[1]
Okada, T.; Suzuki, H.; Travis, Z.D.; Zhang, J.H. The stroke-induced blood-brain barriedisruption: current progress of inspection technique, mechanism, and therapeutic target. Curr. Neuropharmacol., 2020, 18, 1187-1212.
[PMID: 32484111]
[PMID: 32484111]
[2]
Kang, R.; Gamdzyk, M.; Lenahan, C.; Tang, J.; Tan, S.; Zhang, J.H. The dual role ofmicroglia in blood-brain barrier dysfunction after stroke. Curr. Neuropharmacol., 2020, 18, 1237-1249.
[PMID: 32469699]
[PMID: 32469699]
[3]
Huang, Y.; Chen, S.; Luo, Y.; Han, Z. Crosstalk between inflammation and the BBB inStroke. Curr. Neuropharmacol., 2020, 18, 1227-1236.
[http://dx.doi.org/10.2174/1570159X18666200620230321]
[http://dx.doi.org/10.2174/1570159X18666200620230321]
[4]
Shen, G.; Ma, Q. MicroRNAs in the blood-brain barrier in hypoxic-ischemic brain injury. Curr. Neuropharmacol., 2020, 18, 1180-1186.
[http://dx.doi.org/10.2174/1570159X18666200429004242] [PMID: 32348227]
[http://dx.doi.org/10.2174/1570159X18666200429004242] [PMID: 32348227]
[5]
Fumoto, T.; Naraoka, M.; Katagai, T.; Li, Y.; Shimamura, N.; Ohkuma, H. The Role ofoxidative stress in microvascular disturbances after experimental subarachnoid hemorrhage. Transl. Stroke Res., 2019, 10(6), 684-694.
[http://dx.doi.org/10.1007/s12975-018-0685-0] [PMID: 30628008]
[http://dx.doi.org/10.1007/s12975-018-0685-0] [PMID: 30628008]
[6]
Li, Y.; Wu, P.; Bihl, J.C.; Shi, H. Underlying mechanisms and potential therapeutic molecular targets in blood-brain barrier disruption after subarachnoid hemorrhage. Curr. Neuropharmacol., 2020, 18, 1168-1179.
[http://dx.doi.org/10.2174/1570159X18666200106154203] [PMID: 31903882]
[http://dx.doi.org/10.2174/1570159X18666200106154203] [PMID: 31903882]
[7]
Chen, S.; Xu, P.; Fang, Y.; Lenahan, C. The updated role of the blood brain barrier in subarachnoid hemorrhage: from basic and clinical studies. Curr. Neuropharmacol., 2020, 18, 1266-1278.
[http://dx.doi.org/10.2174/1570159X18666200914161231] [PMID: 32928088]
[http://dx.doi.org/10.2174/1570159X18666200914161231] [PMID: 32928088]
[8]
Xie, H.; Yu, K.; Zhou, N.; Shen, X.; Tian, S.; Zhang, B.; Wang, Y.; Wu, J.; Liu, G.; Jiang, C.; Hu, R.; Ayata, C.; Wu, Y.K.; Zhou, N.; Shen, X.; Tian, S.; Zhang, B.; Wang, Y.; Wu, J.; Liu, G.; Jiang, C.; Hu, R.; Ayata, C.; Wu, Y. Enriched environment elicits proangiogenic mechanisms after focal cerebral ischemia. Transl. Stroke Res., 2019, 10(2), 150-159.
[http://dx.doi.org/10.1007/s12975-018-0629-8] [PMID: 29700717]
[http://dx.doi.org/10.1007/s12975-018-0629-8] [PMID: 29700717]
[9]
Yang, Y.; Torbey, M.T. Angiogenesis and blood-brain barrier permeability in vascular remodeling after stroke. Curr. Neuropharmacol., 2020, •••, 18.
[http://dx.doi.org/10.2174/1570159X18666200720173316] [PMID: 32691713]
[http://dx.doi.org/10.2174/1570159X18666200720173316] [PMID: 32691713]
[10]
Gao, L.; Song, Z.; Mi, J.; Hou, P.; Xie, C.; Shi, J.; Li, Y.; Manaenko, A. The effects and underlying mechanisms of cell therapy on blood-brain barrier integrity after ischemic stroke. Curr. Neuropharmacol., 2020, 18, 1213-1226.
[http://dx.doi.org/10.2174/1570159X18666200914162013] [PMID: 32928089]
[http://dx.doi.org/10.2174/1570159X18666200914162013] [PMID: 32928089]