Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Radioprotective Effects of Plants from the Lamiaceae Family

Author(s): Tomasz M. Karpiński*, Artur Adamczak and Marcin Ożarowski

Volume 22, Issue 1, 2022

Published on: 29 October, 2020

Page: [4 - 19] Pages: 16

DOI: 10.2174/1871520620666201029120147

Price: $65

Abstract

Background: Edible and medicinal plants are still an interesting source of promising biologically active substances for drug discovery and development. At a time of increasing cancer incidence in the world, alleviating the bothersome side effects of radiotherapy in debilitated cancer patients is becoming an important challenge.

Objective: The aim of the study was to overview the literature data concerning the radioprotective activity of extracts, essential oils, and some chemical compounds obtained from 12 species belonging to the Lamiaceae family, gathering of numerous spice and medicinal plants rich in valuable phytochemicals.

Results: The analysis of available publications showed radioprotective effectiveness of essential oils and complex extracts containing phenolic acids and flavonoids in various in vitro and in vivo models. Relatively welldocumented preventive properties exhibited the following species: Mentha × piperita, Ocimum tenuiflorum, Origanum vulgare, and Rosmarinus officinalis. However, few plants such as Lavandula angustifolia, Mentha arvensis, M. spicata, Plectranthus amboinicus, Salvia miltiorrhiza, S. officinalis, Scutellaria baicalensis, and Zataria multiflora should be more investigated in the future. Among the mechanisms of radioprotective effects of well-studied extracts and phytochemicals, it can be mentioned mainly the protection against chromosomal damage, scavenging free radicals, decreasing of lipid peroxidation and elevating of glutathione, superoxide dismutase, catalase, and alkaline phosphatase enzyme levels as well as the reduction of the cell death. The plant substances protected the gastrointestinal tract, bone marrow and lung fibroblasts.

Conclusion: The studied species of Lamiaceae family and their active chemical compounds are potent in alleviating the side effects of radiotherapy and should be considered as a complementary therapy.

Keywords: Cancer, radiotherapy, gamma radiation, radioprotection, amifostine, Labiatae, medicinal plants.

Graphical Abstract

[2]
GLOBOCAN2008 Cancer incidence and mortality worldwideInternational Agency for Research on Cancer; Lyon, France, 2010.
[3]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[4]
Karpiński, T.M. The microbiota and pancreatic cancer. Gastroenterol. Clin. North Am., 2019, 48(3), 447-464.
[http://dx.doi.org/10.1016/j.gtc.2019.04.008] [PMID: 31383281]
[5]
Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199.
[http://dx.doi.org/10.7150/ijms.3635] [PMID: 22408567]
[6]
Ryan, J.L. Ionizing radiation: the good, the bad, and the ugly. J. Invest. Dermatol., 2012, 132(3 Pt 2), 985-993.
[http://dx.doi.org/10.1038/jid.2011.411] [PMID: 22217743]
[7]
Singh, M.; Alavi, A.; Wong, R.; Akita, S. Radiodermatitis: a review of our current understanding. Am. J. Clin. Dermatol., 2016, 17(3), 277-292.
[http://dx.doi.org/10.1007/s40257-016-0186-4] [PMID: 27021652]
[8]
Dracham, C.B.; Shankar, A.; Madan, R. Radiation induced secondary malignancies: a review article. Radiat. Oncol. J., 2018, 36(2), 85-94.
[http://dx.doi.org/10.3857/roj.2018.00290] [PMID: 29983028]
[9]
Musa, A.E.; Shabeeb, D. Radiation-induced heart diseases: protective effects of natural products. Medicina (Kaunas), 2019, 55(5)E126
[http://dx.doi.org/10.3390/medicina55050126] [PMID: 31075882]
[10]
Mun, G.I.; Kim, S.; Choi, E.; Kim, C.S.; Lee, Y.S. Pharmacology of natural radioprotectors. Arch. Pharm. Res., 2018, 41(11), 1033-1050.
[http://dx.doi.org/10.1007/s12272-018-1083-6] [PMID: 30361949]
[11]
Gault, N.; Lefaix, J.L. Infrared microspectroscopic characteristics of radiation-induced apoptosis in human lymphocytes. Radiat. Res., 2003, 160(2), 238-250.
[http://dx.doi.org/10.1667/RR3020.1] [PMID: 12859236]
[12]
Hosseinimehr, S.J. Trends in the development of radioprotective agents. Drug Discov. Today, 2007, 12(19-20), 794-805.
[http://dx.doi.org/10.1016/j.drudis.2007.07.017] [PMID: 17933679]
[13]
Hosseinimehr, S.J. Beneficial effects of natural products on cells during ionizing radiation. Rev. Environ. Health, 2014, 29(4), 341-353.
[http://dx.doi.org/10.1515/reveh-2014-0037] [PMID: 24695025]
[14]
Fischer, N.; Seo, E.J.; Efferth, T. Prevention from radiation damage by natural products. Phytomedicine, 2018, 47, 192-200.
[http://dx.doi.org/10.1016/j.phymed.2017.11.005] [PMID: 30166104]
[15]
Maier, P.; Wenz, F.; Herskind, C. Radioprotection of normal tissue cells. Strahlenther. Onkol., 2014, 190(8), 745-752.
[http://dx.doi.org/10.1007/s00066-014-0637-x] [PMID: 24638269]
[16]
Weiss, J.F.; Landauer, M.R. History and development of radiation-protective agents. Int. J. Radiat. Biol., 2009, 85(7), 539-573.
[http://dx.doi.org/10.1080/09553000902985144] [PMID: 19557599]
[17]
Johnke, R.M.; Sattler, J.A.; Allison, R.R. Radioprotective agents for radiation therapy: future trends. Future Oncol., 2014, 10(15), 2345-2357.
[http://dx.doi.org/10.2217/fon.14.175] [PMID: 25525844]
[18]
Szejk, M.; Kołodziejczyk-Czepas, J.; Żbikowska, H.M. Radioprotectors in radiotherapy - advances in the potential application of phytochemicals. Postepy Hig. Med. Dosw., 2016, 70(0), 722-734.
[http://dx.doi.org/10.5604/17322693.1208039] [PMID: 27356603]
[19]
Dwilewicz-Trojaczek, J. Amifostine: a cytoprotective drug. Contemp. Oncol. (Pozn.), 2004, 8(2), 101-106.
[20]
Ormsby, R.J.; Lawrence, M.D.; Blyth, B.J.; Bexis, K.; Bezak, E.; Murley, J.S.; Grdina, D.J.; Sykes, P.J. Protection from radiation-induced apoptosis by the radioprotector amifostine (WR-2721) is radiation dose dependent. Cell Biol. Toxicol., 2014, 30(1), 55-66.
[http://dx.doi.org/10.1007/s10565-014-9268-3] [PMID: 24459009]
[21]
Diedrich, M.J.; Warters, R.L.; Grossman, D. Amifostine aminothiols and protection of keratinocyte apoptosis and DNA damage. J. Invest. Dermatol., 2002, 119(3), 707-708.
[http://dx.doi.org/10.1046/j.1523-1747.2002.00213.x] [PMID: 12230519]
[22]
Acosta, J.C.; Richard, C.; Delgado, M.D.; Horita, M.; Rizzo, M.G.; Fernández-Luna, J.L.; León, J. Amifostine impairs p53-mediated apoptosis of human myeloid leukemia cells. Mol. Cancer Ther., 2003, 2(9), 893-900.
[PMID: 14555708]
[23]
Koukourakis, M.I.; Giatromanolaki, A.; Chong, W.; Simopoulos, C.; Polychronidis, A.; Sivridis, E.; Harris, A.L. Amifostine induces anaerobic metabolism and hypoxia-inducible factor 1 alpha. Cancer Chemother. Pharmacol., 2004, 53(1), 8-14.
[http://dx.doi.org/10.1007/s00280-003-0691-z] [PMID: 14574457]
[24]
Weigelt, C.; Haas, R.; Kobbe, G. Pharmacokinetic evaluation of palifermin for mucosal protection from chemotherapy and radiation. Expert Opin. Drug Metab. Toxicol., 2011, 7(4), 505-515.
[http://dx.doi.org/10.1517/17425255.2011.566556] [PMID: 21417820]
[25]
Bhandari, P.R. A review of radioprotective plants. Int. J. Green Pharm., 2013, 7, 90-101.
[http://dx.doi.org/10.4103/0973-8258.116379]
[26]
Samarth, R.M.; Samarth, M.; Matsumoto, Y. Medicinally important aromatic plants with radioprotective activity. Future Sci. OA, 2017, 3(4)FSO247
[http://dx.doi.org/10.4155/fsoa-2017-0061] [PMID: 29134131]
[27]
Tiku, A.B.; Abraham, S.K.; Kale, R.K. Eugenol as an in vivo radioprotective agent. J. Radiat. Res. (Tokyo), 2004, 45(3), 435-440.
[http://dx.doi.org/10.1269/jrr.45.435] [PMID: 15613789]
[28]
Abedi, S.M.; Yarmand, F.; Motallebnejad, M.; Seyedmajidi, M.; Moslemi, D.; Bijani, A.; Hosseinimehr, S.J. Radioprotective effect of thymol against salivary glands dysfunction induced by ionizing radiation in rats. Iran. J. Pharm. Res., 2016, 15(4), 861-866.
[PMID: 28243283]
[29]
Kudo, K.; Hanafusa, T.; Ono, T. In vitro analysis of radioprotective effect of monoterpenes. J. Radioanal. Nucl. Chem., 2017, 313, 169-174.
[http://dx.doi.org/10.1007/s10967-017-5268-0]
[30]
Sueishi, Y.; Nii, R. Monoterpene’s multiple free radical scavenging capacity as compared with the radioprotective agent cysteamine and amifostine. Bioorg. Med. Chem. Lett., 2018, 28(18), 3031-3033.
[http://dx.doi.org/10.1016/j.bmcl.2018.08.003] [PMID: 30098868]
[31]
Mahran, Y.F.; Badr, A.M.; Aldosari, A.; Bin-Zaid, R.; Alotaibi, H.N. Carvacrol and thymol modulate the cross-talk between TNF-α and IGF-1 signaling in radiotherapy-induced ovarian failure. Oxid. Med. Cell. Longev., 2019.20193173745
[http://dx.doi.org/10.1155/2019/3173745] [PMID: 31531182]
[32]
Chizzola, R. Essential oil composition of wild growing Apiaceae from Europe and the Mediterranean. Nat. Prod. Commun., 2010, 5(9), 1477-1492.
[http://dx.doi.org/10.1177/1934578X1000500925] [PMID: 20923011]
[33]
Contreras-Moreno, B.Z. Chemical composition of essential oil of genus Pimenta (Myrtaceae): review. Potential of essential oils; El-Shemy, H., Ed.; IntechOpen, 2018;
[http://dx.doi.org/10.5772/intechopen.78004]
[34]
Damasceno, C.S.B.; Fabri Higaki, N.T.; Dias, J.F.G.; Miguel, M.D.; Miguel, O.G. Chemical composition and biological activities of essential oils in the family Lauraceae: a systematic review of the literature. Planta Med., 2019, 85(13), 1054-1072.
[http://dx.doi.org/10.1055/a-0943-1908] [PMID: 31261421]
[35]
Karpiński, T.M. Essential oils of Lamiaceae family plants as antifungals. Biomolecules, 2020, 10(1)E103
[http://dx.doi.org/10.3390/biom10010103] [PMID: 31936168]
[36]
Ramasubramania Raja, R. Medicinally potential plants of Labiatae (Lamiaceae) family: an overview. Res. J. Med. Plant, 2012, 6(3), 203-213.
[http://dx.doi.org/10.3923/rjmp.2012.203.213]
[37]
Zółciak-Siwińska, A.; Jońska-Gmyrek, J.; Socha, J. Recurrent cervical cancer-therapeutic options Ginekol. Pol., 2012, 83(7), 527-531.
[PMID: 22880478]
[38]
Ghazali, N.; Shaw, R.J.; Rogers, S.N.; Risk, J.M. Genomic determinants of normal tissue toxicity after radiotherapy for head and neck malignancy: a systematic review. Oral Oncol., 2012, 48(11), 1090-1100.
[http://dx.doi.org/10.1016/j.oraloncology.2012.08.002] [PMID: 22939215]
[39]
Park, E.C.; Yoon, J.B.; Seong, J.S.; Choi, K.S.; Kong, E.S.; Kim, Y.J.; Park, Y.M.; Park, E.M. Effect of ionizing radiation on rat tissue: proteomic and biochemical analysis. Prep. Biochem. Biotechnol., 2006, 36(1), 19-35.
[http://dx.doi.org/10.1080/10826060500388470] [PMID: 16428137]
[40]
Bryll, A.; Krzyściak, W.; Jurczak, A.; Chrzan, R.; Lizoń, A.; Urbanik, A. Changes in the selected antioxidant defense parameters in the blood of patients after high resolution computed tomography. Int. J. Environ. Res. Public Health, 2019, 16(9)E1476
[http://dx.doi.org/10.3390/ijerph16091476] [PMID: 31027322]
[41]
Jeggo, P.; Lavin, M.F. Cellular radiosensitivity: how much better do we understand it? Int. J. Radiat. Biol., 2009, 85(12), 1061-1081.
[http://dx.doi.org/10.3109/09553000903261263] [PMID: 19995233]
[42]
Przybyszewski, W.M.; Widel, M.; Palyvoda, O. Lipid peroxidation, DNA damage, and cellular morphology of R1 Rhabdomyosarcoma cell line irradiated in vitro by gamma-rays with different dose rates. Teratog. Carcinog. Mutagen., 2002, 22(2), 93-102.
[http://dx.doi.org/10.1002/tcm.10006] [PMID: 11835287]
[43]
Baskar, R.; Dai, J.; Wenlong, N.; Yeo, R.; Yeoh, K.W. Biological response of cancer cells to radiation treatment. Front. Mol. Biosci., 2014, 1(1), 24.
[http://dx.doi.org/10.3389/fmolb.2014.00024] [PMID: 25988165]
[44]
Najafi, M.; Motevaseli, E.; Shirazi, A.; Geraily, G.; Rezaeyan, A.; Norouzi, F.; Rezapoor, S.; Abdollahi, H. Mechanisms of inflammatory responses to radiation and normal tissues toxicity: clinical implications. Int. J. Radiat. Biol., 2018, 94(4), 335-356.
[http://dx.doi.org/10.1080/09553002.2018.1440092] [PMID: 29504497]
[45]
Mortezaee, K.; Najafi, M.; Farhood, B.; Ahmadi, A.; Shabeeb, D.; Eleojo Musa, A. Genomic instability and carcinogenesis of heavy charged particles radiation: clinical and environmental implications. Medicina (Kaunas), 2019, 55(9)E591
[http://dx.doi.org/10.3390/medicina55090591] [PMID: 31540340]
[46]
Bujko, K. Basics of radiation therapy. Gastroenterol. Klin., 2010, 2(4), 121-126.
[47]
2019.
[48]
Donnelly, E.H.; Nemhauser, J.B.; Smith, J.M.; Kazzi, Z.N.; Farfán, E.B.; Chang, A.S.; Naeem, S.F. Acute radiation syndrome: assessment and management. South. Med. J., 2010, 103(6), 541-546.
[PMID: 20710137]
[49]
Mettler, F.A. Medical effects and risks of exposure to ionising radiation. J. Radiol. Prot., 2012, 32(1), N9-N13.
[PMID: 22395124]
[50]
Andreyev, J. Gastrointestinal symptoms after pelvic radiotherapy: a new understanding to improve management of symptomatic patients. Lancet Oncol., 2007, 8(11), 1007-1017.
[http://dx.doi.org/10.1016/S1470-2045(07)70341-8] [PMID: 17976611]
[51]
Stacey, R.; Green, J.T. Radiation-induced small bowel disease: latest developments and clinical guidance. Ther. Adv. Chronic Dis., 2014, 5(1), 15-29.
[http://dx.doi.org/10.1177/2040622313510730] [PMID: 24381725]
[52]
Hauer-Jensen, M.; Denham, J.W.; Andreyev, H.J. Radiation enteropathy-pathogenesis, treatment and prevention. Nat. Rev. Gastroenterol. Hepatol., 2014, 11(8), 470-479.
[http://dx.doi.org/10.1038/nrgastro.2014.46] [PMID: 24686268]
[53]
Mohamad, O.; Tabuchi, T.; Nitta, Y.; Nomoto, A.; Sato, A.; Kasuya, G.; Makishima, H.; Choy, H.; Yamada, S.; Morishima, T.; Tsuji, H.; Miyashiro, I.; Kamada, T. Risk of subsequent primary cancers after carbon ion radiotherapy, photon radiotherapy, or surgery for localised prostate cancer: a propensity score-weighted, retrospective, cohort study. Lancet Oncol., 2019, 20(5), 674-685.
[PMID: 30885458]
[54]
Boerma, M.; Sridharan, V.; Mao, X.W.; Nelson, G.A.; Cheema, A.K.; Koturbash, I.; Singh, S.P.; Tackett, A.J.; Hauer-Jensen, M. Effects of ionizing radiation on the heart Mutat.Res, 2016., 770(Pt B), 319-327.,
[http://dx.doi.org/10.1016/j.mrrev.2016.07.003]
[55]
Skrzypek, M.; Wdowiak, A.; Panasiuk, L.; Stec, M.; Szczygieł, K.; Zybała, M.; Filip, M. Effect of ionizing radiation on the female reproductive system. Ann. Agric. Environ. Med., 2019, 26(4), 606-616.
[PMID: 31885235]
[56]
Hladik, D.; Tapio, S. Effects of ionizing radiation on the mammalian brain Mutat.Res, 2016., 770(Pt B), 219-230.,
[http://dx.doi.org/10.1016/j.mrrev.2016.08.003]
[57]
Delanian, S.; Lefaix, J.L.; Pradat, P.F. Radiation-induced neuropathy in cancer survivors. Radiother. Oncol., 2012, 105(3), 273-282.
[http://dx.doi.org/10.1016/j.radonc.2012.10.012] [PMID: 23245644]
[58]
de Barros da Cunha, S.R.; Ramos, P.A.; Nesrallah, A.C.; Parahyba, C.J.; Fregnani, E.R.; Aranha, A.C. The effects of ionizing radiation on the oral cavity. J. Contemp. Dent. Pract., 2015, 16(8), 679-687.
[http://dx.doi.org/10.5005/jp-journals-10024-1740] [PMID: 26423505]
[59]
Panahi, Y.; Saadat, A.; Shadboorestan, A.; Ahmadi, A. An updated review of natural products intended to prevent or treat oral mucositis in patients undergoing radio-chemotherapy. Curr. Pharm. Biotechnol., 2016, 17(11), 949-961.
[http://dx.doi.org/10.2174/1389201017666160808094008] [PMID: 27640644]
[60]
Karpiński, T.M. Role of oral microbiota in cancer development. Microorganisms, 2019, 7(1)E20
[http://dx.doi.org/10.3390/microorganisms7010020] [PMID: 30642137]
[61]
Reis Ferreira, M.; Andreyev, H.J.N.; Mohammed, K.; Truelove, L.; Gowan, S.M.; Li, J.; Gulliford, S.L.; Marchesi, J.R.; Dearnaley, D.P. Microbiota- and radiotherapy-induced gastrointestinal side-effects (MARS) study: a large pilot study of the microbiome in acute and late-radiation enteropathy. Clin. Cancer Res., 2019, 25(21), 6487-6500.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-0960] [PMID: 31345839]
[62]
Karamalakova, Y.; Sharma, J.; Nikolova, G.; Stanev, S.; Arora, R.; Gadjeva, V.; Zheleva, A. Studies on antioxidant properties before and after UV- and γ-irradiation of Bulgarian lavender essential oil isolated from Lavandula angustifolia Mill. Biotechnol. Biotechnol. Equip., 2013, 27(3), 3861-3865.
[http://dx.doi.org/10.5504/BBEQ.2012.0138]
[63]
Jagetia, G.C.; Baliga, M.S. Influence of the leaf extract of Mentha arvensis Linn. (mint) on the survival of mice exposed to different doses of gamma radiation. Strahlenther. Onkol., 2002, 178(2), 91-98.
[http://dx.doi.org/10.1007/s00066-002-0841-y] [PMID: 11942043]
[64]
Samarth, R.M.; Kumar, A. Radioprotection of Swiss albino mice by plant extract Mentha piperita (Linn.). J. Radiat. Res. (Tokyo), 2003, 44(2), 101-109.
[http://dx.doi.org/10.1269/jrr.44.101] [PMID: 13678338]
[65]
Samarth, R.M.; Kumar, A. Mentha piperita (Linn.) leaf extract provides protection against radiation induced chromosomal damage in bone marrow of mice. Indian J. Exp. Biol., 2003, 41(3), 229-237.
[PMID: 15267153]
[66]
Kumar, A.; Samarth, R.M.; Yasmeen, S.; Sharma, A.; Sugahara, T.; Terado, T.; Kimura, H. Anticancer and radioprotective potentials of Mentha piperita. Biofactors, 2004, 22(1-4), 87-91.
[PMID: 15630259]
[67]
Samarth, R.M.; Goyal, P.K.; Kumar, A. Protection of swiss albino mice against whole-body gamma irradiation by Mentha piperita (Linn.). Phytother. Res., 2004, 18(7), 546-550.
[PMID: 15305314]
[68]
Samarth, R.M.; Saini, M.R.; Maharwal, J.; Dhaka, A.; Kumar, A. Mentha piperita (Linn) leaf extract provides protection against radiation induced alterations in intestinal mucosa of Swiss albino mice. Indian J. Exp. Biol., 2002, 40(11), 1245-1249.
[PMID: 13677626]
[69]
Samarth, R.M.; Samarth, M. Protection against radiation-induced testicular damage in Swiss albino mice by Mentha piperita (Linn.). Basic Clin. Pharmacol. Toxicol., 2009, 104(4), 329-334.
[http://dx.doi.org/10.1111/j.1742-7843.2009.00384.x] [PMID: 19320637]
[70]
Sancheti, G.; Goyal, P.K. Prevention of radiation induced hematological alterations by medicinal plant Rosmarinus officinalis, in mice. Afr. J. Tradit. Complement. Altern. Med., 2006, 4(2), 165-172.
[PMID: 20162088]
[71]
Guengerich, F.P. Metabolism of chemical carcinogens. Carcinogenesis, 2000, 21(3), 345-351.
[http://dx.doi.org/10.1093/carcin/21.3.345] [PMID: 10688854]
[72]
Gundert-Remy, U.; Bernauer, U.; Blömeke, B.; Döring, B.; Fabian, E.; Goebel, C.; Hessel, S.; Jäckh, C.; Lampen, A.; Oesch, F.; Petzinger, E.; Völkel, W.; Roos, P.H. Extrahepatic metabolism at the body’s internal-external interfaces. Drug Metab. Rev., 2014, 46(3), 291-324.
[http://dx.doi.org/10.3109/03602532.2014.900565] [PMID: 24666398]
[73]
Beyerle, J.; Frei, E.; Stiborova, M.; Habermann, N.; Ulrich, C.M. Biotransformation of xenobiotics in the human colon and rectum and its association with colorectal cancer. Drug Metab. Rev., 2015, 47(2), 199-221.
[http://dx.doi.org/10.3109/03602532.2014.996649] [PMID: 25686853]
[74]
Samarth, R.M.; Goyal, P.K.; Kumar, A. Modulatory effect of Mentha piperita (Linn.) on serum phosphatases activity in Swiss albino mice against gamma irradiation. Indian J. Exp. Biol., 2001, 39(5), 479-482.
[PMID: 11510134]
[75]
Samarth, R.M.; Goyal, P.K.; Kumar, A. Modulation of serum phosphatases activity in Swiss albino mice against gamma irradiation by Mentha piperita Linn. Phytother. Res., 2002, 16(6), 586-589.
[http://dx.doi.org/10.1002/ptr.984] [PMID: 12237821]
[76]
Samarth, R.M.; Panwar, M.; Kumar, M.; Kumar, A. Radioprotective influence of Mentha piperita (Linn) against gamma irradiation in mice: Antioxidant and radical scavenging activity. Int. J. Radiat. Biol., 2006, 82(5), 331-337.
[http://dx.doi.org/10.1080/09553000600771523] [PMID: 16782650]
[77]
Samarth, R.M. Protection against radiation induced hematopoietic damage in bone marrow of Swiss albino mice by Mentha piperita (Linn). J. Radiat. Res. (Tokyo), 2007, 48(6), 523-528.
[http://dx.doi.org/10.1269/jrr.07052] [PMID: 17938557]
[78]
Baliga, M.S.; Rao, S. Radioprotective potential of mint: a brief review. J. Cancer Res. Ther., 2010, 6(3), 255-262.
[http://dx.doi.org/10.4103/0973-1482.73336] [PMID: 21119249]
[79]
Kma, L. Plant extracts and plant-derived compounds: promising players in a countermeasure strategy against radiological exposure. Asian Pac. J. Cancer Prev., 2014, 15(6), 2405-2425.
[http://dx.doi.org/10.7314/APJCP.2014.15.6.2405] [PMID: 24761841]
[80]
Haksar, A.; Sharma, A.; Chawla, R.; Kumar, R.; Lahiri, S.S.; Islam, F.; Arora, M.P.; Sharma, R.K.; Tripathi, R.P.; Arora, R. Mint oil (Mentha spicata Linn.) offers behavioral radioprotection: a radiation-induced conditioned taste aversion study. Phytother. Res., 2009, 23(2), 293-296.
[http://dx.doi.org/10.1002/ptr.2604] [PMID: 18853399]
[81]
Nunia, V.; Goyal, P.K. Prevention of gamma radiation induced anaemia in mice by diltiazem. J. Radiat. Res. (Tokyo), 2004, 45(1), 11-17.
[http://dx.doi.org/10.1269/jrr.45.11] [PMID: 15133284]
[82]
Baliga, M.S.; Jimmy, R.; Thilakchand, K.R.; Sunitha, V.; Bhat, N.R.; Saldanha, E.; Rao, S.; Rao, P.; Arora, R.; Palatty, P.L. Ocimum sanctum L (Holy Basil or Tulsi) and its phytochemicals in the prevention and treatment of cancer. Nutr. Cancer, 2013, 65(Suppl. 1), 26-35.
[http://dx.doi.org/10.1080/01635581.2013.785010] [PMID: 23682780]
[83]
Uma Devi, P.; Ganasoundari, A.; Rao, B.S.; Srinivasan, K.K. In vivo radioprotection by ocimum flavonoids: survival of mice. Radiat. Res., 1999, 151(1), 74-78.
[http://dx.doi.org/10.2307/3579750] [PMID: 9973087]
[84]
Reshma, K.; Rao, A.V.; Dinesh, M.; Vasudevan, D.M. Radioprotective effects of ocimum flavonoids on leukocyte oxidants and antioxidants in oral cancer. Indian J. Clin. Biochem., 2008, 23(2), 171-175.
[http://dx.doi.org/10.1007/s12291-008-0038-y] [PMID: 23105746]
[85]
Reshma, K.; Ashalatha, V.R.; Dinesh, M.; Vasudevan, D. Effect of ocimum flavonoids as a radioprotector on the erythrocyte antioxidants in oral cancer. Indian J. Clin. Biochem., 2005, 20(1), 160-164.
[http://dx.doi.org/10.1007/BF02893064] [PMID: 23105516]
[86]
Bhartiya, U.S.; Joseph, L.J.; Raut, Y.S.; Rao, B.S. Effect of Ocimum sanctum, turmeric extract and vitamin E supplementation on the salivary gland and bone marrow of radioiodine exposed mice. Indian J. Exp. Biol., 2010, 48(6), 566-571.
[PMID: 20882758]
[87]
Bhartiya, U.S.; Raut, Y.S.; Joseph, L.J. Protective effect of Ocimum sanctum L after high-dose 131iodine exposure in mice: an in vivo study. Indian J. Exp. Biol., 2006, 44(8), 647-652.
[PMID: 16924835]
[88]
Ganasoundari, A.; Devi, P.U.; Rao, M.N. Protection against radiation-induced chromosome damage in mouse bone marrow by Ocimum sanctum. Mutat. Res., 1997, 373(2), 271-276.
[http://dx.doi.org/10.1016/S0027-5107(96)00208-4] [PMID: 9042410]
[89]
Monga, J.; Sharma, M.; Tailor, N.; Ganesh, N. Antimelanoma and radioprotective activity of alcoholic aqueous extract of different species of Ocimum in C(57)BL mice. Pharm. Biol., 2011, 49(4), 428-436.
[http://dx.doi.org/10.3109/13880209.2010.521513] [PMID: 21428866]
[90]
Devi, P.U.; Bisht, K.S.; Vinitha, M. A comparative study of radioprotection by Ocimum flavonoids and synthetic aminothiol protectors in the mouse. Br. J. Radiol., 1998, 71(847), 782-784.
[http://dx.doi.org/10.1259/bjr.71.847.9771390] [PMID: 9771390]
[91]
Joseph, L.J.; Bhartiya, U.S.; Raut, Y.S.; Hawaldar, R.W.; Nayak, Y.; Pawar, Y.P.; Jambhekar, N.A.; Rajan, M.G. Radioprotective effect of Ocimum sanctum and amifostine on the salivary gland of rats after therapeutic radioiodine exposure. Cancer Biother. Radiopharm., 2011, 26(6), 737-743.
[http://dx.doi.org/10.1089/cbr.2011.1014] [PMID: 22087607]
[92]
Ganasoundari, A.; Devi, P.U.; Rao, B.S. Enhancement of bone marrow radioprotection and reduction of WR-2721 toxicity by Ocimum sanctum. Mutat. Res., 1998, 397(2), 303-312.
[http://dx.doi.org/10.1016/S0027-5107(97)00230-3] [PMID: 9541656]
[93]
Subramanian, M.; Chintalwar, G.J.; Chattopadhyay, S. Antioxidant and radioprotective properties of an Ocimum sanctum polysaccharide. Redox Rep., 2005, 10(5), 257-264.
[http://dx.doi.org/10.1179/135100005X70206] [PMID: 16354414]
[94]
Arami, S.; Ahmadi, A.; Haeri, S.A. The radioprotective effects of Origanum vulgare extract against genotoxicity induced by (131)I in human blood lymphocyte. Cancer Biother. Radiopharm., 2013, 28(3), 201-206.
[http://dx.doi.org/10.1089/cbr.2012.1284] [PMID: 23413802]
[95]
Ghasemnezhad Targhi, R.; Changizi, V.; Haddad, F.; Homayoun, M.; Soleymanifard, S. Origanum vulgare leaf extract protects mice bone marrow cells against ionizing radiation. Avicenna J. Phytomed., 2016, 6(6), 678-685.
[PMID: 28078248]
[96]
Roofchaee, A.; Irani, M.; Ebrahimzadeh, M.A.; Akbari, M.R. Effect of dietary oregano (Origanum vulgare L.) essential oil on growth performance, cecal microflora and serum antioxidant activity of broiler chickens. Afr. J. Biotechnol., 2011, 10(32), 6177-6183.
[97]
Slamenová, D.; Horváthová, E.; Sramková, M.; Marsálková, L. DNA-protective effects of two components of essential plant oils carvacrol and thymol on mammalian cells cultured in vitro. Neoplasma, 2007, 54(2), 108-112.
[PMID: 17319782]
[98]
Archana, P.R.; Nageshwar Rao, B.; Ballal, M.; Satish Rao, B.S. Thymol, a naturally occurring monocyclic dietary phenolic compound protects Chinese hamster lung fibroblasts from radiation-induced cytotoxicity. Mutat. Res., 2009, 680(1-2), 70-77.
[http://dx.doi.org/10.1016/j.mrgentox.2009.09.010] [PMID: 19815091]
[99]
Archana, P.R.; Nageshwar Rao, B.; Satish Rao, B.S. Modulation of gamma ray-induced genotoxic effect by thymol, a monoterpene phenol derivative of cymene. Integr. Cancer Ther., 2011, 10(4), 374-383.
[http://dx.doi.org/10.1177/1534735410387421] [PMID: 21147817]
[100]
Ozkan, A.; Erdogan, A. A comparative evaluation of antioxidant and anticancer activity of essential oil from Origanum onites (Lamiaceae) and its two major phenolic components. Turk. J. Biol., 2011, 35, 735-742.
[101]
Lukhoba, C.W.; Simmonds, M.S.J.; Paton, A.J. Plectranthus: a review of ethnobotanical uses. J. Ethnopharmacol., 2006, 103(1), 1-24.
[http://dx.doi.org/10.1016/j.jep.2005.09.011] [PMID: 16289602]
[102]
Arumugam, G.; Swamy, M.K.; Sinniah, U.R. Plectranthus amboinicus (Lour.) Spreng: Botanical, phytochemical, pharmacological and nutritional significance. Molecules, 2016, 21(4), 369.
[http://dx.doi.org/10.3390/molecules21040369] [PMID: 27043511]
[103]
Wadikar, D.D.; Patki, P.E. Coleus aromaticus: a therapeutic herb with multiple potentials. J. Food Sci. Technol., 2016, 53(7), 2895-2901.
[http://dx.doi.org/10.1007/s13197-016-2292-y] [PMID: 27765960]
[104]
Rao, B.S.; Shanbhoge, R.; Upadhya, D.; Jagetia, G.C.; Adiga, S.K.; Kumar, P.; Guruprasad, K.; Gayathri, P. Antioxidant, anticlastogenic and radioprotective effect of Coleus aromaticus on Chinese hamster fibroblast cells (V79) exposed to gamma radiation. Mutagenesis, 2006, 21(4), 237-242.
[http://dx.doi.org/10.1093/mutage/gel023] [PMID: 16735450]
[105]
Solovjeva, L.V.; Pleskach, N.M.; Firsanov, D.V.; Svetlova, M.P.; Serikov, V.B.; Tomilin, N.V. Forskolin decreases phosphorylation of histone H2AX in human cells induced by ionizing radiation. Radiat. Res., 2009, 171(4), 419-424.
[http://dx.doi.org/10.1667/RR1587.1] [PMID: 19397442]
[106]
Amaro-Ortiz, A.; Yan, B.; D’Orazio, J.A. Ultraviolet radiation, aging and the skin: prevention of damage by topical cAMP manipulation. Molecules, 2014, 19(5), 6202-6219.
[http://dx.doi.org/10.3390/molecules19056202] [PMID: 24838074]
[107]
Soyal, D.; Jindal, A.; Singh, I.; Goyal, P.K. Modulation of radiation-induced biochemical alterations in mice by rosemary (Rosemarinus officinalis) extract. Phytomedicine, 2007, 14(10), 701-705.
[http://dx.doi.org/10.1016/j.phymed.2006.12.011] [PMID: 17433646]
[108]
Maris, M.; Maris, D.A.; Jipa, S.; Zaharescu, T.; Gorhiu, L.M. Radio-protective potential of rosemary (Rosmarinus officinalis) against effects of ionising radiation. Rev. Chim. (Bucuresti), 2010, 61(3), 235-237.
[109]
Hazra, B.; Ghosh, S.; Kumar, A.; Pandey, B.N. The prospective role of plant products in radiotherapy of cancer: a current overview. Front. Pharmacol., 2012, 2(9), 94.
[http://dx.doi.org/10.3389/fphar.2011.00094] [PMID: 22291649]
[110]
Kuruba, V.; Gollapalli, P. Natural radioprotectors and their impact on cancer drug discovery. Radiat. Oncol. J., 2018, 36(4), 265-275.
[http://dx.doi.org/10.3857/roj.2018.00381] [PMID: 30630265]
[111]
Del Baño, M.J.; Castillo, J.; Benavente-García, O.; Lorente, J.; Martín-Gil, R.; Acevedo, C.; Alcaraz, M. Radioprotective-antimutagenic effects of rosemary phenolics against chromosomal damage induced in human lymphocytes by gamma-rays. J. Agric. Food Chem., 2006, 54(6), 2064-2068.
[http://dx.doi.org/10.1021/jf0581574] [PMID: 16536576]
[112]
Guo, J.; Zhang, Y.; Zeng, L.; Liu, J.; Liang, J.; Guo, G. Salvianic acid A protects L-02 cells against γ-irradiation-induced apoptosis via the scavenging of reactive oxygen species. Environ. Toxicol. Pharmacol., 2013, 35(1), 117-130.
[http://dx.doi.org/10.1016/j.etap.2012.11.010] [PMID: 23274418]
[113]
Peng, X.C.; Huang, J.R.; Wang, S.W.; Liu, L.; Liu, Z.Z.; Sethi, G.; Ren, B.X.; Tang, F.R. Traditional Chinese medicine in neuroprotection after brain insults with special reference to radioprotection. Evid. Based Complement. Alternat. Med., 2018.20182767208
[http://dx.doi.org/10.1155/2018/2767208] [PMID: 30598683]
[114]
Ghorbani, A.; Esmaeilizadeh, M. Pharmacological properties of Salvia officinalis and its components. J. Tradit. Complement. Med., 2017, 7(4), 433-440.
[http://dx.doi.org/10.1016/j.jtcme.2016.12.014] [PMID: 29034191]
[115]
Steinmann, D.; Eilers, V.; Beynenson, D.; Buhck, H.; Fink, M. Effect of Traumeel S on pain and discomfort in radiation-induced oral mucositis: a preliminary observational study. Altern. Ther. Health Med., 2012, 18(4), 12-18.
[PMID: 22875590]
[116]
Buentzel, J.; Bauer, C.; Buentzel, J. How to bridge the gap? European medical plants used for treating oral mucositis: on the search for evidence. J. Cancer Res. Clin. Oncol., 2020, 146(4), 985-1001.
[http://dx.doi.org/10.1007/s00432-020-03124-x] [PMID: 31955287]
[117]
Osman, N.N.; Abd El-Azime, A. Sh. Salvia officinalis L. (Sage) ameliorates radiation-induced oxidative brain damage in rats. Arab. J. Nucl. Sci. Appl., 2013, 46(1), 297-304.
[118]
Lu, J.; Zhong, Y.; Lin, Z.; Lin, X.; Chen, Z.; Wu, X.; Wang, N.; Zhang, H.; Huang, S.; Zhu, Y.; Wang, Y.; Lin, S. Baicalin alleviates radiation-induced epithelial-mesenchymal transition of primary type II alveolar epithelial cells via TGF-β and ERK/GSK3β signaling pathways. Biomed. Pharmacother., 2017, 95, 1219-1224.
[http://dx.doi.org/10.1016/j.biopha.2017.09.037] [PMID: 28931214]
[119]
Wang, C.; Yang, Y.; Sun, L.; Wang, J.; Jiang, Z.; Li, Y.; Liu, D.; Sun, H.; Pan, Z. Baicalin reverses radioresistance in nasopharyngeal carcinoma by downregulating autophagy. Cancer Cell Int., 2020, 20, 35.
[http://dx.doi.org/10.1186/s12935-020-1107-4] [PMID: 32021564]
[120]
Gandhi, N.M. Baicalein protects mice against radiation-induced DNA damages and genotoxicity. Mol. Cell. Biochem., 2013, 379(1-2), 277-281.
[http://dx.doi.org/10.1007/s11010-013-1649-z] [PMID: 23606056]
[121]
Jang, H.; Lee, J.; Park, S.; Kim, J.S.; Shim, S.; Lee, S.B.; Han, S-H.; Myung, H.; Kim, H.; Jang, W-S.; Lee, S-J.; Myung, J.K. Baicalein mitigates radiation-induced enteritis by improving endothelial dysfunction. Front. Pharmacol., 2019, 10, 892.
[http://dx.doi.org/10.3389/fphar.2019.00892] [PMID: 31474856]
[122]
Sajed, H.; Sahebkar, A.; Iranshahi, M. Zataria multiflora Boiss. (Shirazi thyme) an ancient condiment with modern pharmaceutical uses. J. Ethnopharmacol., 2013, 145(3), 686-698.
[http://dx.doi.org/10.1016/j.jep.2012.12.018] [PMID: 23266333]
[123]
Hosseinimehr, S.J.; Mahmoudzadeh, A.; Ahmadi, A.; Ashrafi, S.A.; Shafaghati, N.; Hedayati, N. The radioprotective effect of Zataria multiflora against genotoxicity induced by γ irradiation in human blood lymphocytes. Cancer Biother. Radiopharm., 2011, 26(3), 325-329.
[http://dx.doi.org/10.1089/cbr.2010.0896] [PMID: 21711107]
[124]
Aghamohammadi, A.; Hosseinimehr, S.J.; Ghasemi, A.; Azadbakht, M.; Pourfallah, T.A. Radiosensitization effects of a Zataria multiflora extract on human glioblastoma cells. Asian Pac. J. Cancer Prev., 2015, 16(16), 7285-7290.
[http://dx.doi.org/10.7314/APJCP.2015.16.16.7285] [PMID: 26514525]
[125]
Aghamohammadi, A.; Moslemi, D.; Akbari, J.; Ghasemi, A.; Azadbakht, M.; Asgharpour, A.; Hosseinimehr, S.J. The effectiveness of Zataria extract mouthwash for the management of radiation-induced oral mucositis in patients: a randomized placebo-controlled double-blind study.Clin. Oral Investig., 2018, 22(6), 2263-2272.,
[http://dx.doi.org/10.1007/s00784-017-2324-7] [PMID: 29313134]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy