org/10.1097/SHK.0000000000001098] [PMID: 29293174]
[37]
Zheng H, Yu YS. Chronic hydrogen-rich saline treatment attenuates vascular dysfunction in spontaneous hypertensive rats. Biochem Pharmacol 2012; 83(9): 1269-77.
[http://dx.doi.org/10.1016/j.bcp.2012.01.031] [PMID: 22342731]
[38]
Itoh T, Fujita Y, Ito M, et al. Molecular hydrogen suppresses FcepsilonRI-mediated signal transduction and prevents degranulation of mast cells. Biochem Biophys Res Commun 2009; 389(4): 651-6.
[http://dx.doi.org/10.1016/j.bbrc.2009.09.047] [PMID: 19766097]
[39]
Yu YS, Zheng H. Chronic hydrogen-rich saline treatment reduces oxidative stress and attenuates left ventricular hypertrophy in spontaneous hypertensive rats. Mol Cell Biochem 2012; 365(1-2): 233-42.
[http://dx.doi.org/10.1007/s11010-012-1264-4] [PMID: 22350760]
[40]
Xu XF, Zhang J. Saturated hydrogen saline attenuates endotoxin-induced acute liver dysfunction in rats. Physiol Res 2013; 62(4): 395-403.
[http://dx.doi.org/10.33549/physiolres.932515] [PMID: 23961899]
[41]
Zhang J, Wu Q, Song S, et al. Effect of hydrogen-rich water on acute peritonitis of rat models. Int Immunopharmacol 2014; 21(1): 94-101.
[http://dx.doi.org/10.1016/j.intimp.2014.04.011] [PMID: 24793096]
[42]
Fang S, Li X, Wei X, et al. Beneficial effects of hydrogen gas inhalation on a murine model of allergic rhinitis. Exp Ther Med 2018; 16(6): 5178-84.
[http://dx.doi.org/10.3892/etm.2018.6880] [PMID: 30542474]
[43]
Chen H, Xie K, Han H, et al. Molecular hydrogen protects mice against polymicrobial sepsis by ameliorating endothelial dysfunction via an Nrf2/HO-1 signaling pathway. Int Immunopharmacol 2015; 28(1): 643-54.
[http://dx.doi.org/10.1016/j.intimp.2015.07.034] [PMID: 26253656]
[44]
Xie K, Yu Y, Huang Y, et al. Molecular hydrogen ameliorates lipopolysaccharide-induced acute lung injury in mice through reducing inflammation and apoptosis. Shock 2012; 37(5): 548-55.
[PMID: 22508291]
[45]
Kajiya M, Sato K, Silva MJB, et al. Hydrogen from intestinal bacteria is protective for Concanavalin A-induced hepatitis. Biochem Biophys Res Commun 2009; 386(2): 316-21.
[PMID: 19523450]
[46]
Xu Z, Zhou JR, Cai JM, Zhu Z, Sun XJ, Jiang CL. Anti-inflammation effects of hydrogen saline in LPS activated macrophages and carrageenan induced paw oedema. J Inflamm Lon 2012; p. 9.
[http://dx.doi.org/10.1186/1476-9255-9-2]
[47]
Chen HG, Xie KL, Han HZ, et al. Heme oxygenase-1 mediates the anti-inflammatory effect of molecular hydrogen in LPS-stimulated RAW 264.7 macrophages. Int J Surg 2013; 11(10): 1060-6.
[http://dx.doi.org/10.1016/j.ijsu.2013.10.007] [PMID: 24148794]
[48]
Zhou J, Yan P, Zhu XD, Yu KJ. Hydrogen mitigates acute lung injury through upregulation of M2 and downregulation of M1 macrophage phenotypes. Int J Clin Exp Med 2018; 11: 7927-35.
[49]
Tsubone H, Hanafusa M, Endo M, et al. Effect of treadmill exercise and hydrogen-rich water intake on serum oxidative and anti-oxidative metabolites in serum of thoroughbred horses. J Equine Sci 2013; 24(1): 1-8.
[http://dx.doi.org/10.1294/jes.24.1] [PMID: 24833996]
[50]
Yamazaki M, Kusano K, Ishibashi T, Kiuchi M, Koyama K. Intravenous infusion of H2-saline suppresses oxidative stress and elevates antioxidant potential in Thoroughbred horses after racing exercise. Sci Rep 2015; 5: 15514.
[http://dx.doi.org/10.1038/srep15514] [PMID: 26493164]
[51]
Ara J, Fadriquela A, Ahmed MF, et al. Hydrogen water drinking exerts antifatigue effects in chronic forced swimming mice via antioxidative and anti-inflammatory activities. BioMed Res Int 2018; 20182571269
[http://dx.doi.org/10.1155/2018/2571269] [PMID: 29850492]
[52]
Green HF, Nolan YM. Inflammation and the developing brain: consequences for hippocampal neurogenesis and behavior. Neurosci Biobehav Rev 2014; 40: 20-34.
[http://dx.doi.org/10.1016/j.neubiorev.2014.01.004] [PMID: 24462889]
[53]
Homi HM, Freitas JJ, Curi R, Velasco IT, Junior BA. Changes in superoxide dismutase and catalase activities of rat brain regions during early global transient ischemia/reperfusion. Neurosci Lett 2002; 333(1): 37-40.
[http://dx.doi.org/10.1016/S0304-3940(02)00983-7] [PMID: 12401555]
[54]
Kawamura T, Fujii R, Higashida K, Muraoka I. Hydrogen water intake may suppress liver glycogen utilization without affecting redox biomarkers during exercise in rats. Gazz Med Ital- Arch Sci Med 2019; 178: 611-7.
[http://dx.doi.org/10.23736/S0393-3660.18.03912-8]
[55]
Hsu YJ, Huang WC, Chiu CC, et al. Capsaicin supplementation reduces physical fatigue and improves exercise performance in mice. Nutrients 2016; 8(10): 8.
[http://dx.doi.org/10.3390/nu8100648] [PMID: 27775591]
[56]
Aoki K, Nakao A, Adachi T, Matsui Y, Miyakawa S. Pilot study: Effects of drinking hydrogen-rich water on muscle fatigue caused by acute exercise in elite athletes. Med Gas Res 2012; 2: 12.
[http://dx.doi.org/10.1186/2045-9912-2-12] [PMID: 22520831]
[57]
Sun YP, Sun L. Selective protective effect of hydrogen water on free radical injury of athletes after high-intensity exercise. Biomedical Research-India 2017; 28: 4558-61.
[58]
Shin D-S, Jung S-H, Hong E-Y, et al. Removal effect of hydrogen water drinking on exercise-induced production of reactive oxygen species in adult men and women. Exerc Sci 2018; 27: 289-95.
[http://dx.doi.org/10.15857/ksep.2018.27.4.289]
[59]
Kawamura T, Gando Y, Takahashi M, Hara R, Suzuki K, Muraoka I. Effects of hydrogen bathing on exercise-induced oxidative stress and delayed-onset muscle soreness. Japanese J Phys Fitness Sports Med 2016; 65: 297-305.
[http://dx.doi.org/10.7600/jspfsm.65.297]
[60]
Kawamura T, Suzuki K, Takahashi M, et al. Involvement of neutrophil dynamics and function in exercise-induced muscle damage and delayed-onset muscle soreness: effect of hydrogen bath. Antioxidants 2018; 7(10): 7.
[http://dx.doi.org/10.3390/antiox7100127] [PMID: 30257503]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy