Generic placeholder image

Venoms and Toxins

Editor-in-Chief

ISSN (Print): 2666-1217
ISSN (Online): 2666-1225

Review Article

Neurotoxic Mechanism and Shortcomings of MPTP, 6-OHDA, Rotenone and Paraquat-induced Parkinson’s Disease Animal Models

Author(s): Samuel Kumi Okyere, Chaorong Zeng, Dong Yue and Yanchun Hu*

Volume 1, Issue 1, 2021

Published on: 04 November, 2020

Page: [27 - 40] Pages: 14

DOI: 10.2174/2666121701999201104163407

Abstract

Parkinson’s disease (PD) has caused most economies to lose their active human capital. Due to poor understanding of the pathophysiology of PD, PD animal models were developed to aid the investigation of PD pathogenesis and therapy. Currently, the toxin-induced and the genetic animal models are being used for most PD research.

Most neurotoxin animal model studies on PD are focused on the motor features and economic importance associated with dopamine depletion; however, the molecular pathways for cell loss by these models and its usefulness in PD drug development have not been reported fully. In this review, we have provided a summary of the toxic mechanism and shortcomings of four neurotoxins (6-OHDA, MPTP, Rotenone and, Paraquat) that are frequently used to mimic PD in animal models. This review will give readers basic knowledge for selecting the best toxin for a specific PD experiment and also provide information that will help in the future development of toxins with fewer shortcomings. This review also summarizes the mechanism and features of some PD genetic models.

Keywords: Parkinson`s disease (PD), etiology, pathogenesis, toxin-induced model, genetic models, neurotoxic mechanism, shortcomings.

Graphical Abstract

[1]
Kikuchi, T.; Morizane, A.; Doi, D.; Magotani, H.; Onoe, H.; Hayashi, T.; Mizuma, H.; Takara, S.; Takahashi, R.; Inoue, H.; Morita, S.; Yamamoto, M.; Okita, K.; Nakagawa, M.; Parmar, M.; Takahashi, J. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature, 2017, 548(7669), 592-596.
[http://dx.doi.org/10.1038/nature23664] [PMID: 28858313]
[2]
Lu, J-M.; Zhou, H-G. Evaluation on behaviors and neuron morphology of Parkinson’s disease rat model. Zhongguo Linchuang Kangfu, 2004, 8, 180-3182.
[3]
Reeve, A.; Simcox, E.; Turnbull, D. Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Res. Rev., 2014, 14, 19-30.
[http://dx.doi.org/10.1016/j.arr.2014.01.004] [PMID: 24503004]
[4]
Meireles, J.; Massano, J. Cognitive impairment and dementia in Parkinson’s disease: clinical features, diagnosis, and management. Front. Neurol., 2012, 3, 88.
[http://dx.doi.org/10.3389/fneur.2012.00088] [PMID: 22654785]
[5]
Petit, G.H.; Olsson, T.T.; Brundin, P. The future of cell therapies and brain repair: Parkinson’s disease leads the way. Neuropathol. Appl. Neurobiol., 2014, 40(1), 60-70.
[http://dx.doi.org/10.1111/nan.12110] [PMID: 24372386]
[6]
Bhardwaj, R.; Deshmukh, R. Parkinson’s Disease: An Insight into Mechanisms and Model Systems. Int. J. Med. Res. Health Sci., 2018, 7, 38-51.
[7]
Klasser, G.D.; Fischer, D.J.; Epstein, J.B. Burning mouth syndrome: recognition, understanding, and management. Oral Maxillofac. Surg. Clin. North Am., 2008, 20(2), 255-271. , vii.
[http://dx.doi.org/10.1016/j.coms.2007.12.012] [PMID: 18343329]
[8]
Blesa, J.; Phani, S.; Jackson-Lewis, V.; Przedborski, S. Classic and new animal models of Parkinson’s disease. J. Biomed. Biotechnol., 2012, 2012, 845618.
[http://dx.doi.org/10.1155/2012/845618] [PMID: 22536024]
[9]
Chai, C.; Lim, K-L. Genetic insights into sporadic Parkinson’s disease pathogenesis. Curr. Genomics, 2013, 14(8), 486-501.
[http://dx.doi.org/10.2174/1389202914666131210195808] [PMID: 24532982]
[10]
Tanner, C.M.; Langston, J.W. Do environmental toxins cause Parkinson’s disease? A critical review. Neurology, 1990, 40(10)(Suppl. 3), 17-30.
[PMID: 2215971]
[11]
Caudle, W.M. Occupational exposures and parkinsonism. Handb. Clin. Neurol., 2015, 131, 225-239.
[http://dx.doi.org/10.1016/B978-0-444-62627-1.00013-5] [PMID: 26563792]
[12]
De lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol., 2006, 5, 525-535.
[http://dx.doi.org/10.1016/S1474-4422(06)70471-9]
[13]
Bjørklund, G.; Stejskal, V.; Urbina, M.A.; Dadar, M.; Chirumbolo, S.; Mutter, J. Metals and Parkinson’s Disease: Mechanisms and Biochemical Processes. Curr. Med. Chem., 2018, 25(19), 2198-2214.
[http://dx.doi.org/10.2174/0929867325666171129124616] [PMID: 29189118]
[14]
Firestone, J.A.; Smith-Weller, T.; Franklin, G.; Swanson, P.; Longstreth, W.T., Jr; Checkoway, H. Pesticides and risk of Parkinson disease: a population-based case-control study. Arch. Neurol., 2005, 62(1), 91-95.
[http://dx.doi.org/10.1001/archneur.62.1.91] [PMID: 15642854]
[15]
Langston, J.W.; Ballard, P.; Tetrud, J.W.; Irwin, I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 1983, 219(4587), 979-980.
[http://dx.doi.org/10.1126/science.6823561] [PMID: 6823561]
[16]
Corti, O.; Lesage, S.; Brice, A. What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol. Rev., 2011, 91(4), 1161-1218.
[http://dx.doi.org/10.1152/physrev.00022.2010] [PMID: 22013209]
[17]
Mata, I.F.; Lockhart, P.J.; Farrer, M.J. Parkin genetics: one model for Parkinson’s disease. Hum. Mol. Genet., 2004, 13(Spec No 1), R127-R133.
[http://dx.doi.org/10.1093/hmg/ddh089] [PMID: 14976155]
[18]
Ikebe, S.; Tanaka, M.; Ozawa, T. Point mutations of mitochondrial genome in Parkinson’s disease. Brain Res. Mol. Brain Res., 1995, 28(2), 281-295.
[http://dx.doi.org/10.1016/0169-328X(94)00209-W] [PMID: 7723627]
[19]
Polymeropoulos, M.H.; Lavedan, C.; Leroy, E.; Ide, S.E.; Dehejia, A.; Dutra, A.; Pike, B.; Root, H.; Rubenstein, J.; Boyer, R.; Stenroos, E.S.; Chandrasekharappa, S.; Athanassiadou, A.; Papapetropoulos, T.; Johnson, W.G.; Lazzarini, A.M.; Duvoisin, R.C.; Di Iorio, G.; Golbe, L.I.; Nussbaum, R.L. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science, 1997, 276(5321), 2045-2047.
[http://dx.doi.org/10.1126/science.276.5321.2045] [PMID: 9197268]
[20]
Chung, K.K.; Thomas, B.; Li, X.; Pletnikova, O.; Troncoso, J.C.; Marsh, L.; Dawson, V.L.; Dawson, T.M. S-nitrosylation of parkin regulates ubiquitination and compromises parkin’s protective function. Science, 2004, 304(5675), 1328-1331.
[http://dx.doi.org/10.1126/science.1093891] [PMID: 15105460]
[21]
Ben Gedalya, T.; Loeb, V.; Israeli, E.; Altschuler, Y.; Selkoe, D.J.; Sharon, R. Alpha-synuclein and polyunsaturated fatty acids promote clathrin-mediated endocytosis and synaptic vesicle recycling. Traffic, 2009, 10(2), 218-234.
[http://dx.doi.org/10.1111/j.1600-0854.2008.00853.x] [PMID: 18980610]
[22]
Koprich, J.B.; Johnston, T.H.; Huot, P.; Reyes, M.G.; Espinosa, M.; Brotchie, J.M. Progressive neurodegeneration or endogenous compensation in an animal model of Parkinson’s disease produced by decreasing doses of alpha-synuclein. PLoS One, 2011, 6(3), e17698.
[http://dx.doi.org/10.1371/journal.pone.0017698] [PMID: 21408191]
[23]
Polymeropoulos, M.H. Autosomal dominant Parkinson’s disease. J. Neurol., 1998, 245(11)(Suppl. 3), 1-3.
[http://dx.doi.org/10.1007/PL00007740] [PMID: 9808333]
[24]
Jenner, P.; Olanow, C.W. Understanding cell death in Parkinson’s disease. Ann. Neurol., 1998, 44(3)(Suppl. 1), S72-S84.
[http://dx.doi.org/10.1002/ana.410440712] [PMID: 9749577]
[25]
Sardi, S.P.; Cedarbaum, J.M.; Brundin, P. Targeted therapies for Parkinson’s disease: from genetics to the clinic. Mov. Disord., 2018, 33(5), 684-696.
[http://dx.doi.org/10.1002/mds.27414] [PMID: 29704272]
[26]
Brundin, P.; Dave, K.D.; Kordower, J.H. Therapeutic approaches to target alpha-synuclein pathology. Exp. Neurol., 2017, 298(Pt B), 225-235.
[http://dx.doi.org/10.1016/j.expneurol.2017.10.003] [PMID: 28987463]
[27]
Healy, D.G.; Falchi, M.; O’Sullivan, S.S.; Bonifati, V.; Durr, A.; Bressman, S.; Brice, A.; Aasly, J.; Zabetian, C.P.; Goldwurm, S.; Ferreira, J.J.; Tolosa, E.; Kay, D.M.; Klein, C.; Williams, D.R.; Marras, C.; Lang, A.E.; Wszolek, Z.K.; Berciano, J.; Schapira, A.H.; Lynch, T.; Bhatia, K.P.; Gasser, T.; Lees, A.J.; Wood, N.W. International LRRK2 Consortium. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol., 2008, 7(7), 583-590.
[http://dx.doi.org/10.1016/S1474-4422(08)70117-0] [PMID: 18539534]
[28]
Cookson, M.R. LRRK2 pathways leading to neurodegeneration. Curr. Neurol. Neurosci. Rep., 2015, 15(7), 42.
[http://dx.doi.org/10.1007/s11910-015-0564-y] [PMID: 26008812]
[29]
Goldberg, M.S.; Pisani, A.; Haburcak, M.; Vortherms, T.A.; Kitada, T.; Costa, C.; Tong, Y.; Martella, G.; Tscherter, A.; Martins, A.; Bernardi, G.; Roth, B.L.; Pothos, E.N.; Calabresi, P.; Shen, J. Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron, 2005, 45(4), 489-496.
[http://dx.doi.org/10.1016/j.neuron.2005.01.041] [PMID: 15721235]
[30]
Zigmond, MJ Burkes, RE Pathophysiology of Parkinson disease. neurophycho pharmacology: The fifth generation, 2002, 123, 1-14.
[31]
Kumar, P.; Kumar, P.; Khan, A.; Deshmukh, R.; Lal Sharma, P. Role of neurosteroids in experimental 3-nitropropionic acid induced neurotoxicity in rats. Eur. J. Pharmacol., 2014, 723, 38-45.
[http://dx.doi.org/10.1016/j.ejphar.2013.11.036] [PMID: 24333475]
[32]
Aroso, M.; Ferreira, R.; Freitas, A.; Vitorino, R.; Gomez-Lazaro, M. New insights on the mitochondrial proteome plasticity in Parkinson’s disease. Proteomics Clin. Appl., 2016, 10(4), 416-429.
[http://dx.doi.org/10.1002/prca.201500092] [PMID: 26749507]
[33]
Olanow, C.W. A radical hypothesis for neurodegeneration. Trends Neurosci., 1993, 16(11), 439-444.
[http://dx.doi.org/10.1016/0166-2236(93)90070-3] [PMID: 7507613]
[34]
Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact., 2006, 160(1), 1-40.
[http://dx.doi.org/10.1016/j.cbi.2005.12.009] [PMID: 16430879]
[35]
Devore, E.E.; Grodstein, F.; van Rooij, F.J.; Hofman, A.; Stampfer, M.J.; Witteman, J.C.; Breteler, M.M. Dietary antioxidants and long-term risk of dementia. Arch. Neurol., 2010, 67(7), 819-825.
[http://dx.doi.org/10.1001/archneurol.2010.144] [PMID: 20625087]
[36]
Rodriguez-Pallares, J.; Parga, J.A.; Joglar, B.; Guerra, M.J.; Labandeira-Garcia, J.L. Mitochondrial ATP-sensitive potassium channels enhance angiotensin-induced oxidative damage and dopaminergic neuron degeneration. Relevance for aging-associated susceptibility to Parkinson’s disease. Age (Dordr.), 2012, 34(4), 863-880.
[http://dx.doi.org/10.1007/s11357-011-9284-7] [PMID: 21713375]
[37]
Schapira, A.H.V.; Cooper, J.M.M.; Dexter, D.; Clark, J.B.; Jenner, P.; Marsden, C.D. Mitochondrial complex I deficiency in Parkinson’s disease. J. Neurochem., 1990, 54(3), 823-827.
[http://dx.doi.org/10.1111/j.1471-4159.1990.tb02325.x] [PMID: 2154550]
[38]
Sengstock, G.J.; Olanow, C.W.; Dunn, A.J.; Barone, S., Jr; Arendash, G.W. Progressive changes in striatal dopaminergic markers, nigral volume, and rotational behavior following iron infusion into the rat substantia nigra. Exp. Neurol., 1994, 130(1), 82-94.
[http://dx.doi.org/10.1006/exnr.1994.1187] [PMID: 7529713]
[39]
Fukushima, T.; Tan, X.; Luo, Y.; Wang, P.; Song, J.; Kanda, H.; Hayakawa, T.; Kumagai, T.; Kakamu, T.; Tsuji, M.; Hidaka, T.; Mori, Y. Heavy metals in blood and urine and its relation to depressive symptoms in Parkinson’s disease patients. Fukushima J. Med. Sci., 2013, 59(2), 76-80.
[http://dx.doi.org/10.5387/fms.59.76] [PMID: 24500382]
[40]
Gibb, W.R.; Scott, T.; Lees, A.J. Neuronal inclusions of Parkinson’s disease. Mov. Disord., 1991, 6(1), 2-11.
[http://dx.doi.org/10.1002/mds.870060103] [PMID: 1848677]
[41]
Dawson, T.M.; Ko, H.S.; Dawson, V.L. Genetic animal models of Parkinson’s disease. Neuron, 2010, 66(5), 646-661.
[http://dx.doi.org/10.1016/j.neuron.2010.04.034] [PMID: 20547124]
[42]
Choudhury, A.; Chakraborty, I.; Banerjee, T.S.; Vana, D.R.; Adapa, D. Efficacy of morin as a potential therapeutic phytocomponent: Insights into the mechanism of action. Int. J. Med. Research Health Sci., 2017, 6, 175-194.
[43]
Chesselet, M.F.; Richter, F. Modelling of Parkinson’s disease in mice. Lancet Neurol., 2011, 10(12), 1108-1118.
[http://dx.doi.org/10.1016/S1474-4422(11)70227-7] [PMID: 22094131]
[44]
Tieu, K. A guide to neurotoxic animal models of Parkinson’s disease. Cold Spring Harb. Perspect. Med., 2011, 1(1), a009316.
[http://dx.doi.org/10.1101/cshperspect.a009316] [PMID: 22229125]
[45]
Penttinen, A.M.; Suleymanova, I.; Albert, K.; Anttila, J.; Voutilainen, M.H.; Airavaara, M. Characterization of a new low-dose 6-hydroxydopamine model of Parkinson’s disease in rat. J. Neurosci. Res., 2016, 94(4), 318-328.
[http://dx.doi.org/10.1002/jnr.23708] [PMID: 26762168]
[46]
Blandini, F.; Armentero, M.T. Animal models of Parkinson’s disease. FEBS J., 2012, 279(7), 1156-1166.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08491.x] [PMID: 22251459]
[47]
Glinka, Y.; Tipton, K.F.; Youdim, M.B. Nature of inhibition of mitochondrial respiratory complex I by 6-Hydroxydopamine. J. Neurochem., 1996, 66(5), 2004-2010.
[http://dx.doi.org/10.1046/j.1471-4159.1996.66052004.x] [PMID: 8780029]
[48]
Ungerstedt, U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur. J. Pharmacol., 1968, 5(1), 107-110.
[http://dx.doi.org/10.1016/0014-2999(68)90164-7] [PMID: 5718510]
[49]
Bové, J.; Perier, C. Neurotoxin-based models of Parkinson’s disease. Neuroscience, 2012, 211, 51-76.
[http://dx.doi.org/10.1016/j.neuroscience.2011.10.057] [PMID: 22108613]
[50]
Malmfors, T.; Sachs, C. Degeneration of adrenergic nerves produced by 6-hydroxydopamine. Eur. J. Pharmacol., 1968, 3(1), 89-92.
[http://dx.doi.org/10.1016/0014-2999(68)90056-3] [PMID: 5654676]
[51]
Thiele, S.L.; Warre, R.; Nash, J.E. Development of a unilaterally-lesioned 6-OHDA mouse model of Parkinson’s disease. J. Vis. Exp., 2012, 60(60), 3234.
[http://dx.doi.org/10.3791/3234] [PMID: 22370630]
[52]
Blandini, F.; Armentero, M.T.; Martignoni, E. The 6-hydroxydopamine model: news from the past. Parkinsonism Relat. Disord., 2008, 14(Suppl. 2), S124-S129.
[http://dx.doi.org/10.1016/j.parkreldis.2008.04.015] [PMID: 18595767]
[53]
Zigmond, M.J.; Berger, T.W.; Grace, A.A.; Stricker, E.M. Compensatory responses to nigrostriatal bundle injury. Studies with 6-hydroxydopamine in an animal model of parkinsonism. Mol. Chem. Neuropathol., 1989, 10(3), 185-200.
[http://dx.doi.org/10.1007/BF03159728] [PMID: 2504173]
[54]
Blesa, J.; Trigo-Damas, I.; Quiroga-Varela, A.; Del Rey, N.L.G. Animal Models of Parkinson’s Disease. Challenges in Parkinson’s Disease. Challenges in Parkinson's Disease, Jolanta Dorszewska and Wojciech Kozubski, IntechOpen, 2016.https://www.intechopen.com/books/challenges-in-parkinson-s-disease/animal-models-of-parkinson-s-disease
[http://dx.doi.org/10.5772/63328]
[55]
Vijayanathan, Y.; Lim, F.T.; Lim, S.M.; Long, C.M.; Tan, M.P.; Majeed, A.B.A.; Ramasamy, K. 6-OHDA-Lesioned Adult Zebrafish as a Useful Parkinson’s Disease Model for Dopaminergic Neuroregeneration. Neurotox. Res., 2017, 32(3), 496-508.
[http://dx.doi.org/10.1007/s12640-017-9778-x] [PMID: 28707266]
[56]
Khalili, A.; Peimani, A.R.; Safarian, N.; Youssef, K.; Zoidl, G.; Rezai, P. Phenotypic chemical and mutant screening of zebrafish larvae using an on-demand response to electric stimulation. Integr. Biol., 2019, 11(10), 373-383.
[http://dx.doi.org/10.1093/intbio/zyz031] [PMID: 31851358]
[57]
Hernandez-Baltazar, D.; Zavala-Flores, L.M.; Villanueva-Olivo, A. The 6-hydroxydopamine model and parkinsonian pathophysiology: Novel findings in an older model. Neurologia, 2017, 32(8), 533-539. [English Edition].
[http://dx.doi.org/10.1016/j.nrl.2015.06.011] [PMID: 26304655]
[58]
Sachs, C.; Jonsson, G. Mechanisms of action of 6-hydroxydopamine. Biochem. Pharmacol., 1975, 24(1), 1-8.
[http://dx.doi.org/10.1016/0006-2952(75)90304-4] [PMID: 1092302]
[59]
Przedborski, S.; Tieu, K. Toxic animal models.Neurodegenerative diseases; Beal, M.F., Ed.; Cambridge University Press: Cambridge, USA, 2006, pp. 196-221.
[60]
Sarre, S.; Yuan, H.; Jonkers, N.; Van Hemelrijck, A.; Ebinger, G.; Michotte, Y. In vivo characterization of somatodendritic dopamine release in the substantia nigra of 6-hydroxydopamine-lesioned rats. J. Neurochem., 2004, 90(1), 29-39.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02471.x] [PMID: 15198664]
[61]
Jeon, B.S.; Jackson-Lewis, V.; Burke, R.E. 6-Hydroxydopamine lesion of the rat substantia nigra: time course and morphology of cell death. Neurodegeneration, 1995, 4(2), 131-137.
[http://dx.doi.org/10.1006/neur.1995.0016] [PMID: 7583676]
[62]
Saner, A.; Thoenen, H. Model experiments on the molecular mechanism of action of 6-hydroxydopamine. Mol. Pharmacol., 1971, 7(2), 147-154.
[PMID: 5125851]
[63]
Hwang, O. Role of oxidative stress in Parkinson’s disease. Exp. Neurobiol., 2013, 22(1), 11-17.
[http://dx.doi.org/10.5607/en.2013.22.1.11] [PMID: 23585717]
[64]
Prajapati, S.K.; Garabadu, D.; Krishnamurthy, S. Coenzyme Q10 prevents mitochondrial dysfunction and facilitates pharmacological activity of atorvastatin in 6-OHDA induced dopaminergic toxicity in rats. Neurotox. Res., 2017, 31(4), 478-492.
[http://dx.doi.org/10.1007/s12640-016-9693-6] [PMID: 28130746]
[65]
Ilijic, E.; Guzman, J.N.; Surmeier, D.J. The L-type channel antagonist isradipine is neuroprotective in a mouse model of Parkinson’s disease. Neurobiol. Dis., 2011, 43(2), 364-371.
[http://dx.doi.org/10.1016/j.nbd.2011.04.007] [PMID: 21515375]
[66]
Dauer, W.; Przedborski, S. Parkinson’s disease: mechanisms and models. Neuron, 2003, 39(6), 889-909.
[http://dx.doi.org/10.1016/S0896-6273(03)00568-3] [PMID: 12971891]
[67]
Salari, S.; Bagheri, M. In vivo, in vitro and pharmacologic models of Parkinson’s disease. Physiol. Res., 2019, 68(1), 17-24.
[http://dx.doi.org/10.33549/physiolres.933895] [PMID: 30433804]
[68]
Javoy, F.; Sotelo, C.; Herbet, A.; Agid, Y. Specificity of dopaminergic neuronal degeneration induced by intracerebral injection of 6-hydroxydopamine in the nigrostriatal dopamine system. Brain Res., 1976, 102(2), 201-215.
[http://dx.doi.org/10.1016/0006-8993(76)90877-5] [PMID: 1247882]
[69]
Wei, R.; Rong, C.; Xie, Q.; Wu, S.; Feng, Y.; Wang, R. … Lin T. Neuroprotective Effect of Optimized Yinxieling Formula in 6-OHDA-Induced Chronic Model of Parkinson’s Disease through the Inflammation Pathway. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-11.
[http://dx.doi.org/10.1155/2019/9348075]
[70]
Offenburger, S-L.; Ho, X.Y.; Tachie-Menson, T.; Coakley, S.; Hilliard, M.A.; Gartner, A. 6-OHDA-induced dopaminergic neurodegeneration in Caenorhabditis elegans is promoted by the engulfment pathway and inhibited by the transthyretin-related protein TTR-33. PLoS Genet., 2018, 14(1), e1007125.
[http://dx.doi.org/10.1371/journal.pgen.1007125] [PMID: 29346382]
[71]
Voronin, M.V.; Kadnikov, I.A.; Voronkov, D.N.; Seredenin, S.B. Chaperone Sigma1R mediates the neuroprotective action of afobazole in the 6-OHDA model of Parkinson’s disease. Sci. Rep., 2019, 9(1), 17020.
[http://dx.doi.org/10.1038/s41598-019-53413-w] [PMID: 31745133]
[72]
Vieira, J.C.F.; Bassani, T.B.; Santiago, R.M. de O Guaita, G.; Zanoveli, J.M.; da Cunha, C.; Vital, M.A.B.F. Anxiety-like behavior induced by 6-OHDA animal model of Parkinson’s disease may be related to a dysregulation of neurotransmitter systems in brain areas related to anxiety. Behav. Brain Res., 2019, 371, , 111981..
[http://dx.doi.org/10.1016/j.bbr.2019.111981] [PMID: 31141725]
[73]
Barnum, C.J.; Bhide, N.; Lindenbach, D.; Surrena, M.A.; Goldenberg, A.A.; Tignor, S.; Klioueva, A.; Walters, H.; Bishop, C. Effects of noradrenergic denervation on L-DOPA-induced dyskinesia and its treatment by α- and β-adrenergic receptor antagonists in hemiparkinsonian rats. Pharmacol. Biochem. Behav., 2012, 100(3), 607-615.
[http://dx.doi.org/10.1016/j.pbb.2011.09.009] [PMID: 21978941]
[74]
Chan, C.S.; Gertler, T.S.; Surmeier, D.J. A molecular basis for the increased vulnerability of substantia nigra dopamine neurons in aging and Parkinson’s disease. Mov. Disord., 2010, 25(Suppl. 1), S63-S70.
[http://dx.doi.org/10.1002/mds.22801] [PMID: 20187241]
[75]
Schuster, S.; Doudnikoff, E.; Rylander, D.; Berthet, A.; Aubert, I.; Ittrich, C.; Bloch, B.; Cenci, M.A.; Surmeier, D.J.; Hengerer, B.; Bezard, E. Antagonizing L-type Ca2+ channel reduces development of abnormal involuntary movement in the rat model of L-3,4-dihydroxyphenylalanine-induced dyskinesia. Biol. Psychiatry, 2009, 65(6), 518-526.
[http://dx.doi.org/10.1016/j.biopsych.2008.09.008] [PMID: 18947822]
[76]
Farbood, Y.; Sarkaki, A.; Dolatshahi, M.; Taqhi Mansouri, S.M.; Khodadadi, A. Ellagic Acid Protects the Brain Against 6-Hydroxydopamine Induced Neuroinflammation in a Rat Model of Parkinson’s Disease. Basic Clin. Neurosci., 2015, 6(2), 83-89.
[PMID: 27307952]
[77]
Sánchez-Pernaute, R.; Ferree, A.; Cooper, O.; Yu, M.; Brownell, A.L.; Isacson, O. Selective COX-2 inhibition prevents progressive dopamine neuron degeneration in a rat model of Parkinson’s disease. J. Neuroinflammation, 2004, 1(1), 6.
[http://dx.doi.org/10.1186/1742-2094-1-6] [PMID: 15285796]
[78]
Muramatsu, S.; Fujimoto, K.; Kato, S.; Mizukami, H.; Asari, S.; Ikeguchi, K.; Kawakami, T.; Urabe, M.; Kume, A.; Sato, T.; Watanabe, E.; Ozawa, K.; Nakano, I. A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol. Ther., 2010, 18(9), 1731-1735.
[http://dx.doi.org/10.1038/mt.2010.135] [PMID: 20606642]
[79]
Mittermeyer, G.; Christine, C.W.; Rosenbluth, K.H.; Baker, S.L.; Starr, P.; Larson, P.; Kaplan, P.L.; Forsayeth, J.; Aminoff, M.J.; Bankiewicz, K.S. Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Hum. Gene Ther., 2012, 23(4), 377-381.
[http://dx.doi.org/10.1089/hum.2011.220] [PMID: 22424171]
[80]
Duty, S.; Jenner, P. Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br. J. Pharmacol., 2011, 164(4), 1357-1391.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01426.x] [PMID: 21486284]
[81]
Weingarten, H.L. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): one designer drug and serendipity. J. Forensic Sci., 1988, 33(2), 588-595.
[http://dx.doi.org/10.1520/JFS11978J] [PMID: 3259617]
[82]
Przedborski, S.; Jackson-Lewis, V.; Naini, A.B.; Jakowec, M.; Petzinger, G.; Miller, R.; Akram, M. The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety. J. Neurochem., 2001, 76(5), 1265-1274.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00183.x] [PMID: 11238711]
[83]
Burns, R.S.; LeWitt, P.A.; Ebert, M.H.; Pakkenberg, H.; Kopin, I.J. The clinical syndrome of striatal dopamine deficiency. Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). N. Engl. J. Med., 1985, 312(22), 1418-1421.
[http://dx.doi.org/10.1056/NEJM198505303122203] [PMID: 2581135]
[84]
Zeng, X.S.; Jia, J.J.; Kwon, Y.; Wang, S.D.; Bai, J. The role of thioredoxin-1 in suppression of endoplasmic reticulum stress in Parkinson disease. Free Radic. Biol. Med., 2014, 67, 10-18.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.10.013] [PMID: 24140863]
[85]
Giovanni, A.; Sieber, B.A.; Heikkila, R.E.; Sonsalla, P.K. Studies on species sensitivity to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Part 1: Systemic administration. J. Pharmacol. Exp. Ther., 1994, 270(3), 1000-1007.
[PMID: 7932147]
[86]
Agid, Y.; Javoy-Agid, F.; Ruberg, M. Biochemistry of neurotransmitters in Parkinson’s disease.Marsden CD, Fahn S, editors. Movement Disorders: London- Butterworths UK;; , 1987, 2, pp. 166-230.
[87]
Forno, L.S.; DeLanney, L.E.; Irwin, I.; Langston, J.W. MPP+ binds Similarities and differences between MPTP-induced parkinsonism to neuromelanin. Science, 1993, 231, 987-989.
[88]
Giacoppo, S.; Bramanti, P.; Mazzon, E. Triggering of inflammasome by impaired autophagy in response to acute experimental Parkinson’s disease: involvement of the PI3K/Akt/mTOR pathway. Neuroreport, 2017, 28(15), 996-1007.
[http://dx.doi.org/10.1097/WNR.0000000000000871] [PMID: 28902711]
[89]
Hu, X.; Song, Q.; Li, X.; Li, D.; Zhang, Q.; Meng, W.; Zhao, Q. Neuroprotective effects of Kukoamine A on neurotoxin-induced Parkinson’s model through apoptosis inhibition and autophagy enhancement. Neuropharmacology, 2017, 117, 352-363.
[http://dx.doi.org/10.1016/j.neuropharm.2017.02.022] [PMID: 28238714]
[90]
Nicklas, W.J.; Vyas, I.; Heikkila, R.E. Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci., 1985, 36(26), 2503-2508.
[http://dx.doi.org/10.1016/0024-3205(85)90146-8] [PMID: 2861548]
[91]
Arbez, N.; He, X.; Huang, Y.; Ren, M.; Liang, Y.; Nucifora, F.C.; Wang, X.; Pei, Z.; Tessarolo, L.; Smith, W.W.; Ross, C.A. G2019S-LRRK2 mutation enhances MPTP-linked Parkinsonism in mice. Hum. Mol. Genet., 2020, 29(4), 580-590.
[http://dx.doi.org/10.1093/hmg/ddz271] [PMID: 31813996]
[92]
Kaur, K.; Gill, J.S.; Bansal, P.K.; Deshmukh, R. Neuroinflammation - A major cause for striatal dopaminergic degeneration in Parkinson’s disease. J. Neurol. Sci., 2017, 381, 308-314.
[http://dx.doi.org/10.1016/j.jns.2017.08.3251] [PMID: 28991704]
[93]
Zeng, C.; Yue, D.; Sun, W. Evaluation of Hematological and Clinicopathological Characteristics in MPTP-induced Parkinson’s Model Rat. J. Chengdu Med. Coll., 2019, 14, 1-10.
[94]
Cui, M.; Aras, R.; Christian, W.V.; Rappold, P.M.; Hatwar, M.; Panza, J.; Jackson-Lewis, V.; Javitch, J.A.; Ballatori, N.; Przedborski, S.; Tieu, K. The organic cation transporter-3 is a pivotal modulator of neurodegeneration in the nigrostriatal dopaminergic pathway. Proc. Natl. Acad. Sci. USA, 2009, 106(19), 8043-8048.
[http://dx.doi.org/10.1073/pnas.0900358106] [PMID: 19416912]
[95]
Mizuno, Y.; Sone, N.; Saitoh, T. Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenylpyridinium ion on activities of the enzymes in the electron transport system in mouse brain. J. Neurochem., 1987, 48(6), 1787-1793.
[http://dx.doi.org/10.1111/j.1471-4159.1987.tb05737.x] [PMID: 3106573]
[96]
Huang, D.; Xu, J.; Wang, J.; Tong, J.; Bai, X.; Li, H.; Wang, Z.; Huang, Y.; Wu, Y.; Yu, M.; Huang, F. Dynamic Changes in the Nigrostriatal Pathway in the MPTP Mouse Model of Parkinson’s Disease. Parkinsons Dis., 2017, 2017, 9349487.
[http://dx.doi.org/10.1155/2017/9349487] [PMID: 28831326]
[97]
Lu, Y.; Zhang, X.; Zhao, L.; Yang, C.; Pan, L.; Li, C.; Liu, K.; Bai, G.; Gao, H.; Yan, Z. Metabolic disturbances in the striatum and substantia nigra in the onset and progression of MPTP-induced Parkinsonism model. Front. Neurosci., 2018, 12, 90.
[http://dx.doi.org/10.3389/fnins.2018.00090] [PMID: 29515360]
[98]
Wu, K.C.; Lu, Y.H.; Peng, Y.H.; Tsai, T.F.; Kao, Y.H.; Yang, H.T.; Lin, C.J. Decreased expression of organic cation transporters, Oct1 and Oct2, in brain microvessels and its implication to MPTP-induced dopaminergic toxicity in aged mice. J. Cereb. Blood Flow Metab., 2015, 35(1), 37-47.
[http://dx.doi.org/10.1038/jcbfm.2014.162] [PMID: 25248837]
[99]
Hwang, C.J.; Lee, H.P.; Choi, D.Y.; Jeong, H.S.; Kim, T.H.; Lee, T.H.; Kim, Y.M.; Moon, D.B.; Park, S.S.; Kim, S.Y.; Oh, K.W.; Hwang, D.Y.; Han, S.B.; Lee, H.J.; Hong, J.T. Inhibitory effect of thiacremonone on MPTP-induced dopaminergic neurodegeneration through inhibition of p38 activation. Oncotarget, 2016, 7(30), 46943-46958.
[http://dx.doi.org/10.18632/oncotarget.10504] [PMID: 27409674]
[100]
Xu, Q.; Langley, M.; Kanthasamy, A.G.; Reddy, M.B. Epigallocatechin gallate has a neurorescue effect in a mouse model of Parkinson disease. J. Nutr., 2017, 147(10), 1926-1931.
[http://dx.doi.org/10.3945/jn.117.255034] [PMID: 28835392]
[101]
Fox, S.H.; Brotchie, J.M. The MPTP-lesioned non-human primate models of Parkinson’s disease. Past, present, and future. Prog. In: Brain Res; , 2010; 184, pp. 133-157.
[http://dx.doi.org/10.1016/S0079-6123(10)84007-5] [PMID: 20887873]
[102]
Halliday, G.; Herrero, M.T.; Murphy, K.; McCann, H.; Ros-Bernal, F.; Barcia, C.; Mori, H.; Blesa, F.J.; Obeso, J.A. No Lewy pathology in monkeys with over 10 years of severe MPTP Parkinsonism. Mov. Disord., 2009, 24(10), 1519-1523.
[http://dx.doi.org/10.1002/mds.22481] [PMID: 19526568]
[103]
Sedelis, M.; Schwarting, R.K.; Huston, J.P. Behavioral phenotyping of the MPTP mouse model of Parkinson’s disease. Behav. Brain Res., 2001, 125(1-2), 109-125.
[http://dx.doi.org/10.1016/S0166-4328(01)00309-6] [PMID: 11682102]
[104]
Pessiglione, M.; Guehl, D.; Hirsch, E.C.; Féger, J.; Tremblay, L. Disruption of self-organized actions in monkeys with progressive MPTP-induced parkinsonism. I. Effects of task complexity. Eur. J. Neurosci., 2004, 19(2), 426-436.
[http://dx.doi.org/10.1111/j.0953-816X.2003.03088.x] [PMID: 14725637]
[105]
Schneider, J.S. Modeling cognitive deficits associated with Parkinsonism in the Chronic-Low-Dose MPTP-Treated monkey. Animal Models of Cognitive Impairment; Levin, E.D; Buccafusco, J.J., Ed.; CRC Press/Taylor & Francis: Boca Raton, FL, 2006.
[http://dx.doi.org/10.1201/9781420004335.ch9]
[106]
Bergman, H.; Wichmann, T.; DeLong, M.R. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science, 1990, 249(4975), 1436-1438.
[http://dx.doi.org/10.1126/science.2402638] [PMID: 2402638]
[107]
Limousin, P.; Krack, P.; Pollak, P.; Benazzouz, A.; Ardouin, C.; Hoffmann, D.; Benabid, A.L. Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N. Engl. J. Med., 1998, 339(16), 1105-1111.
[http://dx.doi.org/10.1056/NEJM199810153391603] [PMID: 9770557]
[108]
Gash, D.M.; Zhang, Z.; Ovadia, A.; Cass, W.A.; Yi, A.; Simmerman, L.; Russell, D.; Martin, D.; Lapchak, P.A.; Collins, F.; Hoffer, B.J.; Gerhardt, G.A. Functional recovery in parkinsonian monkeys treated with GDNF. Nature, 1996, 380(6571), 252-255.
[http://dx.doi.org/10.1038/380252a0] [PMID: 8637574]
[109]
Kordower, J.H.; Emborg, M.E.; Bloch, J.; Ma, S.Y.; Chu, Y.; Leventhal, L.; McBride, J.; Chen, E.Y.; Palfi, S.; Roitberg, B.Z.; Brown, W.D.; Holden, J.E.; Pyzalski, R.; Taylor, M.D.; Carvey, P.; Ling, Z.; Trono, D.; Hantraye, P.; Déglon, N.; Aebischer, P. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science, 2000, 290(5492), 767-773.
[http://dx.doi.org/10.1126/science.290.5492.767] [PMID: 11052933]
[110]
Zeng, X.S.; Geng, W.S.; Jia, J.J. Neurotoxin-Induced Animal Models of Parkinson Disease: Pathogenic Mechanism and Assessment. ASN Neuro, 2018, 10, 1759091418777438.
[http://dx.doi.org/10.1177/1759091418777438] [PMID: 29809058]
[111]
Hu, M.; Li, F.; Wang, W. Vitexin protects dopaminergic neurons in MPTP-induced Parkinson’s disease through PI3K/Akt signaling pathway. Drug Des. Devel. Ther., 2018, 12, 565-573.
[http://dx.doi.org/10.2147/DDDT.S156920] [PMID: 29588573]
[112]
Chattopadhyay, M.; Chowdhury, A.R.; Feng, T.; Assenmacher, C.A.; Radaelli, E.; Guengerich, F.P.; Avadhani, N.G. Mitochondrially targeted cytochrome P450 2D6 is involved in monomethylamine-induced neuronal damage in mouse models. J. Biol. Chem., 2019, 294(26), 10336-10348.
[http://dx.doi.org/10.1074/jbc.RA119.008848] [PMID: 31113867]
[113]
He, X.; Yang, S.; Zhang, R.; Hou, L.; Xu, J.; Hu, Y.; Xu, R.; Wang, H.; Zhang, Y. Smilagenin Protects Dopaminergic Neurons in Chronic MPTP/Probenecid-Lesioned Parkinson’s Disease Models. Front. Cell. Neurosci., 2019, 13, 18.
[http://dx.doi.org/10.3389/fncel.2019.00018] [PMID: 30804756]
[114]
Kaur, D.; Yantiri, F.; Rajagopalan, S.; Kumar, J.; Mo, J.Q.; Boonplueang, R.; Viswanath, V.; Jacobs, R.; Yang, L.; Beal, M.F.; DiMonte, D.; Volitaskis, I.; Ellerby, L.; Cherny, R.A.; Bush, A.I.; Andersen, J.K. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson’s disease. Neuron, 2003, 37(6), 899-909.
[http://dx.doi.org/10.1016/S0896-6273(03)00126-0] [PMID: 12670420]
[115]
Gal, S.; Zheng, H.; Fridkin, M.; Youdim, M.B. Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases. In vivo selective brain monoamine oxidase inhibition and prevention of MPTP-induced striatal dopamine depletion. J. Neurochem., 2005, 95(1), 79-88.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03341.x] [PMID: 16181414]
[116]
Youdim, M.B. M30, a brain permeable multitarget neurorestorative drug in post nigrostriatal dopamine neuron lesion of parkinsonism animal models. Parkinsonism Relat. Disord., 2012, 18(Suppl. 1), S151-S154.
[http://dx.doi.org/10.1016/S1353-8020(11)70047-5] [PMID: 22166418]
[117]
Kurkowska-Jastrzebska, I.; Babiuch, M.; Joniec, I.; Przybyłkowski, A.; Członkowski, A.; Członkowska, A. Indomethacin protects against neurodegeneration caused by MPTP intoxication in mice. Int. Immunopharmacol., 2002, 2(8), 1213-1218.
[http://dx.doi.org/10.1016/S1567-5769(02)00078-4] [PMID: 12349958]
[118]
Hisata, J. Final supplemental environmental impact statement. Lake and stream rehabilitation: rotenone use and health risks.,, 2002.
[119]
Cannon, J.G.; Burton, R.A.; Wood, S.G.; Owen, N.L. Naturally occurring fish poisons from plants. J. Chem. Educ., 2004, 81, 1457-1461.
[http://dx.doi.org/10.1021/ed081p1457]
[120]
Skaar, D.R.; Arnold, J.L.; Koel, T.M.; Ruhl, M.E.; Skorupski, J.A.; Treanor, H.B. Effects of Rotenone on Amphibians and Macroinvertebrates in Yellowstone. Yellowstone Science, 2017, 25(1)
[121]
Dalefield, R. Insecticides and Acaricides; Veterinary Toxicology for Australia and New Zealand, 2017, pp. 87-109.
[122]
Dixon, R.A.; Pasinetti, G.M. Flavonoids and isoflavonoids: from plant biology to agriculture and neuroscience. Plant Physiol., 2010, 154(2), 453-457.
[http://dx.doi.org/10.1104/pp.110.161430] [PMID: 20921162]
[123]
Sørensen, B.G. Rotenone - a natural pesticide. 2018.https://natoxaq.ku.dk/toxin-of-the-week/rotenone/
[124]
Marrs, T. Mammalian Toxicology of Insecticides; Royal Society of Chemistry, 2012.
[http://dx.doi.org/10.1039/9781849733007]
[125]
Lee, H.J.; Shin, S.Y.; Choi, C.; Lee, Y.H.; Lee, S.J. Formation and removal of alpha-synuclein aggregates in cells exposed to mitochondrial inhibitors. J. Biol. Chem., 2002, 277(7), 5411-5417.
[http://dx.doi.org/10.1074/jbc.M105326200] [PMID: 11724769]
[126]
Betarbet, R.; Sherer, T.B.; MacKenzie, G.; Garcia-Osuna, M.; Panov, A.V.; Greenamyre, J.T. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat. Neurosci., 2000, 3(12), 1301-1306.
[http://dx.doi.org/10.1038/81834] [PMID: 11100151]
[127]
Inden, M.; Kitamura, Y.; Abe, M.; Tamaki, A.; Takata, K.; Taniguchi, T. Parkinsonian rotenone mouse model: reevaluation of long-term administration of rotenone in C57BL/6 mice. Biol. Pharm. Bull., 2011, 34(1), 92-96.
[http://dx.doi.org/10.1248/bpb.34.92] [PMID: 21212524]
[128]
Greenamyre, J.T.; Cannon, J.R.; Drolet, R.; Mastroberardino, P.G. Lessons from the rotenone model of Parkinson’s disease. Trends Pharmacol. Sci., 2010, 31(4), 141-142.
[http://dx.doi.org/10.1016/j.tips.2009.12.006] [PMID: 20096940]
[129]
Swarnkar, S.; Singh, S.; Mathur, R.; Patro, I.K.; Nath, C. A study to correlate rotenone induced biochemical changes and cerebral damage in brain areas with neuromuscular coordination in rats. Toxicology, 2010, 272(1-3), 17-22.
[http://dx.doi.org/10.1016/j.tox.2010.03.019] [PMID: 20371261]
[130]
Talpade, D.J.; Greene, J.G.; Higgins, D.S., Jr; Greenamyre, J.T. In vivo labeling of mitochondrial complex I (NADH:ubiquinone oxidoreductase) in rat brain using [(3)H]dihydrorotenone. J. Neurochem., 2000, 75(6), 2611-2621.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0752611.x] [PMID: 11080215]
[131]
Johnson, M.E.; Bobrovskaya, L. An update on the rotenone models of Parkinson’s disease: their ability to reproduce the features of clinical disease and model gene-environment interactions. Neurotoxicology, 2015, 46, 101-116.
[http://dx.doi.org/10.1016/j.neuro.2014.12.002] [PMID: 25514659]
[132]
Cannon, J.R.; Tapias, V.; Na, H.M.; Honick, A.S.; Drolet, R.E.; Greenamyre, J.T. A highly reproducible rotenone model of Parkinson’s disease. Neurobiol. Dis., 2009, 34(2), 279-290.
[http://dx.doi.org/10.1016/j.nbd.2009.01.016] [PMID: 19385059]
[133]
Terron, A.; Bal-Price, A.; Paini, A.; Monnet-Tschudi, F.; Bennekou, S.H.; Leist, M.; Schildknecht, S. EFSA WG EPI1 Members. An adverse outcome pathway for parkinsonian motor deficits associated with mitochondrial complex I inhibition. Arch. Toxicol., 2018, 92(1), 41-82.
[http://dx.doi.org/10.1007/s00204-017-2133-4] [PMID: 29209747]
[134]
Schuler, F.; Casida, J.E. Functional coupling of PSST and ND1 subunits in NADH:ubiquinone oxidoreductase established by photoaffinity labeling. Biochim. Biophys. Acta, 2001, 1506(1), 79-87.
[http://dx.doi.org/10.1016/S0005-2728(01)00183-9] [PMID: 11418099]
[135]
Srivastava, P.; Panda, D. Rotenone inhibits mammalian cell proliferation by inhibiting microtubule assembly through tubulin binding. FEBS J., 2007, 274(18), 4788-4801.
[http://dx.doi.org/10.1111/j.1742-4658.2007.06004.x] [PMID: 17697112]
[136]
Marshall, L.E.; Himes, R.H. Rotenone inhibition of tubulin self-assembly. Biochim. Biophys. Acta, 1978, 543(4), 590-594.
[http://dx.doi.org/10.1016/0304-4165(78)90315-X] [PMID: 568944]
[137]
Darbinyan, L.V.; Hambardzumyan, L.E.; Simonyan, K.V.; Chavushyan, V.A.; Manukyan, L.P.; Sarkisian, V.H. Rotenone impairs hippocampal neuronal activity in a rat model of Parkinson’s disease. Pathophysiology, 2017, 24(1), 23-30.
[http://dx.doi.org/10.1016/j.pathophys.2017.01.001] [PMID: 28126254]
[138]
Alam, M.; Schwabe, K.; Krauss, J.K. The pedunculopontine nucleus area: critical evaluation of interspecies differences relevant for its use as a target for deep brain stimulation. Brain, 2011, 134(Pt 1), 11-23.
[http://dx.doi.org/10.1093/brain/awq322] [PMID: 21147837]
[139]
Christof von W. Kerstin S. Nadine J, Joachim KK, Mesbah A The rotenone-induced rat model of Parkinson’s disease. Behav. Brain Res., 2015, 279, 52-61.
[http://dx.doi.org/10.1016/j.bbr.2014.11.002]
[140]
Sherer, T.B.; Kim, J.H.; Betarbet, R.; Greenamyre, J.T. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and α-synuclein aggregation. Exp. Neurol., 2003, 179(1), 9-16.
[http://dx.doi.org/10.1006/exnr.2002.8072] [PMID: 12504863]
[141]
Fleming, S.M.; Zhu, C.; Fernagut, P.O.; Mehta, A.; DiCarlo, C.D.; Seaman, R.L.; Chesselet, M.F. Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone. Exp. Neurol., 2004, 187(2), 418-429.
[http://dx.doi.org/10.1016/j.expneurol.2004.01.023] [PMID: 15144868]
[142]
Lapointe, N.; St-Hilaire, M.; Martinoli, M.G.; Blanchet, J.; Gould, P.; Rouillard, C.; Cicchetti, F. Rotenone induces non-specific central nervous system and systemic toxicity. FASEB J., 2004, 18(6), 717-719.
[http://dx.doi.org/10.1096/fj.03-0677fje] [PMID: 14766796]
[143]
Bansal, P.K.; Rahul, D. Animal Models of Neurological Disorders: Principle and Working Procedure for Animal Models of Neurological Disorders, 1st ed; Springer: Singapore, 2018.
[144]
De Miranda, B.R.; Greenamyre, J.T.; Rocha, E.M.; Castro, S.; Greenamyre, J.T. Response to Rotenone and Parkinson’s Disease; Reduced Sensitivity in Females. Toxicol. Sci., 2019, 170(2), 563.
[http://dx.doi.org/10.1093/toxsci/kfz127] [PMID: 31161199]
[145]
De Miranda, B.R.; Fazzari, M.; Rocha, E.M.; Castro, S.; Greenamyre, J.T. Sex Differences in Rotenone Sensitivity Reflect the Male-to-Female Ratio in Human Parkinson’s Disease Incidence. Toxicol. Sci., 2019, 170(1), 133-143.
[http://dx.doi.org/10.1093/toxsci/kfz082] [PMID: 30907971]
[146]
Zhang, Y.; Guo, H.; Guo, X.; Ge, D.; Shi, Y.; Lu, X. … Zhang Q. Involvement of Akt/mTOR in the Neurotoxicity of Rotenone-Induced Parkinson’s Disease Models. Int. J. Environ. Res. Public Health, 2019, 16(20), 3811.
[http://dx.doi.org/10.3390/ijerph16203811]
[147]
Sun, C.; Wang, Y.; Mo, M.; Song, C.; Wang, X.; Chen, S.; Liu, Y. Minocycline Protects against Rotenone-Induced Neurotoxicity Correlating with Upregulation of Nurr1 in a Parkinson’s Disease Rat Model. BioMed Res. Int., 2019, 2019, 6843265.
[http://dx.doi.org/10.1155/2019/6843265] [PMID: 30949504]
[148]
Günaydın, C.; Avcı, B.; Bozkurt, A.; Önger, M.E.; Balcı, H.; Bilge, S.S. Effects of agomelatine in rotenone-induced Parkinson’s disease in rats. Neurosci. Lett., 2019, 699, 71-76.
[http://dx.doi.org/10.1016/j.neulet.2019.01.057] [PMID: 30716425]
[149]
Azmy, M.S.; Menze, E.T.; El-Naga, R.N.; Tadros, M.G. Neuroprotective Effects of Filgrastim in Rotenone-Induced Parkinson’s Disease in Rats: Insights into its Anti-Inflammatory, Neurotrophic, and Antiapoptotic Effects. Mol. Neurobiol., 2018, 55(8), 6572-6588.
[http://dx.doi.org/10.1007/s12035-017-0855-1] [PMID: 29327204]
[150]
Zhang, X.; Du, L.; Zhang, W.; Yang, Y.; Zhou, Q.; Du, G. Therapeutic effects of baicalein on rotenone-induced Parkinson’s disease through protecting mitochondrial function and biogenesis. Sci. Rep., 2017, 7(1), 9968.
[http://dx.doi.org/10.1038/s41598-017-07442-y] [PMID: 28855526]
[151]
Sarbishegi, M.; Charkhat Gorgich, E.A. The Effects of Celecoxib on Rotenone-Induced Rat Model of Parkinson’s Disease: Suppression of Neuroinflammation and Oxidative Stress-Mediated Apoptosis. Gene Cell Tissue, 2019, 6(2), e92178.
[http://dx.doi.org/10.5812/gct.92178]
[152]
Alam, M.; Schmidt, W.J. L-DOPA reverses the hypokinetic behaviour and rigidity in rotenone-treated rats. Behav. Brain Res., 2004, 153(2), 439-446.
[http://dx.doi.org/10.1016/j.bbr.2003.12.021] [PMID: 15265640]
[153]
Nair, T.A.; Vadivelan, R. Behavioral studies of dasatinib and resveratrol in rotenone induced Parkinson’s rat model. Int. J. Pharm., 2019, 10(4), 2004-2011.
[154]
Lupescu, A.; Jilani, K.; Zbidah, M.; Lang, F. Induction of apoptotic erythrocyte death by rotenone. Toxicology, 2012, 300(3), 132-137.
[http://dx.doi.org/10.1016/j.tox.2012.06.007] [PMID: 22727881]
[155]
Saravanan, K.S.; Sindhu, K.M.; Senthilkumar, K.S.; Mohanakumar, K.P. L-deprenyl protects against rotenone-induced, oxidative stress-mediated dopaminergic neurodegeneration in rats. Neurochem. Int., 2006, 49(1), 28-40.
[http://dx.doi.org/10.1016/j.neuint.2005.12.016] [PMID: 16490285]
[156]
Inden, M.; Kitamura, Y.; Tamaki, A.; Yanagida, T.; Shibaike, T.; Yamamoto, A.; Takata, K.; Yasui, H.; Taira, T.; Ariga, H.; Taniguchi, T. Neuroprotective effect of the antiparkinsonian drug pramipexole against nigrostriatal dopaminergic degeneration in rotenone-treated mice. Neurochem. Int., 2009, 55(8), 760-767.
[http://dx.doi.org/10.1016/j.neuint.2009.07.009] [PMID: 19647776]
[157]
Bové, J.; Prou, D.; Perier, C.; Przedborski, S. Toxin-induced models of Parkinson’s disease. NeuroRx, 2005, 2(3), 484-494.
[http://dx.doi.org/10.1602/neurorx.2.3.484] [PMID: 16389312]
[158]
Tanner, C.M.; Kamel, F.; Ross, G.W.; Hoppin, J.A.; Goldman, S.M.; Korell, M.; Marras, C.; Bhudhikanok, G.S.; Kasten, M.; Chade, A.R.; Comyns, K.; Richards, M.B.; Meng, C.; Priestley, B.; Fernandez, H.H.; Cambi, F.; Umbach, D.M.; Blair, A.; Sandler, D.P.; Langston, J.W. Rotenone, paraquat, and Parkinson’s disease. Environ. Health Perspect., 2011, 119(6), 866-872.
[http://dx.doi.org/10.1289/ehp.1002839] [PMID: 21269927]
[159]
ANVISA (Agência Nacional de Vigilância Sanitária). Parecer Técnico de Reavaliação, http://portal.anvisa.gov.br/documents/33880/2541353/CP%2B94-2015%2B-%2BNT.pdf/50fb348f-3c2a-4992-a3a2-ca89fd4d21272016
[160]
McCormack, A.L.; Thiruchelvam, M.; Manning-Bog, A.B.; Thiffault, C.; Langston, J.W.; Cory-Slechta, D.A.; Di Monte, D.A. Environmental risk factors and Parkinson’s disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol. Dis., 2002, 10(2), 119-127.
[http://dx.doi.org/10.1006/nbdi.2002.0507] [PMID: 12127150]
[161]
Miller, G.W. Paraquat: the red herring of Parkinson’s disease research. Toxicol. Sci., 2007, 100(1), 1-2.
[http://dx.doi.org/10.1093/toxsci/kfm223] [PMID: 17934192]
[162]
Choi, H.S.; An, J.J.; Kim, S.Y.; Lee, S.H.; Kim, D.W.; Yoo, K.Y.; Won, M.H.; Kang, T.C.; Kwon, H.J.; Kang, J.H.; Cho, S.W.; Kwon, O.S.; Park, J.; Eum, W.S.; Choi, S.Y. PEP-1-SOD fusion protein efficiently protects against paraquat-induced dopaminergic neuron damage in a Parkinson disease mouse model. Free Radic. Biol. Med., 2006, 41(7), 1058-1068.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.06.006] [PMID: 16962931]
[163]
Shimizu, K.; Ohtaki, K.; Matsubara, K.; Aoyama, K.; Uezono, T.; Saito, O.; Suno, M.; Ogawa, K.; Hayase, N.; Kimura, K.; Shiono, H. Carrier-mediated processes in blood--brain barrier penetration and neural uptake of paraquat. Brain Res., 2001, 906(1-2), 135-142.
[http://dx.doi.org/10.1016/S0006-8993(01)02577-X] [PMID: 11430870]
[164]
Cicchetti, F.; Lapointe, N.; Roberge-Tremblay, A.; Saint-Pierre, M.; Jimenez, L.; Ficke, B.W.; Gross, R.E. Systemic exposure to paraquat and maneb models early Parkinson’s disease in young adult rats. Neurobiol. Dis., 2005, 20(2), 360-371.
[http://dx.doi.org/10.1016/j.nbd.2005.03.018] [PMID: 16242641]
[165]
Thrash, B.; Uthayathas, S.; Karuppagounder, S.S.; Suppiramaniam, V.; Dhanasekaran, M. Paraquat and maneb induced neurotoxicity. Proc. West. Pharmacol. Soc., 2007, 50, 31-42.
[PMID: 18605226]
[166]
Peng, J.; Stevenson, F.F.; Oo, M.L.; Andersen, J.K. Iron-enhanced paraquat-mediated dopaminergic cell death due to increased oxidative stress as a consequence of microglial activation. Free Radic. Biol. Med., 2009, 46(2), 312-320.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.10.045] [PMID: 19027846]
[167]
McCormack, A.L.; Di Monte, D.A. Effects of L-dopa and other amino acids against paraquat-induced nigrostriatal degeneration. J. Neurochem., 2003, 85(1), 82-86.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01621.x] [PMID: 12641729]
[168]
Niso-Santano, M.; González-Polo, R.A.; Bravo-San Pedro, J.M.; Gómez-Sánchez, R.; Lastres-Becker, I.; Ortiz-Ortiz, M.A.; Soler, G.; Morán, J.M.; Cuadrado, A.; Fuentes, J.M. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED). Activation of apoptosis signal-regulating kinase 1 is a key factor in paraquat-induced cell death: modulation by the Nrf2/Trx axis. Free Radic. Biol. Med., 2010, 48(10), 1370-1381.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.02.024] [PMID: 20202476]
[169]
Fei, Q.; McCormack, A.L.; Di Monte, D.A.; Ethell, D.W. Paraquat neurotoxicity is mediated by a Bak-dependent mechanism. J. Biol. Chem., 2008, 283(6), 3357-3364.
[http://dx.doi.org/10.1074/jbc.M708451200] [PMID: 18056701]
[170]
Peng, J.; Mao, X.O.; Stevenson, F.F.; Hsu, M.; Andersen, J.K. The herbicide paraquat induces dopaminergic nigral apoptosis through sustained activation of the JNK pathway. J. Biol. Chem., 2004, 279(31), 32626-32632.
[http://dx.doi.org/10.1074/jbc.M404596200] [PMID: 15155744]
[171]
Saint-Pierre, M.; Tremblay, M.E.; Sik, A.; Gross, R.E.; Cicchetti, F. Temporal effects of paraquat/maneb on microglial activation and dopamine neuronal loss in older rats. J. Neurochem., 2006, 98(3), 760-772.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03923.x] [PMID: 16893418]
[172]
Manning-Bog, A.B.; McCormack, A.L.; Li, J.; Uversky, V.N.; Fink, A.L.; Di Monte, D.A. The herbicide paraquat causes up-regulation and aggregation of α-synuclein in mice: paraquat and α-synuclein. J. Biol. Chem., 2002, 277(3), 1641-1644.
[http://dx.doi.org/10.1074/jbc.C100560200] [PMID: 11707429]
[173]
Berry, C.; La Vecchia, C.; Nicotera, P. Paraquat and Parkinson’s disease. Cell Death Differ., 2010, 17(7), 1115-1125.
[http://dx.doi.org/10.1038/cdd.2009.217] [PMID: 20094060]
[174]
Liou, H.H.; Chen, R.C.; Chen, T.H.; Tsai, Y.F.; Tsai, M.C. Attenuation of paraquat-induced dopaminergic toxicity on the substantia nigra by (-)-deprenyl in vivo. Toxicol. Appl. Pharmacol., 2001, 172(1), 37-43.
[http://dx.doi.org/10.1006/taap.2001.9130] [PMID: 11264021]
[175]
Tomenson, J.A.; Campbell, C. Mortality from Parkinson’s disease and other causes among a workforce manufacturing paraquat: a retrospective cohort study. BMJ Open, 2011, 1(2), e000283.
[http://dx.doi.org/10.1136/bmjopen-2011-000283] [PMID: 22080539]
[176]
Brent, J.; Schaeffer, T.H. Systematic review of parkinsonian syndromes in short- and long-term survivors of paraquat poisoning. J. Occup. Environ. Med., 2011, 53(11), 1332-1336.
[http://dx.doi.org/10.1097/JOM.0b013e318233775d] [PMID: 21988794]
[177]
Thiruchelvam, M. Paraquat and Parkinson's disease, Always follow the label instructions when using paraquat. Paraquat Information Center, https://paraquat.com/en/safety/safety-humans/paraquat-and-parkinsons-disease2020
[178]
Cacabelos, R. Parkinson’s disease: from pathogenesis to pharmacogenomics. Int. J. Mol. Sci., 2017, 18(3), 551.
[http://dx.doi.org/10.3390/ijms18030551] [PMID: 28273839]
[179]
Zheng, Z.; Poon, W.S. Rodent Model of Parkinson’s Disease: Unilateral or Bilateral? J. Alzheimers Dis. Parkinsonism, 2017, 7, 319.
[http://dx.doi.org/10.4172/2161-0460.1000319]
[180]
Muthukumaran, K.; Leahy, S.; Harrison, K.; Sikorska, M.; Sandhu, J.K.; Cohen, J.; Keshan, C.; Lopatin, D.; Miller, H.; Borowy-Borowski, H.; Lanthier, P.; Weinstock, S.; Pandey, S. Orally delivered water soluble Coenzyme Q10 (Ubisol-Q10) blocks on-going neurodegeneration in rats exposed to paraquat: potential for therapeutic application in Parkinson’s disease. BMC Neurosci., 2014, 15, 21.
[http://dx.doi.org/10.1186/1471-2202-15-21] [PMID: 24483602]
[181]
Chiu, C.C.; Yeh, T.H.; Lai, S.C.; Wu-Chou, Y.H.; Chen, C.H.; Mochly-Rosen, D.; Huang, Y.C.; Chen, Y.J.; Chen, C.L.; Chang, Y.M.; Wang, H.L.; Lu, C.S. Neuroprotective effects of aldehyde dehydrogenase 2 activation in rotenone-induced cellular and animal models of parkinsonism. Exp. Neurol., 2015, 263, 244-253.
[http://dx.doi.org/10.1016/j.expneurol.2014.09.016] [PMID: 25263579]
[182]
Bhakuni, G.S.; Bedi, O.; Bariwal, J.; Deshmukh, R.; Kumar, P. Animal models of hepatotoxicity. Inflamm. Res., 2016, 65(1), 13-24.
[http://dx.doi.org/10.1007/s00011-015-0883-0] [PMID: 26427493]
[183]
Shihabuddin, L.S.; Brundin, P.; Greenamyre, J.T.; Stephenson, D.; Sardi, S.P. New Frontiers in Parkinson’s Disease: From Genetics to the Clinic. J. Neurosci., 2018, 38(44), 9375-9382.
[http://dx.doi.org/10.1523/JNEUROSCI.1666-18.2018] [PMID: 30381429]
[184]
Chesselet, M.F.; Fleming, S.; Mortazavi, F.; Meurers, B. Strengths and limitations of genetic mouse models of Parkinson’s disease. Parkinsonism Relat. Disord., 2008, 14(Suppl. 2), S84-S87.
[http://dx.doi.org/10.1016/j.parkreldis.2008.04.004] [PMID: 18585084]
[185]
Dehay, B.; Bourdenx, M.; Gorry, P.; Przedborski, S.; Vila, M.; Hunot, S.; Singleton, A.; Olanow, C.W.; Merchant, K.M.; Bezard, E.; Petsko, G.A.; Meissner, W.G. Targeting α-synuclein for treatment of Parkinson’s disease: mechanistic and therapeutic considerations. Lancet Neurol., 2015, 14(8), 855-866.
[http://dx.doi.org/10.1016/S1474-4422(15)00006-X] [PMID: 26050140]
[186]
Luk, K.C.; Lee, V.M.Y. Modeling Lewy pathology propagation in Parkinson’s disease. Parkinsonism Relat. Disord., 2014, 20(Suppl. 1), S85-S87.
[http://dx.doi.org/10.1016/S1353-8020(13)70022-1] [PMID: 24262196]
[187]
Recasens, A.; Dehay, B.; Bové, J.; Carballo-Carbajal, I.; Dovero, S.; Pérez-Villalba, A.; Fernagut, P.O.; Blesa, J.; Parent, A.; Perier, C.; Fariñas, I.; Obeso, J.A.; Bezard, E.; Vila, M. Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys. Ann. Neurol., 2014, 75(3), 351-362.
[http://dx.doi.org/10.1002/ana.24066] [PMID: 24243558]
[188]
Wang, T.; Hay, J.C. Alpha-synuclein toxicity in the early secretory pathway: how it drives neurodegeneration in Parkinsons disease. Front. Neurosci., 2015, 9, 433.
[http://dx.doi.org/10.3389/fnins.2015.00433] [PMID: 26617485]
[189]
Norris, E.H.; Giasson, B.I.; Ischiropoulos, H.; Lee, V.M.Y. Effects of oxidative and nitrative challenges on α-synuclein fibrillogenesis involve distinct mechanisms of protein modifications. J. Biol. Chem., 2003, 278(29), 27230-27240.
[http://dx.doi.org/10.1074/jbc.M212436200] [PMID: 12857790]
[190]
Yamin, G.; Uversky, V.N.; Fink, A.L. Nitration inhibits fibrillation of human α-synuclein in vitro by formation of soluble oligomers. FEBS Lett., 2003, 542(1-3), 147-152.
[http://dx.doi.org/10.1016/S0014-5793(03)00367-3] [PMID: 12729915]
[191]
Hinkle, K.M.; Yue, M.; Behrouz, B.; Dächsel, J.C.; Lincoln, S.J.; Bowles, E.E.; Beevers, J.E.; Dugger, B.; Winner, B.; Prots, I.; Kent, C.B.; Nishioka, K.; Lin, W.L.; Dickson, D.W.; Janus, C.J.; Farrer, M.J.; Melrose, H.L. LRRK2 knockout mice have an intact dopaminergic system but display alterations in exploratory and motor co-ordination behaviors. Mol. Neurodegener., 2012, 7, 25.
[http://dx.doi.org/10.1186/1750-1326-7-25] [PMID: 22647713]
[192]
Tong, Y.; Yamaguchi, H.; Giaime, E.; Boyle, S.; Kopan, R.; Kelleher, R.J., III; Shen, J. Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc. Natl. Acad. Sci. USA, 2010, 107(21), 9879-9884.
[http://dx.doi.org/10.1073/pnas.1004676107] [PMID: 20457918]
[193]
Alessi, D.R.; Sammler, E. LRRK2 kinase in Parkinson’s disease. Science, 2018, 360(6384), 36-37.
[http://dx.doi.org/10.1126/science.aar5683] [PMID: 29622645]
[194]
Gautier, C.A.; Kitada, T.; Shen, J. Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc. Natl. Acad. Sci. USA, 2008, 105(32), 11364-11369.
[http://dx.doi.org/10.1073/pnas.0802076105] [PMID: 18687901]
[195]
Gispert, S.; Ricciardi, F.; Kurz, A.; Azizov, M.; Hoepken, H-H.; Becker, D.; Voos, W.; Leuner, K.; Müller, W.E.; Kudin, A.P.; Kunz, W.S.; Zimmermann, A.; Roeper, J.; Wenzel, D.; Jendrach, M.; García-Arencíbia, M.; Fernández-Ruiz, J.; Huber, L.; Rohrer, H.; Barrera, M.; Reichert, A.S.; Rüb, U.; Chen, A.; Nussbaum, R.L.; Auburger, G. Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS One, 2009, 4(6), e5777.
[http://dx.doi.org/10.1371/journal.pone.0005777] [PMID: 19492057]

© 2025 Bentham Science Publishers | Privacy Policy