Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

A Review on Cellular and Molecular Mechanisms Linked to the Development of Diabetes Complications

Author(s): Rishabh A. Babel and Manoj P. Dandekar*

Volume 17, Issue 4, 2021

Published on: 03 November, 2020

Page: [457 - 473] Pages: 17

DOI: 10.2174/1573399816666201103143818

Price: $65

Abstract

Modern lifestyle, changing eating habits and reduced physical work have been known to culminate into making diabetes a global pandemic. Hyperglycemia during the course of diabetes is an important causative factor for the development of both microvascular (retinopathy, nephropathy and neuropathy) and macrovascular (coronary artery disease, stroke and peripheral artery disease) complications. In this article, we summarize several mechanisms accountable for the development of both microvascular and macrovascular complications of diabetes. Several metabolic and cellular events are linked to the augmentation of oxidative stress like the activation of advanced glycation end products (AGE) pathway, polyol pathway, Protein Kinase C (PKC) pathway, Poly-ADP Ribose Polymerase (PARP) and hexosamine pathway. Oxidative stress also leads to the production of reactive oxygen species (ROS) like hydroxyl radical, superoxide anion and peroxides. Enhanced levels of ROS rescind the anti-oxidant defence mechanisms associated with superoxide dismutase, glutathione and ascorbic acid. Moreover, ROS triggers oxidative damages at the level of DNA, protein and lipids, which eventually cause cell necrosis or apoptosis. These physiological insults may be related to the microvascular complications of diabetes by negatively impacting the eyes, kidneys and the brain. While underlying pathomechanism of the macrovascular complications is quite complex, hyperglycemia associated atherosclerotic abnormalities like changes in the coagulation system, thrombin formation, fibrinolysis, platelet and endothelial function and vascular smooth muscle are well proven. Since hyperglycemia also modulates the vascular inflammation, cytokines, macrophage activation and gene expression of growth factors, elevated blood glucose level may play a central role in the development of macrovascular complications of diabetes. Taken collectively, chronic hyperglycemia and increased production of ROS are the miscreants for the development of microvascular and macrovascular complications of diabetes.

Keywords: Diabetes, microvascular, macrovascular, ROS, hyperglycemia, molecular mechanisms.

[1]
Karamanou M, Protogerou A, Tsoucalas G, Androutsos G, Poulakou-Rebelakou E. Milestones in the history of diabetes mellitus: The main contributors. World J Diabetes 2016; 7(1): 1-7.
[http://dx.doi.org/10.4239/wjd.v7.i1.1] [PMID: 26788261]
[2]
Organization WH. Global report on diabetes. Organization, WH 2017.
[3]
Saeedi P, Petersohn I, Salpea P, et al. IDF Diabetes Atlas Committee. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 2019; 157: 107843.
[http://dx.doi.org/10.1016/j.diabres.2019.107843] [PMID: 31518657]
[4]
Blair M. Diabetes Mellitus Review. Urol Nurs 2016; 36(1): 27-36.
[http://dx.doi.org/10.7257/1053-816X.2016.36.1.27] [PMID: 27093761]
[5]
Cnop M, Welsh N, Jonas JC, Jörns A, Lenzen S, Eizirik DL. Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 2005; 54(Suppl. 2): S97-S107.
[http://dx.doi.org/10.2337/diabetes.54.suppl_2.S97] [PMID: 16306347]
[6]
Di Marco E, Gray SP, Jandeleit-Dahm K. Diabetes alters activation and repression of pro- and anti-inflammatory signaling pathways in the vasculature. Front Endocrinol 2013; 4: 68.
[http://dx.doi.org/10.3389/fendo.2013.00068] [PMID: 23761786]
[7]
Skljarevski V, Veves A. Impact of diabetes on vasculature: focus on nervous system. Curr Diabetes Rev 2005; 1(3): 245-53.
[http://dx.doi.org/10.2174/157339905774574284] [PMID: 18220601]
[8]
Rolo AP, Palmeira CM. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol 2006; 212(2): 167-78.
[http://dx.doi.org/10.1016/j.taap.2006.01.003] [PMID: 16490224]
[9]
Domingueti CP, Dusse LM, Carvalho Md, de Sousa LP, Gomes KB, Fernandes AP. Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J Diabetes Complications 2016; 30(4): 738-45.
[http://dx.doi.org/10.1016/j.jdiacomp.2015.12.018] [PMID: 26781070]
[10]
Garofolo M, Gualdani E, Giannarelli R, et al. Microvascular complications burden (nephropathy, retinopathy and peripheral polyneuropathy) affects risk of major vascular events and all-cause mortality in type 1 diabetes: a 10-year follow-up study. Cardiovasc Diabetol 2019; 18(1): 159.
[http://dx.doi.org/10.1186/s12933-019-0961-7] [PMID: 31733651]
[11]
Morieri ML, Longato E, Mazzucato M, et al. Improved long-term cardiovascular outcomes after intensive versus standard screening of diabetic complications: an observational study. Cardiovasc Diabetol 2019; 18(1): 117.
[http://dx.doi.org/10.1186/s12933-019-0922-1] [PMID: 31526380]
[12]
Kosiborod M, Gomes MB, Nicolucci A, et al. DISCOVER investigators. Vascular complications in patients with type 2 diabetes: prevalence and associated factors in 38 countries (the DISCOVER study program). Cardiovasc Diabetol 2018; 17(1): 150.
[http://dx.doi.org/10.1186/s12933-018-0787-8] [PMID: 30486889]
[13]
Uddin F, Ali B, Junaid N. Prevalence of diabetic complications in newly diagnosed type 2 diabetes patients in Pakistan: findings from national registry. J Ayub Med College Abbottabad 2019; 30(4-Sup)
[14]
Maleškić S, Kusturica J, Gušić E, et al. Metformin use associated with protective effects for ocular complications in patients with type 2 diabetes - observational study. Acta Med Acad 2017; 46(2): 116-23.
[PMID: 29338275]
[15]
Bradley C, Eschwège E, de Pablos-Velasco P, et al. Predictors of quality of life and other patient-reported outcomes in the PANORAMA multinational study of people with type 2 diabetes. Diabetes Care 2018; 41(2): 267-76.
[http://dx.doi.org/10.2337/dc16-2655] [PMID: 29183910]
[16]
Litwak L, Goh SY, Hussein Z, Malek R, Prusty V, Khamseh ME. Prevalence of diabetes complications in people with type 2 diabetes mellitus and its association with baseline characteristics in the multinational A1chieve study. Diabetol Metab Syndr 2013; 5(1): 57.
[http://dx.doi.org/10.1186/1758-5996-5-57] [PMID: 24228724]
[17]
Mohan V, Shah S, Saboo B. Current glycemic status and diabetes related complications among type 2 diabetes patients in India: data from the A1chieve study. J Assoc Physicians India 2013; 61(1)(Suppl.): 12-5.
[PMID: 24482981]
[18]
Abbott CA, Malik RA, van Ross ER, Kulkarni J, Boulton AJ. Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the U.K. Diabetes Care 2011; 34(10): 2220-4.
[http://dx.doi.org/10.2337/dc11-1108] [PMID: 21852677]
[19]
Zhang X, Saaddine JB, Chou CF, et al. Prevalence of diabetic retinopathy in the United States, 2005-2008. JAMA 2010; 304(6): 649-56.
[http://dx.doi.org/10.1001/jama.2010.1111] [PMID: 20699456]
[20]
Miralles-García JM, de Pablos-Velasco P, Cabrerizo L, Pérez M, López-Gómez V. Sociedad Española de Endocrinología y Nutrición. Prevalence of distal diabetic polyneuropathy using quantitative sensory methods in a population with diabetes of more than 10 years’ disease duration. Endocrinol Nutr 2010; 57(9): 414-20.
[http://dx.doi.org/10.1016/j.endonu.2010.05.006] [PMID: 20638348]
[21]
Chan JC, Gagliardino JJ, Baik SH, et al. IDMPS Investigators. Multifaceted determinants for achieving glycemic control: the International Diabetes Management Practice Study (IDMPS). Diabetes Care 2009; 32(2): 227-33.
[http://dx.doi.org/10.2337/dc08-0435] [PMID: 19033410]
[22]
Nathan DM, Zinman B, Cleary PA, et al. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Research Group. Modern-day clinical course of type 1 diabetes mellitus after 30 years’ duration: the diabetes control and complications trial/epidemiology of diabetes interventions and complications and Pittsburgh epidemiology of diabetes complications experience (1983-2005). Arch Intern Med 2009; 169(14): 1307-16.
[http://dx.doi.org/10.1001/archinternmed.2009.193] [PMID: 19636033]
[23]
Valensi P, Benroubi M, Borzi V, et al. IMPROVE Study Group Expert Panel. The IMPROVE study-a multinational, observational study in type 2 diabetes: baseline characteristics from eight national cohorts. Int J Clin Pract 2008; 62(11): 1809-19.
[http://dx.doi.org/10.1111/j.1742-1241.2008.01917.x] [PMID: 18811598]
[24]
Happich M, Breitscheidel L, Meisinger C, et al. Cross-sectional analysis of adult diabetes type 1 and type 2 patients with diabetic microvascular complications from a German retrospective observational study. Curr Med Res Opin 2007; 23(6): 1367-74.
[http://dx.doi.org/10.1185/030079907X188215] [PMID: 17559744]
[25]
Arun CS, Pandit R, Taylor R. Long-term progression of retinopathy after initiation of insulin therapy in Type 2 diabetes: an observational study. Diabetologia 2004; 47(8): 1380-4.
[http://dx.doi.org/10.1007/s00125-004-1473-9] [PMID: 15309288]
[26]
Monnier VM, Bautista O, Kenny D, et al. Skin collagen glycation, glycoxidation, and crosslinking are lower in subjects with long-term intensive versus conventional therapy of type 1 diabetes: relevance of glycated collagen products versus HbA1c as markers of diabetic complications. DCCT Skin Collagen Ancillary Study Group. Diabetes Control and Complications Trial. Diabetes 1999; 48(4): 870-80.
[http://dx.doi.org/10.2337/diabetes.48.4.870] [PMID: 10102706]
[27]
Edwards JL, Vincent AM, Cheng HT, Feldman EL. Diabetic neuropathy: mechanisms to management. Pharmacol Ther 2008; 120(1): 1-34.
[http://dx.doi.org/10.1016/j.pharmthera.2008.05.005] [PMID: 18616962]
[28]
Deli G, Bosnyak E, Pusch G, Komoly S, Feher G. Diabetic neuropathies: diagnosis and management. Neuroendocrinology 2013; 98(4): 267-80.
[http://dx.doi.org/10.1159/000358728] [PMID: 24458095]
[29]
Cameron NE, Eaton SE, Cotter MA, Tesfaye S. Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia 2001; 44(11): 1973-88.
[http://dx.doi.org/10.1007/s001250100001] [PMID: 11719828]
[30]
Uehara K, Yamagishi S, Otsuki S, Chin S, Yagihashi S. Effects of polyol pathway hyperactivity on protein kinase C activity, nociceptive peptide expression, and neuronal structure in dorsal root ganglia in diabetic mice. Diabetes 2004; 53(12): 3239-47.
[http://dx.doi.org/10.2337/diabetes.53.12.3239] [PMID: 15561956]
[31]
Skljarevski V, Malik RA. Clinical diagnosis of diabetic neuropathy.Diabetic Neuropathy. Springer 2007; pp. 275-92.
[http://dx.doi.org/10.1007/978-1-59745-311-0_16]
[32]
Ziegler D, Papanas N, Zhivov A, et al. German Diabetes Study (GDS) Group. Early detection of nerve fiber loss by corneal confocal microscopy and skin biopsy in recently diagnosed type 2 diabetes. Diabetes 2014; 63(7): 2454-63.
[http://dx.doi.org/10.2337/db13-1819] [PMID: 24574045]
[33]
Terneus W. Pregabalin and duloxetine for the treatment of neuropathic pain disorders. J Pain Palliat Care Pharmacother 2007; 21(1): 79-84.
[http://dx.doi.org/10.1080/J354v21n01_18] [PMID: 17430838]
[34]
Dworkin RH, O’Connor AB, Backonja M, et al. Pharmacologic management of neuropathic pain: evidence-based recommendations. Pain 2007; 132(3): 237-51.
[http://dx.doi.org/10.1016/j.pain.2007.08.033] [PMID: 17920770]
[35]
Simpson IA, Dwyer D, Malide D, Moley KH, Travis A, Vannucci SJ. The facilitative glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab 2008; 295(2): E242-53.
[http://dx.doi.org/10.1152/ajpendo.90388.2008] [PMID: 18577699]
[36]
Demin O, Kholodenko B, Skulachev V. A model of O∙ 2-generation in the complex III of the electron transport chain, in Bioenergetics of the Cell: Quantitative Aspects Springer 1998; 21-33.
[37]
Kahn HA, Hiller R. Blindness caused by diabetic retinopathy. Am J Ophthalmol 1974; 78(1): 58-67.
[http://dx.doi.org/10.1016/0002-9394(74)90010-5] [PMID: 4835055]
[38]
Kim JH, Kim JH, Yu YS, Cho CS, Kim KW. Blockade of angiotensin II attenuates VEGF-mediated blood-retinal barrier breakdown in diabetic retinopathy. J Cereb Blood Flow Metab 2009; 29(3): 621-8.
[http://dx.doi.org/10.1038/jcbfm.2008.154] [PMID: 19107135]
[39]
Yau JW, Rogers SL, Kawasaki R, et al. Meta-Analysis for Eye Disease (META-EYE) Study Group. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 2012; 35(3): 556-64.
[http://dx.doi.org/10.2337/dc11-1909] [PMID: 22301125]
[40]
Engerman RL, Kern TS. Hyperglycemia as a cause of diabetic retinopathy. Metabolism 1986; 35(4)(Suppl. 1): 20-3.
[http://dx.doi.org/10.1016/0026-0495(86)90182-4] [PMID: 3083205]
[41]
Gadkari SS, Maskati QB, Nayak BK. Prevalence of diabetic retinopathy in India: The all India ophthalmological society diabetic retinopathy eye screening study 2014. Indian J Ophthalmol 2016; 64(1): 38-44.
[http://dx.doi.org/10.4103/0301-4738.178144] [PMID: 26953022]
[42]
Ahmed N. Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Res Clin Pract 2005; 67(1): 3-21.
[http://dx.doi.org/10.1016/j.diabres.2004.09.004] [PMID: 15620429]
[43]
Phillips AO, Baboolal K, Riley S, et al. Association of prolonged hyperglycemia with glomerular hypertrophy and renal basement membrane thickening in the Goto Kakizaki model of non-insulin-dependent diabetes mellitus. Am J Kidney Dis 2001; 37(2): 400-10.
[http://dx.doi.org/10.1053/ajkd.2001.21322] [PMID: 11157383]
[44]
Pfister F, Feng Y, vom Hagen F, et al. Pericyte migration: a novel mechanism of pericyte loss in experimental diabetic retinopathy. Diabetes 2008; 57(9): 2495-502.
[http://dx.doi.org/10.2337/db08-0325] [PMID: 18559662]
[45]
Wilkinson-Berka JL. Angiotensin and diabetic retinopathy. Int J Biochem Cell Biol 2006; 38(5-6): 752-65.
[http://dx.doi.org/10.1016/j.biocel.2005.08.002] [PMID: 16165393]
[46]
Chibber R, Ben-Mahmud BM, Chibber S, Kohner EM. Leukocytes in diabetic retinopathy. Curr Diabetes Rev 2007; 3(1): 3-14.
[http://dx.doi.org/10.2174/157339907779802139] [PMID: 18220651]
[47]
Engerman RL. Pathogenesis of diabetic retinopathy. Diabetes 1989; 38(10): 1203-6.
[http://dx.doi.org/10.2337/diab.38.10.1203] [PMID: 2676655]
[48]
Sun Y-M, Su Y, Li J, Wang LF. Recent advances in understanding the biochemical and molecular mechanism of diabetic nephropathy. Biochem Biophys Res Commun 2013; 433(4): 359-61.
[http://dx.doi.org/10.1016/j.bbrc.2013.02.120] [PMID: 23541575]
[49]
Dronavalli S, Duka I, Bakris GL. The pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol Metab 2008; 4(8): 444-52.
[http://dx.doi.org/10.1038/ncpendmet0894] [PMID: 18607402]
[50]
Krolewski AS. Genetics of diabetic nephropathy: evidence for major and minor gene effects. Kidney Int 1999; 55(4): 1582-96.
[http://dx.doi.org/10.1046/j.1523-1755.1999.00371.x] [PMID: 10201028]
[51]
Ritz E, Orth SR. Nephropathy in patients with type 2 diabetes mellitus. N Engl J Med 1999; 341(15): 1127-33.
[http://dx.doi.org/10.1056/NEJM199910073411506] [PMID: 10511612]
[52]
Ismail N, Becker B, Strzelczyk P, Ritz E. Renal disease and hypertension in non-insulin-dependent diabetes mellitus. Kidney Int 1999; 55(1): 1-28.
[http://dx.doi.org/10.1046/j.1523-1755.1999.00232.x] [PMID: 9893112]
[53]
Mogensen CE. Microalbuminuria, blood pressure and diabetic renal disease: origin and development of ideas.The Kidney and Hypertension in Diabetes Mellitus. Springer 2000; pp. 655-706.
[http://dx.doi.org/10.1007/978-1-4615-4499-9_49]
[54]
Ravid M, Neumann L, Lishner M. Plasma lipids and the progression of nephropathy in diabetes mellitus type II: effect of ACE inhibitors. Kidney Int 1995; 47(3): 907-10.
[http://dx.doi.org/10.1038/ki.1995.135] [PMID: 7752591]
[55]
Satirapoj B. Nephropathy in diabetes. Diabetes. Springer 2013; 107-22.
[http://dx.doi.org/10.1007/978-1-4614-5441-0_11]
[56]
Cooper ME. Interaction of metabolic and haemodynamic factors in mediating experimental diabetic nephropathy. Diabetologia 2001; 44(11): 1957-72.
[http://dx.doi.org/10.1007/s001250100000] [PMID: 11719827]
[57]
Leon CA, Raij L. Interaction of haemodynamic and metabolic pathways in the genesis of diabetic nephropathy. J Hypertens 2005; 23(11): 1931-7.
[http://dx.doi.org/10.1097/01.hjh.0000188415.65040.5d] [PMID: 16208129]
[58]
Wolf G. New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology. Eur J Clin Invest 2004; 34(12): 785-96.
[http://dx.doi.org/10.1111/j.1365-2362.2004.01429.x] [PMID: 15606719]
[59]
Ziyadeh FN, Wolf G. Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy. Curr Diabetes Rev 2008; 4(1): 39-45.
[http://dx.doi.org/10.2174/157339908783502370] [PMID: 18220694]
[60]
Raptis AE, Viberti G. Pathogenesis of diabetic nephropathy. Exp Clin Endocrinol Diabetes 2001; 109(Suppl. 2): S424-37.
[http://dx.doi.org/10.1055/s-2001-18600] [PMID: 11460589]
[61]
Ola MS, Nawaz MI, Siddiquei MM, Al-Amro S, Abu El-Asrar AM. Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy. J Diabetes Complications 2012; 26(1): 56-64.
[http://dx.doi.org/10.1016/j.jdiacomp.2011.11.004] [PMID: 22226482]
[62]
Hosseini A, Abdollahi M. Diabetic neuropathy and oxidative stress: therapeutic perspectives. Oxidative medicine and cellular longevity 2013.
[http://dx.doi.org/10.1155/2013/168039]
[63]
van den Oever IA, et al. Endothelial dysfunction, inflammation, and apoptosis in diabetes mellitus. Mediators of inflammation 2010.
[http://dx.doi.org/10.1155/2010/792393]
[64]
Hogg RE, et al. Cardiovascular disease and hypertension are strong risk factors for choroidal neovascularization. Ophthalmology 2008; 115(6): 1046-52.
[http://dx.doi.org/10.1016/j.ophtha.2007.07.031]
[65]
Thornalley PJ, Langborg A, Minhas HS. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J 1999; 344(Pt 1): 109-16.
[http://dx.doi.org/10.1042/bj3440109] [PMID: 10548540]
[66]
Stewart MW. Pathophysiology of diabetic retinopathy.Diabetic Retinopathy. Springer 2010; pp. 1-30.
[http://dx.doi.org/10.1007/978-0-387-85900-2_1]
[67]
Takeuchi M, Yamagishi S. Alternative routes for the formation of glyceraldehyde-derived AGEs (TAGE) in vivo. Med Hypotheses 2004; 63(3): 453-5.
[http://dx.doi.org/10.1016/j.mehy.2004.03.005] [PMID: 15288367]
[68]
Tobon-Velasco C. Receptor for AGEs (RAGE) as mediator of NF-kB pathway activation in neuroinflammation and oxidative stress. CNS   Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS   Neurological Disorders) 2014; 13(9): 1615-26.
[69]
Hegab Z, Gibbons S, Neyses L, Mamas MA. Role of advanced glycation end products in cardiovascular disease. World J Cardiol 2012; 4(4): 90-102.
[http://dx.doi.org/10.4330/wjc.v4.i4.90] [PMID: 22558488]
[70]
Cunningham ME, Huribal M, Bala RJ, McMillen MA. Endothelin-1 and endothelin-4 stimulate monocyte production of cytokines. Crit Care Med 1997; 25(6): 958-64.
[http://dx.doi.org/10.1097/00003246-199706000-00011] [PMID: 9201047]
[71]
Khalfaoui T, Lizard G, Ouertani-Meddeb A. Adhesion molecules (ICAM-1 and VCAM-1) and diabetic retinopathy in type 2 diabetes. J Mol Histol 2008; 39(2): 243-9.
[http://dx.doi.org/10.1007/s10735-007-9159-5] [PMID: 18165914]
[72]
Stitt AW. The role of advanced glycation in the pathogenesis of diabetic retinopathy. Exp Mol Pathol 2003; 75(1): 95-108.
[http://dx.doi.org/10.1016/S0014-4800(03)00035-2] [PMID: 12834631]
[73]
Winkler EA, Bell RD, Zlokovic BV. Central nervous system pericytes in health and disease. Nat Neurosci 2011; 14(11): 1398-405.
[http://dx.doi.org/10.1038/nn.2946] [PMID: 22030551]
[74]
Chibber R, Molinatti PA, Rosatto N, Lambourne B, Kohner EM. Toxic action of advanced glycation end products on cultured retinal capillary pericytes and endothelial cells: relevance to diabetic retinopathy. Diabetologia 1997; 40(2): 156-64.
[http://dx.doi.org/10.1007/s001250050657] [PMID: 9049475]
[75]
Lander HM, Tauras JM, Ogiste JS, Hori O, Moss RA, Schmidt AM. Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J Biol Chem 1997; 272(28): 17810-4.
[http://dx.doi.org/10.1074/jbc.272.28.17810] [PMID: 9211935]
[76]
Gao J-J, Hu YW, Wang YC, et al. ApoM suppresses TNF-α-induced expression of ICAM-1 and VCAM-1 through inhibiting the activity of NF-κB. DNA Cell Biol 2015; 34(8): 550-6.
[http://dx.doi.org/10.1089/dna.2015.2892] [PMID: 26057873]
[77]
Libermann TA, Baltimore D. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol 1990; 10(5): 2327-34.
[http://dx.doi.org/10.1128/MCB.10.5.2327] [PMID: 2183031]
[78]
Amorim RG, Guedes GDS, Vasconcelos SML, Santos JCF. Kidney Disease in Diabetes Mellitus: Cross-Linking between Hyperglycemia, Redox Imbalance and Inflammation. Arq Bras Cardiol 2019; 112(5): 577-87.
[http://dx.doi.org/10.5935/abc.20190077] [PMID: 31188964]
[79]
Monnier VM, Sell DR, Nagaraj RH, et al. Maillard reaction-mediated molecular damage to extracellular matrix and other tissue proteins in diabetes, aging, and uremia. Diabetes 1992; 41(Suppl. 2): 36-41.
[http://dx.doi.org/10.2337/diab.41.2.S36] [PMID: 1526333]
[80]
Skolnik EY, Yang Z, Makita Z, Radoff S, Kirstein M, Vlassara H. Human and rat mesangial cell receptors for glucose-modified proteins: potential role in kidney tissue remodelling and diabetic nephropathy. J Exp Med 1991; 174(4): 931-9.
[http://dx.doi.org/10.1084/jem.174.4.931] [PMID: 1655949]
[81]
Vlassara H, Brownlee M, Cerami A. Excessive nonenzymatic glycosylation of peripheral and central nervous system myelin components in diabetic rats. Diabetes 1983; 32(7): 670-4.
[http://dx.doi.org/10.2337/diab.32.7.670] [PMID: 6862112]
[82]
Coppey LJ, Gellett JS, Davidson EP, Dunlap JA, Yorek MA. Effect of treating streptozotocin-induced diabetic rats with sorbinil, myo-inositol or aminoguanidine on endoneurial blood flow, motor nerve conduction velocity and vascular function of epineurial arterioles of the sciatic nerve. Exp Diabetes Res 2002; 3(1): 21-36.
[http://dx.doi.org/10.1080/15604280212525] [PMID: 11900277]
[83]
Dyer DG, Blackledge JA, Thorpe SR, Baynes JW. Formation of pentosidine during nonenzymatic browning of proteins by glucose. Identification of glucose and other carbohydrates as possible precursors of pentosidine in vivo. J Biol Chem 1991; 266(18): 11654-60.
[PMID: 1904867]
[84]
Schalkwijk CG, Stehouwer CD, van Hinsbergh VW. Fructose-mediated non-enzymatic glycation: sweet coupling or bad modification. Diabetes Metab Res Rev 2004; 20(5): 369-82.
[http://dx.doi.org/10.1002/dmrr.488] [PMID: 15343583]
[85]
Yamagishi S, Imaizumi T. Diabetic vascular complications: pathophysiology, biochemical basis and potential therapeutic strategy. Curr Pharm Des 2005; 11(18): 2279-99.
[http://dx.doi.org/10.2174/1381612054367300] [PMID: 16022668]
[86]
Tomlinson DR, Stevens EJ, Diemel LT. Aldose reductase inhibitors and their potential for the treatment of diabetic complications. Trends Pharmacol Sci 1994; 15(8): 293-7.
[http://dx.doi.org/10.1016/0165-6147(94)90010-8] [PMID: 7940997]
[87]
Obrosova IG, Fathallah L, Lang H-J. Interaction between osmotic and oxidative stress in diabetic precataractous lens: studies with a sorbitol dehydrogenase inhibitor. Biochem Pharmacol 1999; 58(12): 1945-54.
[http://dx.doi.org/10.1016/S0006-2952(99)00315-9] [PMID: 10591149]
[88]
Dagher Z, Park YS, Asnaghi V, Hoehn T, Gerhardinger C, Lorenzi M. Studies of rat and human retinas predict a role for the polyol pathway in human diabetic retinopathy. Diabetes 2004; 53(9): 2404-11.
[http://dx.doi.org/10.2337/diabetes.53.9.2404] [PMID: 15331552]
[89]
Hohman TC, Nishimura C, Robison WG Jr. Aldose reductase and polyol in cultured pericytes of human retinal capillaries. Exp Eye Res 1989; 48(1): 55-60.
[http://dx.doi.org/10.1016/0014-4835(89)90018-3] [PMID: 2493386]
[90]
Cheung AK, Fung MK, Lo AC, et al. Aldose reductase deficiency prevents diabetes-induced blood-retinal barrier breakdown, apoptosis, and glial reactivation in the retina of db/db mice. Diabetes 2005; 54(11): 3119-25.
[http://dx.doi.org/10.2337/diabetes.54.11.3119] [PMID: 16249434]
[91]
Kasajima H, Yamagishi S, Sugai S, Yagihashi N, Yagihashi S. Enhanced in situ expression of aldose reductase in peripheral nerve and renal glomeruli in diabetic patients. Virchows Arch 2001; 439(1): 46-54.
[http://dx.doi.org/10.1007/s004280100444] [PMID: 11499839]
[92]
Kikkawa R, Umemura K, Haneda M, Arimura T, Ebata K, Shigeta Y. Evidence for existence of polyol pathway in cultured rat mesangial cells. Diabetes 1987; 36(2): 240-3.
[http://dx.doi.org/10.2337/diab.36.2.240] [PMID: 3100369]
[93]
Tilton RG, Chang K, Pugliese G, et al. Prevention of hemodynamic and vascular albumin filtration changes in diabetic rats by aldose reductase inhibitors. Diabetes 1989; 38(10): 1258-70.
[http://dx.doi.org/10.2337/diab.38.10.1258] [PMID: 2507378]
[94]
Song Z, Fu DT, Chan YS, Leung S, Chung SS, Chung SK. Transgenic mice overexpressing aldose reductase in Schwann cells show more severe nerve conduction velocity deficit and oxidative stress under hyperglycemic stress. Mol Cell Neurosci 2003; 23(4): 638-47.
[http://dx.doi.org/10.1016/S1044-7431(03)00096-4] [PMID: 12932443]
[95]
Das Evcimen N, King GL. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res 2007; 55(6): 498-510.
[http://dx.doi.org/10.1016/j.phrs.2007.04.016] [PMID: 17574431]
[96]
Haneda M, Koya D, Kikkawa R. Cellular mechanisms in the development and progression of diabetic nephropathy: activation of the DAG-PKC-ERK pathway. Am J Kidney Dis 2001; 38(4)(Suppl. 1): S178-81.
[http://dx.doi.org/10.1053/ajkd.2001.27438] [PMID: 11576950]
[97]
Xia P, Inoguchi T, Kern TS, Engerman RL, Oates PJ, King GL. Characterization of the mechanism for the chronic activation of diacylglycerol-protein kinase C pathway in diabetes and hypergalactosemia. Diabetes 1994; 43(9): 1122-9.
[http://dx.doi.org/10.2337/diab.43.9.1122] [PMID: 8070612]
[98]
Putney JW Jr, McKay RR. Capacitative calcium entry channels. BioEssays 1999; 21(1): 38-46.
[http://dx.doi.org/10.1002/(SICI)1521-1878(199901)21:1<38::AID-BIES5>3.0.CO;2-S] [PMID: 10070252]
[99]
Park J-Y, Takahara N, Gabriele A, et al. Induction of endothelin-1 expression by glucose: an effect of protein kinase C activation. Diabetes 2000; 49(7): 1239-48.
[http://dx.doi.org/10.2337/diabetes.49.7.1239] [PMID: 10909984]
[100]
Hoshi S, Nomoto K, Kuromitsu J, Tomari S, Nagata M. High glucose induced VEGF expression via PKC and ERK in glomerular podocytes. Biochem Biophys Res Commun 2002; 290(1): 177-84.
[http://dx.doi.org/10.1006/bbrc.2001.6138] [PMID: 11779150]
[101]
Wooten MW. Function for NF-kB in neuronal survival: regulation by atypical protein kinase C. J Neurosci Res 1999; 58(5): 607-11.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19991201)58:5<607:AID-JNR1>3.0.CO;2-M] [PMID: 10561688]
[102]
Ren S, Shatadal S, Shen GX. Protein kinase C-β mediates lipoprotein-induced generation of PAI-1 from vascular endothelial cells. Am J Physiol Endocrinol Metab 2000; 278(4): E656-62.
[http://dx.doi.org/10.1152/ajpendo.2000.278.4.E656] [PMID: 10751199]
[103]
Gavard J, Gutkind JS. VEGF controls endothelial-cell permeability by promoting the β-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 2006; 8(11): 1223-34.
[http://dx.doi.org/10.1038/ncb1486] [PMID: 17060906]
[104]
Aiello LP, Davis MD, Girach A, et al. PKC-DRS2 Group. Effect of ruboxistaurin on visual loss in patients with diabetic retinopathy. Ophthalmology 2006; 113(12): 2221-30.
[http://dx.doi.org/10.1016/j.ophtha.2006.07.032] [PMID: 16989901]
[105]
Weiss RH, Ramirez A. TGF-beta- and angiotensin-II-induced mesangial matrix protein secretion is mediated by protein kinase C. Nephrol Dial Transplant 1998; 13(11): 2804-13.
[http://dx.doi.org/10.1093/ndt/13.11.2804] [PMID: 9829482]
[106]
Kunisaki M, Bursell SE, Umeda F, Nawata H, King GL. Normalization of diacylglycerol-protein kinase C activation by vitamin E in aorta of diabetic rats and cultured rat smooth muscle cells exposed to elevated glucose levels. Diabetes 1994; 43(11): 1372-7.
[http://dx.doi.org/10.2337/diab.43.11.1372] [PMID: 7926314]
[107]
Marshall S, Bacote V, Traxinger RR. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J Biol Chem 1991; 266(8): 4706-12.
[PMID: 2002019]
[108]
Yagihashi S. Glucotoxic mechanisms and related therapeutic approaches.International review of neurobiology. Elsevier 2016; pp. 121-49.
[109]
Du X-L, Edelstein D, Rossetti L, et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci USA 2000; 97(22): 12222-6.
[http://dx.doi.org/10.1073/pnas.97.22.12222] [PMID: 11050244]
[110]
Figueroa-Romero C, Sadidi M, Feldman EL. Mechanisms of disease: the oxidative stress theory of diabetic neuropathy. Rev Endocr Metab Disord 2008; 9(4): 301-14.
[http://dx.doi.org/10.1007/s11154-008-9104-2] [PMID: 18709457]
[111]
Jurkiewicz MT, Crawley AP, Verrier MC, Fehlings MG, Mikulis DJ. Somatosensory cortical atrophy after spinal cord injury: a voxel-based morphometry study. Neurology 2006; 66(5): 762-4.
[http://dx.doi.org/10.1212/01.wnl.0000201276.28141.40] [PMID: 16534122]
[112]
Maezawa Y, Takemoto M, Yokote K. Cell biology of diabetic nephropathy: Roles of endothelial cells, tubulointerstitial cells and podocytes. J Diabetes Investig 2015; 6(1): 3-15.
[http://dx.doi.org/10.1111/jdi.12255] [PMID: 25621126]
[113]
Anjaneyulu M, Berent-Spillson A, Inoue T, Choi J, Cherian K, Russell JW. Transforming growth factor-β induces cellular injury in experimental diabetic neuropathy. Exp Neurol 2008; 211(2): 469-79.
[http://dx.doi.org/10.1016/j.expneurol.2008.02.011] [PMID: 18406405]
[114]
Javle M, Curtin NJ. The role of PARP in DNA repair and its therapeutic exploitation. Br J Cancer 2011; 105(8): 1114-22.
[http://dx.doi.org/10.1038/bjc.2011.382] [PMID: 21989215]
[115]
Herceg Z, Wang Z-Q. Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat Res Fundam Mol Mech Mutagen 2001; 477(1-2): 97-110.
[http://dx.doi.org/10.1016/S0027-5107(01)00111-7] [PMID: 11376691]
[116]
Van Dam PS, Cotter MA, Bravenboer B, Cameron NE. Pathogenesis of diabetic neuropathy: focus on neurovascular mechanisms. Eur J Pharmacol 2013; 719(1-3): 180-6.
[http://dx.doi.org/10.1016/j.ejphar.2013.07.017] [PMID: 23872412]
[117]
Virág L, Szabó C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 2002; 54(3): 375-429.
[http://dx.doi.org/10.1124/pr.54.3.375] [PMID: 12223530]
[118]
Ehrlich W, Huser H, Kröger H. Inhibition of the induction of collagenase by interleukin-1 β in cultured rabbit synovial fibroblasts after treatment with the poly(ADP-ribose)-polymerase inhibitor 3-aminobenzamide. Rheumatol Int 1995; 15(4): 171-2.
[http://dx.doi.org/10.1007/BF00301776] [PMID: 8835300]
[119]
Zingarelli B, Salzman AL, Szabó C. Genetic disruption of poly (ADP-ribose) synthetase inhibits the expression of P-selectin and intercellular adhesion molecule-1 in myocardial ischemia/reperfusion injury. Circ Res 1998; 83(1): 85-94.
[http://dx.doi.org/10.1161/01.RES.83.1.85] [PMID: 9670921]
[120]
Obrosova IG, Minchenko AG, Frank RN, et al. Poly(ADP-ribose) polymerase inhibitors counteract diabetes- and hypoxia-induced retinal vascular endothelial growth factor overexpression. Int J Mol Med 2004; 14(1): 55-64.
[http://dx.doi.org/10.3892/ijmm.14.1.55] [PMID: 15202016]
[121]
Zheng L, Szabó C, Kern TS. Poly(ADP-ribose) polymerase is involved in the development of diabetic retinopathy via regulation of nuclear factor-kappaB. Diabetes 2004; 53(11): 2960-7.
[http://dx.doi.org/10.2337/diabetes.53.11.2960] [PMID: 15504977]
[122]
Kern T, Zheng L, Szabo C. Inhibition of PARP inhibits development of early stages of diabetic retinopathy. Invest Ophthalmol Vis Sci 2004; 45(13): 1096-6.
[123]
Minchenko AG, Stevens MJ, White L, et al. Diabetes-induced overexpression of endothelin-1 and endothelin receptors in the rat renal cortex is mediated via poly(ADP-ribose) polymerase activation. FASEB J 2003; 17(11): 1514-6.
[http://dx.doi.org/10.1096/fj.03-0013fje] [PMID: 12824290]
[124]
Negi G, Kumar A, Sharma SS. Concurrent targeting of nitrosative stress-PARP pathway corrects functional, behavioral and biochemical deficits in experimental diabetic neuropathy. Biochem Biophys Res Commun 2010; 391(1): 102-6.
[http://dx.doi.org/10.1016/j.bbrc.2009.11.010] [PMID: 19900402]
[125]
Dieckmann A, Kriebel M, Andriambeloson E, Ziegler D, Elmlinger M. Treatment with Actovegin® improves sensory nerve function and pathology in streptozotocin-diabetic rats via mechanisms involving inhibition of PARP activation. Exp Clin Endocrinol Diabetes 2012; 120(3): 132-8.
[http://dx.doi.org/10.1055/s-0031-1291248] [PMID: 22020669]
[126]
Turner RC, Millns H, Neil HA, et al. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS: 23). BMJ 1998; 316(7134): 823-8.
[http://dx.doi.org/10.1136/bmj.316.7134.823] [PMID: 9549452]
[127]
Nathan DM, Lachin J, Cleary P, et al. Diabetes Control and Complications Trial; Epidemiology of Diabetes Interventions and Complications Research Group. Intensive diabetes therapy and carotid intima-media thickness in type 1 diabetes mellitus. N Engl J Med 2003; 348(23): 2294-303.
[http://dx.doi.org/10.1056/NEJMoa022314] [PMID: 12788993]
[128]
Dale AC, Vatten LJ, Nilsen TI, Midthjell K, Wiseth R. Secular decline in mortality from coronary heart disease in adults with diabetes mellitus: cohort study. BMJ 2008; 337: a236.
[http://dx.doi.org/10.1136/bmj.39582.447998.BE] [PMID: 18595902]
[129]
Vinik A, Flemmer M. Diabetes and macrovascular disease. J Diabetes Complications 2002; 16(3): 235-45.
[http://dx.doi.org/10.1016/S1056-8727(01)00212-4] [PMID: 12015194]
[130]
Fowler MJ. Microvascular and macrovascular complications of diabetes. Clin Diabetes 2011; 29(3): 116-22.
[http://dx.doi.org/10.2337/diaclin.29.3.116]
[131]
Falk E. Pathogenesis of atherosclerosis. J Am Coll Cardiol 2006; 47(8)(Suppl.): C7-C12.
[http://dx.doi.org/10.1016/j.jacc.2005.09.068] [PMID: 16631513]
[132]
Busik JV, Mohr S, Grant MB. Hyperglycemia-induced reactive oxygen species toxicity to endothelial cells is dependent on paracrine mediators. Diabetes 2008; 57(7): 1952-65.
[http://dx.doi.org/10.2337/db07-1520] [PMID: 18420487]
[133]
Prat L, Torres G, Carrió I, et al. Polyclonal 111In-IgG, 125I-LDL and 125I-endothelin-1 accumulation in experimental arterial wall injury. Eur J Nucl Med 1993; 20(12): 1141-5.
[http://dx.doi.org/10.1007/BF00171011] [PMID: 8299648]
[134]
Cannistra SA, Ottensmeier C, Tidy J, DeFranzo B. Vascular cell adhesion molecule-1 expressed by peritoneal mesothelium partly mediates the binding of activated human T lymphocytes. Exp Hematol 1994; 22(10): 996-1002.
[PMID: 7522188]
[135]
Ebert EC. Intra-epithelial lymphocytes: interferon-gamma production and suppressor/cytotoxic activities. Clin Exp Immunol 1990; 82(1): 81-5.
[http://dx.doi.org/10.1111/j.1365-2249.1990.tb05407.x] [PMID: 2145105]
[136]
Boyle PJ. Diabetes mellitus and macrovascular disease: mechanisms and mediators. Am J Med 2007; 120(9)(Suppl. 2): S12-7.
[http://dx.doi.org/10.1016/j.amjmed.2007.07.003] [PMID: 17826041]
[137]
Banerjee RN, Sahni AL, Kumar V, Arya M. Antithrombin 3 deficiency in maturity onset diabetes mellitus and atherosclerosis. Thromb Haemost 1974; 31(2): 339-45.
[http://dx.doi.org/10.1055/s-0038-1649168] [PMID: 4850610]
[138]
Levi M, Biemond BJ, van Zonneveld AJ, ten Cate JW, Pannekoek H. Inhibition of plasminogen activator inhibitor-1 activity results in promotion of endogenous thrombolysis and inhibition of thrombus extension in models of experimental thrombosis. Circulation 1992; 85(1): 305-12.
[http://dx.doi.org/10.1161/01.CIR.85.1.305] [PMID: 1728462]
[139]
Gabriely I, Yang XM, Cases JA, Ma XH, Rossetti L, Barzilai N. Hyperglycemia induces PAI-1 gene expression in adipose tissue by activation of the hexosamine biosynthetic pathway. Atherosclerosis 2002; 160(1): 115-22.
[http://dx.doi.org/10.1016/S0021-9150(01)00574-3] [PMID: 11755928]
[140]
Shattil SJ, Bennett JS. Platelets and their membranes in hemostasis: physiology and pathophysiology. Ann Intern Med 1981; 94(1): 108-18.
[http://dx.doi.org/10.7326/0003-4819-94-1-108] [PMID: 7004296]
[141]
Brass LF, et al. Signal transduction during platelet plug formation. Platelets 2013; 2: 319-46.
[142]
Kunapuli SP, Dorsam RT, Kim S, Quinton TM. Platelet purinergic receptors. Curr Opin Pharmacol 2003; 3(2): 175-80.
[http://dx.doi.org/10.1016/S1471-4892(03)00007-9] [PMID: 12681240]
[143]
Mombouli J-V, Vanhoutte PM. Endothelial dysfunction: from physiology to therapy. J Mol Cell Cardiol 1999; 31(1): 61-74.
[http://dx.doi.org/10.1006/jmcc.1998.0844] [PMID: 10072716]
[144]
Gray SP, et al. Pathogenesis of Macrovascular Complications in Diabetes. Textbook of Diabetes 2017; 599-628.
[http://dx.doi.org/10.1002/9781118924853.ch41]
[145]
Ohishi M, Dusting GJ, Fennessy PA, Mendelsohn FA, Li XC, Zhuo JL. Increased expression and co-localization of ACE, angiotensin II AT(1) receptors and inducible nitric oxide synthase in atherosclerotic human coronary arteries. Int J Physiol Pathophysiol Pharmacol 2010; 2(2): 111-24.
[PMID: 21179388]
[146]
Diet F, Pratt RE, Berry GJ, Momose N, Gibbons GH, Dzau VJ. Increased accumulation of tissue ACE in human atherosclerotic coronary artery disease. Circulation 1996; 94(11): 2756-67.
[http://dx.doi.org/10.1161/01.CIR.94.11.2756] [PMID: 8941100]
[147]
Schölkens BA, Landgraf W. ACE inhibition and atherogenesis. Can J Physiol Pharmacol 2002; 80(4): 354-9.
[http://dx.doi.org/10.1139/y02-038] [PMID: 12025972]
[148]
Papademetriou V, et al. Prevention of atherosclerosis by specific AT1-receptor blockade with candesartan cilexetil. Journal of the Renin-Angiotensin-Aldosterone System 2001; 2(1_suppl): 77-80.
[149]
Kimura S, Kasuya Y, Sawamura T, et al. Conversion of big endothelin-1 to 21-residue endothelin-1 is essential for expression of full vasoconstrictor activity: structure-activity relationships of big endothelin-1. J Cardiovasc Pharmacol 1989; 13(Suppl. 5): S5-7.
[http://dx.doi.org/10.1097/00005344-198900135-00003] [PMID: 2473327]
[150]
Pernow J, Shemyakin A, Böhm F. New perspectives on endothelin-1 in atherosclerosis and diabetes mellitus. Life Sci 2012; 91(13-14): 507-16.
[http://dx.doi.org/10.1016/j.lfs.2012.03.029] [PMID: 22483688]
[151]
Böhm F, Pernow J. Urotensin II evokes potent vasoconstriction in humans in vivo. Br J Pharmacol 2002; 135(1): 25-7.
[http://dx.doi.org/10.1038/sj.bjp.0704448] [PMID: 11786476]
[152]
Dandona P, Aljada A, Mohanty P. The anti-inflammatory and potential anti-atherogenic effect of insulin: a new paradigm. Diabetologia 2002; 45(6): 924-30.
[http://dx.doi.org/10.1007/s00125-001-0766-5] [PMID: 12107738]
[153]
Hsueh WA, Law RE. Cardiovascular risk continuum: implications of insulin resistance and diabetes. Am J Med 1998; 105(1A): 4S-14S.
[http://dx.doi.org/10.1016/S0002-9343(98)00205-8] [PMID: 9707262]
[154]
Brown RA, Domin J, Arcaro A, Waterfield MD, Shepherd PR. Insulin activates the α isoform of class II phosphoinositide 3-kinase. J Biol Chem 1999; 274(21): 14529-32.
[http://dx.doi.org/10.1074/jbc.274.21.14529] [PMID: 10329640]
[155]
Wang J, Tokoro T, Matsui K, Higa S, Kitajima I. Pitavastatin at low dose activates endothelial nitric oxide synthase through PI3K-AKT pathway in endothelial cells. Life Sci 2005; 76(19): 2257-68.
[http://dx.doi.org/10.1016/j.lfs.2004.12.003] [PMID: 15733940]
[156]
Wu G, Meininger CJ. Nitric oxide and vascular insulin resistance. Biofactors 2009; 35(1): 21-7.
[http://dx.doi.org/10.1002/biof.3] [PMID: 19319842]
[157]
Jacob T, Ascher E, Alapat D, Olevskaia Y, Hingorani A. Activation of p38MAPK signaling cascade in a VSMC injury model: role of p38MAPK inhibitors in limiting VSMC proliferation. Eur J Vasc Endovasc Surg 2005; 29(5): 470-8.
[http://dx.doi.org/10.1016/j.ejvs.2005.01.030] [PMID: 15966085]
[158]
Bucala R, Tracey KJ, Cerami A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J Clin Invest 1991; 87(2): 432-8.
[http://dx.doi.org/10.1172/JCI115014] [PMID: 1991829]
[159]
Kislinger T, Tanji N, Wendt T, et al. Receptor for advanced glycation end products mediates inflammation and enhanced expression of tissue factor in vasculature of diabetic apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 2001; 21(6): 905-10.
[http://dx.doi.org/10.1161/01.ATV.21.6.905] [PMID: 11397695]
[160]
Wautier M-P, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab 2001; 280(5): E685-94.
[http://dx.doi.org/10.1152/ajpendo.2001.280.5.E685] [PMID: 11287350]
[161]
Forbes JM, Yee LT, Thallas V, et al. Advanced glycation end product interventions reduce diabetes-accelerated atherosclerosis. Diabetes 2004; 53(7): 1813-23.
[http://dx.doi.org/10.2337/diabetes.53.7.1813] [PMID: 15220206]
[162]
Sims TJ, Rasmussen LM, Oxlund H, Bailey AJ. The role of glycation cross-links in diabetic vascular stiffening. Diabetologia 1996; 39(8): 946-51.
[http://dx.doi.org/10.1007/BF00403914] [PMID: 8858217]
[163]
Huijberts MS, Wolffenbuttel BH, Boudier HA, et al. Aminoguanidine treatment increases elasticity and decreases fluid filtration of large arteries from diabetic rats. J Clin Invest 1993; 92(3): 1407-11.
[http://dx.doi.org/10.1172/JCI116716] [PMID: 8376593]
[164]
Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: a review of current trends. Oman Med J 2012; 27(4): 269-73.
[http://dx.doi.org/10.5001/omj.2012.68] [PMID: 23071876]
[165]
Knowler WC, Barrett-Connor E, Fowler SE, et al. Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin N Engl J Med 2002; 346(6): 393-403.
[http://dx.doi.org/10.1056/NEJMoa012512] [PMID: 11832527]
[166]
Ma J, Yu H, Liu J, Chen Y, Wang Q, Xiang L. Metformin attenuates hyperalgesia and allodynia in rats with painful diabetic neuropathy induced by streptozotocin. Eur J Pharmacol 2015; 764: 599-606.
[http://dx.doi.org/10.1016/j.ejphar.2015.06.010] [PMID: 26054810]
[167]
Zhang S, Xu H, Yu X, Wu Y, Sui D. Metformin ameliorates diabetic nephropathy in a rat model of low-dose streptozotocin-induced diabetes. Exp Ther Med 2017; 14(1): 383-90.
[http://dx.doi.org/10.3892/etm.2017.4475] [PMID: 28672943]
[168]
DeFronzo R, Fleming GA, Chen K, Bicsak TA. Metformin-associated lactic acidosis: Current perspectives on causes and risk. Metabolism 2016; 65(2): 20-9.
[http://dx.doi.org/10.1016/j.metabol.2015.10.014] [PMID: 26773926]
[169]
Sola D, Rossi L, Schianca GP, et al. Sulfonylureas and their use in clinical practice. AMS 2015; 11(4): 840-8.
[http://dx.doi.org/10.5114/aoms.2015.53304] [PMID: 26322096]
[170]
KREISBERG. The second-generation sulfonylureas: change or progress?American College of Physicians 1985.
[171]
Qiang X, Satoh J, Sagara M, et al. Gliclazide inhibits diabetic neuropathy irrespective of blood glucose levels in streptozotocin-induced diabetic rats. Metabolism 1998; 47(8): 977-81.
[http://dx.doi.org/10.1016/S0026-0495(98)90354-7] [PMID: 9711995]
[172]
Akanuma Y, Kosaka K, Kanazawa Y, Kasuga M, Fukuda M, Aoki S. Long-term comparison of oral hypoglycemic agents in diabetic retinopathy. Gliclazide vs. other sulfonylureas. Diabetes Res Clin Pract 1988; 5(2): 81-90.
[http://dx.doi.org/10.1016/S0168-8227(88)80046-9] [PMID: 3416710]
[173]
Kahn CR, Chen L, Cohen SE. Unraveling the mechanism of action of thiazolidinediones. J Clin Invest 2000; 106(11): 1305-7.
[http://dx.doi.org/10.1172/JCI11705] [PMID: 11104782]
[174]
Martinez L, Berenguer M, Bruce MC, Le Marchand-Brustel Y, Govers R. Rosiglitazone increases cell surface GLUT4 levels in 3T3-L1 adipocytes through an enhancement of endosomal recycling. Biochem Pharmacol 2010; 79(9): 1300-9.
[http://dx.doi.org/10.1016/j.bcp.2009.12.013] [PMID: 20026082]
[175]
Singh S, Loke YK, Furberg CD. Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis. JAMA 2007; 298(10): 1189-95.
[http://dx.doi.org/10.1001/jama.298.10.1189] [PMID: 17848653]
[176]
Griggs RB, Donahue RR, Adkins BG, Anderson KL, Thibault O, Taylor BK. Pioglitazone inhibits the development of hyperalgesia and sensitization of spinal nociresponsive neurons in type 2 diabetes. J Pain 2016; 17(3): 359-73.
[http://dx.doi.org/10.1016/j.jpain.2015.11.006] [PMID: 26687453]
[177]
Knauf C, Cani PD, Perrin C, et al. Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. J Clin Invest 2005; 115(12): 3554-63.
[http://dx.doi.org/10.1172/JCI25764] [PMID: 16322793]
[178]
Kazafeos K. Incretin effect: GLP-1, GIP, DPP4. Diabetes Res Clin Pract 2011; 93(Suppl. 1): S32-6.
[http://dx.doi.org/10.1016/S0168-8227(11)70011-0] [PMID: 21864749]
[179]
Richter B, et al. Dipeptidyl peptidase-4 (DPP-4) inhibitors for type 2 diabetes mellitus. Cochrane Database of Systematic Reviews 2008; 2
[180]
Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006; 368(9548): 1696-705.
[http://dx.doi.org/10.1016/S0140-6736(06)69705-5] [PMID: 17098089]
[181]
Komsuoglu Celikyurt I, Mutlu O, Ulak G, et al. Exenatide treatment exerts anxiolytic- and antidepressant-like effects and reverses neuropathy in a mouse model of type-2 diabetes. Med Sci Monit Basic Res 2014; 20: 112-7.
[http://dx.doi.org/10.12659/MSMBR.891168] [PMID: 25076419]
[182]
Joubert PH, Venter HL, Foukaridis GN. The effect of miglitol and acarbose after an oral glucose load: a novel hypoglycaemic mechanism? Br J Clin Pharmacol 1990; 30(3): 391-6.
[http://dx.doi.org/10.1111/j.1365-2125.1990.tb03789.x] [PMID: 2223417]
[183]
Yang YS, Danis RP, Peterson RG, Dolan PL, Wu YQ. Acarbose partially inhibits microvascular retinopathy in the Zucker Diabetic Fatty rat (ZDF/Gmi-fa). J Ocul Pharmacol Ther 2000; 16(5): 471-9.
[http://dx.doi.org/10.1089/jop.2000.16.471] [PMID: 11110039]
[184]
Van de Laar FA, et al. Alpha-glucosidase inhibitors for people with impaired glucose tolerance or impaired fasting blood glucose. Cochrane Database of Systematic Reviews 2006; 4
[http://dx.doi.org/10.1002/14651858.CD005061.pub2]
[185]
Guardado-Mendoza R, Prioletta A, Jiménez-Ceja LM, Sosale A, Folli F. The role of nateglinide and repaglinide, derivatives of meglitinide, in the treatment of type 2 diabetes mellitus. AMS 2013; 9(5): 936-43.
[http://dx.doi.org/10.5114/aoms.2013.34991] [PMID: 24273582]
[186]
Choi K, Kim Y-B. Molecular mechanism of insulin resistance in obesity and type 2 diabetes. Korean J Intern Med (Korean Assoc Intern Med) 2010; 25(2): 119-29.
[http://dx.doi.org/10.3904/kjim.2010.25.2.119] [PMID: 20526383]
[187]
Hoybergs YM, Meert TF. The effect of low-dose insulin on mechanical sensitivity and allodynia in type I diabetes neuropathy. Neurosci Lett 2007; 417(2): 149-54.
[http://dx.doi.org/10.1016/j.neulet.2007.02.087] [PMID: 17412508]
[188]
Pal M. Recent advances in glucokinase activators for the treatment of type 2 diabetes. Drug Discov Today 2009; 14(15-16): 784-92.
[http://dx.doi.org/10.1016/j.drudis.2009.05.013] [PMID: 19520181]
[189]
Bonadonna RC, Heise T, Arbet-Engels C, et al. Piragliatin (RO4389620), a novel glucokinase activator, lowers plasma glucose both in the postabsorptive state and after a glucose challenge in patients with type 2 diabetes mellitus: a mechanistic study. J Clin Endocrinol Metab 2010; 95(11): 5028-36.
[http://dx.doi.org/10.1210/jc.2010-1041] [PMID: 20739378]
[190]
Wilding JP, Leonsson-Zachrisson M, Wessman C, Johnsson E. Dose-ranging study with the glucokinase activator AZD1656 in patients with type 2 diabetes mellitus on metformin. Diabetes Obes Metab 2013; 15(8): 750-9.
[http://dx.doi.org/10.1111/dom.12088] [PMID: 23464532]
[191]
Ericsson H, Sjöberg F, Heijer M, et al. The glucokinase activator AZD6370 decreases fasting and postprandial glucose in type 2 diabetes mellitus patients with effects influenced by dosing regimen and food. Diabetes Res Clin Pract 2012; 98(3): 436-44.
[http://dx.doi.org/10.1016/j.diabres.2012.09.025] [PMID: 23010558]
[192]
Vangaveti V, Shashidhar V, Jarrod G, Baune BT, Kennedy RL. Free fatty acid receptors: emerging targets for treatment of diabetes and its complications. Ther Adv Endocrinol Metab 2010; 1(4): 165-75.
[http://dx.doi.org/10.1177/2042018810381066] [PMID: 23148161]
[193]
Del Prato S, Marchetti P. Beta- and alpha-cell dysfunction in type 2 diabetes. Horm Metab Res 2004; 36(11-12): 775-81.
[http://dx.doi.org/10.1055/s-2004-826163] [PMID: 15655708]
[194]
Agius L. New hepatic targets for glycaemic control in diabetes. Best Pract Res Clin Endocrinol Metab 2007; 21(4): 587-605.
[http://dx.doi.org/10.1016/j.beem.2007.09.001] [PMID: 18054737]
[195]
Madsen P, Kodra JT, Behrens C, et al. Human glucagon receptor antagonists with thiazole cores. A novel series with superior pharmacokinetic properties. J Med Chem 2009; 52(9): 2989-3000.
[http://dx.doi.org/10.1021/jm8016249] [PMID: 19385613]
[196]
Nauck MA. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug Des Devel Ther 2014; 8: 1335-80.
[http://dx.doi.org/10.2147/DDDT.S50773] [PMID: 25246775]
[197]
Bailey CJ, Iqbal N, T’joen C, List JF. Dapagliflozin monotherapy in drug-naïve patients with diabetes: a randomized-controlled trial of low-dose range. Diabetes Obes Metab 2012; 14(10): 951-9.
[http://dx.doi.org/10.1111/j.1463-1326.2012.01659.x] [PMID: 22776824]
[198]
Kanwal A, Banerjee SK. SGLT inhibitors: a novel target for diabetes. Pharm Pat Anal 2013; 2(1): 77-91.
[http://dx.doi.org/10.4155/ppa.12.78] [PMID: 24236972]
[199]
Algenstaedt P, Schaefer C, Biermann T, et al. Microvascular alterations in diabetic mice correlate with level of hyperglycemia. Diabetes 2003; 52(2): 542-9.
[http://dx.doi.org/10.2337/diabetes.52.2.542] [PMID: 12540633]
[200]
Laakso M. Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes 1999; 48(5): 937-42.
[http://dx.doi.org/10.2337/diabetes.48.5.937] [PMID: 10331395]
[201]
Andrade FC. Measuring the impact of diabetes on life expectancy and disability-free life expectancy among older adults in Mexico. J Gerontol B Psychol Sci Soc Sci 2010; 65B(3): 381-9.
[http://dx.doi.org/10.1093/geronb/gbp119] [PMID: 20028950]
[202]
Panigrahy SK, Bhatt R, Kumar A. Reactive oxygen species: sources, consequences and targeted therapy in type 2 diabetes. J Drug Target 2017; 25(2): 93-101.
[http://dx.doi.org/10.1080/1061186X.2016.1207650] [PMID: 27356044]
[203]
Giuliani C, Napolitano G, Bucci I, Montani V, Monaco F. [Nf-kB transcription factor: role in the pathogenesis of inflammatory, autoimmune, and neoplastic diseases and therapy implications]. Clin Ter 2001; 152(4): 249-53.
[PMID: 11725618]
[204]
Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, Nogueira- Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis 2018; 9(2): 119.
[http://dx.doi.org/10.1038/s41419-017-0135-z] [PMID: 29371661]
[205]
Frostegård J. Immunity, atherosclerosis and cardiovascular disease. BMC Med 2013; 11(1): 117.
[http://dx.doi.org/10.1186/1741-7015-11-117] [PMID: 23635324]
[206]
Khamaisi M, Wexler ID, Skrha J, Strojek K, Raz I, Milicevic Z. Cardiovascular disease in type 2 diabetics: epidemiology, risk factors and therapeutic modalities. Isr Med Assoc J 2003; 5(11): 801-6.
[PMID: 14650106]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy