Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Electrochemical and Electrochemiluminescence Dendrimer-based Nanostructured Immunosensors for Tumor Marker Detection: A Review

Author(s): Hayati Filik* and Asiye Aslıhan Avan

Volume 28, Issue 18, 2021

Published on: 19 October, 2020

Page: [3490 - 3513] Pages: 24

DOI: 10.2174/0929867327666201019143647

Price: $65

Abstract

The usage of dendrimers or cascade molecules in the biomedical area has recently attracted much attention worldwide. Furthermore, dendrimers are interesting in clinical and pre-clinical applications due to their unique characteristics. Cancer is one of the most widespread challenges and important diseases, which has the highest mortality rate. In this review, the recent advances and developments (from 2009 up to 2019) in the field of electrochemical and electroluminescence immunosensors for detection of the cancer markers are presented. Moreover, this review covers the basic fabrication principles and types of electrochemical and electrochemiluminescence dendrimer-based immunosensors. In this review, we have categorized the current dendrimer based-electrochemical/ electroluminescence immunosensors into five groups: dendrimer/ magnetic particles, dendrimer/ferrocene, dendrimer/metal nanoparticles, thiol-containing dendrimer, and dendrimer/quantum dots based-immunosensors.

Keywords: Dendrimer, nanomaterial, electrochemistry, electrochemiluminescence, tumor marker, immunosensor, immunoassay.

[1]
Song, Q.; Merajver, S.D.; Li, J.Z. Cancer classification in the genomic era: five contemporary problems. Hum. Genomics, 2015, 9(1), 27.
[http://dx.doi.org/10.1186/s40246-015-0049-8] [PMID: 26481255]
[2]
Khanmohammadi, A.; Aghaie, A.; Vahedi, E.; Qazvini, A.; Ghanei, M.; Afkhami, A.; Hajian, A.; Bagheri, H. Electrochemical biosensors for the detection of lung cancer biomarkers: A review. Talanta, 2020, 206, 120251.
[http://dx.doi.org/10.1016/j.talanta.2019.120251] [PMID: 31514848]
[3]
Ullah, M.F.; Aatif, M. The footprints of cancer development: cancer biomarkers. Cancer Treat. Rev., 2009, 35(3), 193-200.
[http://dx.doi.org/10.1016/j.ctrv.2008.10.004] [PMID: 19062197]
[4]
Plummer, M.; de Martel, C.; Vignat, J.; Ferlay, J.; Bray, F.; Franceschi, S. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob. Health, 2016, 4(9), e609-e616.
[http://dx.doi.org/10.1016/S2214-109X(16)30143-7] [PMID: 27470177]
[5]
Mitsudomi, T.; Kosaka, T.; Endoh, H.; Horio, Y.; Hida, T.; Mori, S.; Hatooka, S.; Shinoda, M.; Takahashi, T.; Yatabe, Y. Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small-cell lung cancer with postoperative recurrence. J. Clin. Oncol., 2005, 23(11), 2513-2520.
[http://dx.doi.org/10.1200/JCO.2005.00.992] [PMID: 15738541]
[6]
Sholl, L.M.; Aisner, D.L.; Varella-Garcia, M.; Berry, L.D.; Dias-Santagata, D.; Wistuba, I.I.; Chen, H.; Fujimoto, J.; Kugler, K.; Franklin, W.A.; Iafrate, A.J.; Ladanyi, M.; Kris, M.G.; Johnson, B.E.; Bunn, P.A.; Minna, J.D.; Kwiatkowski, D.J. Multi-institutional oncogenic driver mutation analysis in lung adenocarcinoma: The lung cancer mutation consortium experience. J. Thorac. Oncol., 2015, 10(5), 768-777.
[http://dx.doi.org/10.1097/JTO.0000000000000516] [PMID: 25738220]
[7]
Massagué, J.; Obenauf, A.C. Metastatic colonization by circulating tumour cells. Nature, 2016, 529(7586), 298-306.
[http://dx.doi.org/10.1038/nature17038] [PMID: 26791720]
[8]
Gazdar, A.F.; Bunn, P.A.; Minna, J.D. Small-cell lung cancer: what we know, what we need to know and the path forward. Nat. Rev. Cancer, 2017, 17(12), 725-737.
[http://dx.doi.org/10.1038/nrc.2017.87] [PMID: 29077690]
[9]
Wu, J.; Fu, Z.; Yan, F.; Ju, H. Biomedical and clinical applications of immunoassays and immunosensors for tumor markers. TrAC. Trends Analyt. Chem., 2007, 26(7), 679-688.
[http://dx.doi.org/10.1016/j.trac.2007.05.007]
[10]
Inoue, K. Functional dendrimers, hyperbranched and star polymers. Prog. Polym. Sci., 2000, 25(4), 453-571.
[http://dx.doi.org/10.1016/S0079-6700(00)00011-3]
[11]
Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[12]
Sowinska, M.; Urbanczyk-Lipkowska, Z. Advances in the chemistry of dendrimers. New J. Chem., 2014, 38(6), 2168-2203.
[http://dx.doi.org/10.1039/c3nj01239e]
[13]
Twibanire, J.; Grindley, T.B. Polyester dendrimers. Polymers (Basel), 2012, 4(1), 794-879.
[http://dx.doi.org/10.3390/polym4010794]
[14]
Caminade, A.M.; Yan, D.; Smith, D.K. Dendrimers and hyperbranched polymers. Chem. Soc. Rev., 2015, 44(12), 3870-3873.
[http://dx.doi.org/10.1039/C5CS90049B] [PMID: 26024369]
[15]
Sandoval-Yañez, C.; Castro Rodriguez, C. Dendrimers: Amazing platforms for bioactive molecule delivery systems. Materials (Basel), 2020, 13(3), 570.
[http://dx.doi.org/10.3390/ma13030570] [PMID: 31991703]
[16]
Tomalia, D.A.; Fréchet, J.M.J. Discovery of dendrimers and dendritic polymers: a brief historical perspective. J. Polym. Sci. A Polym. Chem., 2002, 40(16), 2719-2728.
[http://dx.doi.org/10.1002/pola.10301]
[17]
Lee, C.C.; MacKay, J.A.; Fréchet, J.M.J.; Szoka, F.C. Designing dendrimers for biological applications. Nat. Biotechnol., 2005, 23(12), 1517-1526.
[http://dx.doi.org/10.1038/nbt1171] [PMID: 16333296]
[18]
Nanjwade, B.K.; Bechra, H.M.; Derkar, G.K.; Manvi, F.V.; Nanjwade, V.K. Dendrimers: emerging polymers for drug-delivery systems. Eur. J. Pharm. Sci., 2009, 38(3), 185-196.
[http://dx.doi.org/10.1016/j.ejps.2009.07.008] [PMID: 19646528]
[19]
Araújo, R.V.; Santos, S.D.S.; Igne Ferreira, E.; Giarolla, J. New advances in general biomedical applications of PAMAM dendrimers. Molecules, 2018, 23(11), 2849.
[http://dx.doi.org/10.3390/molecules23112849] [PMID: 30400134]
[20]
Flory, P.J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, New York, 1953.
[21]
Boas, U.; Christensen, J.B.; Heegaard, P.M.H. Dendrimers: design, synthesis and chemical properties. J. Mater. Chem., 2006, 16(38), 3785-3798.
[http://dx.doi.org/10.1039/b611813p]
[22]
Barrett, T.; Ravizzini, G.; Choyke, P.L.; Kobayashi, H. Dendrimers application related to bioimaging. IEEE Eng. Med. Biol. Mag., 2009, 28(1), 12-22.
[http://dx.doi.org/10.1109/MEMB.2008.931012] [PMID: 19150767]
[23]
Lyu, Z.; Ding, L.; Huang, A.Y.T.; Kao, C.L.; Peng, L. Poly(amidoamine) dendrimers: Covalent and supramolecular synthesis. Mater. Today Chem., 2019, 13, 34-48.
[http://dx.doi.org/10.1016/j.mtchem.2019.04.004]
[24]
Golshan, M.; Salami-Kalajahi, M.; Roghani-Mamaqani, H.; Mohammadi, M. Synthesis of poly(propylene imine) dendrimers via homogeneous reduction process using lithium aluminium hydride: Bioconjugation with folic acid and doxorubicin release kinetics. Appl. Organomet. Chem., 2017, 31(11), e3789.
[http://dx.doi.org/10.1002/aoc.3789]
[25]
Dvornic, P.R.; Li, J.; de Leuze-Jallouli, A.M.; Reeves, S.D.; Owen, M.J. Nanostructured dendrimer-based networks with hydrophilic polyamidoamine and hydrophobic organosilicon domains. Macromolecules, 2002, 35(25), 9323-9333.
[http://dx.doi.org/10.1021/ma020649j]
[26]
Romagnoli, B.; Hayes, W. Chiral dendrimers - from architecturally interesting hyperbranched macromolecules to functional materials. J. Mater. Chem., 2002, 12(4), 767-799.
[http://dx.doi.org/10.1039/b110218b]
[27]
Ponomarenko, S.A.; Boiko, N.I.; Shibaev, V.P. Liquid-crystalline dendrimers. Polym. Sci. Ser. C, 2001, 43(1), 1-45.
[http://dx.doi.org/10.1134/S1811238214010081]
[28]
Welch, P.M.; Welch, C.F. Tecto-dendrimers: A study of covalently bound nanospheres. Macromolecules, 2009, 42(19), 7571-7578.
[http://dx.doi.org/10.1021/ma901157y]
[29]
Kavyani, S.; Amjad-Iranagh, S.; Dadvar, M.; Modarress, H. Hybrid dendrimers of PPI(core)-PAMAM(shell): A molecular dynamics simulation study. J. Phys. Chem. B, 2016, 120(36), 9564-9575.
[http://dx.doi.org/10.1021/acs.jpcb.6b05142] [PMID: 27557447]
[30]
Munavalli, B.B.; Naik, S.R.; Torvi, A.I.; Kariduraganavar, M.Y. Dendrimers.In: Functional biopolymers. Polymers and Polymeric Composites: A Reference Series; Jafar Mazumder, M.A.; Sheardown, H.; Al-Ahmed, A., Eds.; Springer: Cham, 2019, pp. 1-58.
[http://dx.doi.org/10.1007/978-3-319-92067-2_9-1]
[31]
Kokil, G.R.; Veedu, R.N.; Le, B.T.; Ramm, G.A.; Parekh, H.S. Self-assembling asymmetric peptide-dendrimer micelles - a platform for effective and versatile in vitro nucleic acid delivery. Sci. Rep., 2018, 8(1), 4832.
[http://dx.doi.org/10.1038/s41598-018-22902-9] [PMID: 29556057]
[32]
Stadler, A.M. Structural features of Fréchet-type dendrons and dendrimers in single crystals. Cryst. Growth Des., 2010, 10(12), 5050-5065.
[http://dx.doi.org/10.1021/cg100445y]
[33]
Lee, J.W.; Kim, J.H.; Kim, B.K.; Shin, W.S.; Jin, S.H. Synthesis of Fréchet type dendritic benzyl propargyl ether and Fréchet type triazole dendrimer. Tetrahedron, 2006, 62(5), 894-900.
[http://dx.doi.org/10.1016/j.tet.2005.10.039 ]
[34]
Nigam, S.; Chandra, S.; Bahadur, D. Dendrimers based electrochemical biosensors. Biomed. Res. J., 2015, 2(1), 21-36.
[http://dx.doi.org/10.4103/2349-3666.240618]
[35]
Yang, J.; Zhang, Q.; Chang, H.; Cheng, Y. Surface-engineered dendrimers in gene delivery. Chem. Rev., 2015, 115(11), 5274-5300.
[http://dx.doi.org/10.1021/cr500542t] [PMID: 25944558]
[36]
Hou, C.; Zhu, H.; Wu, D.; Li, Y.; Hou, K.; Jiang, Y.; Li, Y. Immobilized lipase on macroporous polystyrene modified by PAMAM-dendrimer and their enzymatic hydrolysis. Process Biochem., 2014, 49(2), 244-249.
[http://dx.doi.org/10.1016/j.procbio.2013.10.019]
[37]
Hung, W.I.; Chang, C.H.; Chang, Y.H.; Wu, P.S.; Hung, C.B.; Chang, K.C.; Lai, M.C.; Hsu, S.C.; Wei, Y.; Jia, X.R.; Yeh, J.M. Self-assembly behavior of amphiphilic poly(amidoamine) dendrimers with a shell of aniline pentamer. Langmuir, 2013, 29(39), 12075-12083.
[http://dx.doi.org/10.1021/la403063t] [PMID: 24011019]
[38]
Yoon, H.C.; Hong, M.Y.; Kim, H.S. Functionalization of a poly(amidoamine) dendrimer with ferrocenyls and its application to the construction of a reagentless enzyme electrode. Anal. Chem., 2000, 72(18), 4420-4427.
[http://dx.doi.org/10.1021/ac0003044] [PMID: 11008778]
[39]
Sun, J.T.; Hong, C.Y.; Pan, C.Y. Surface modification of carbon nanotubes with dendrimers or hyperbranched polymers. Polym. Chem., 2011, 2(5), 998-1007.
[http://dx.doi.org/10.1039/c0py00356e]
[40]
Caminade, A.M.; Majoral, J.P. Dendrimers and nanotubes: a fruitful association. Chem. Soc. Rev., 2010, 39(6), 2034-2047.
[http://dx.doi.org/10.1039/b926408f] [PMID: 20358048]
[41]
Omar, N.A.S.; Fen, Y.W.; Abdullah, J.; Mustapha Kamil, Y.; Daniyal, W.M.E.M.M.; Sadrolhosseini, A.R.; Mahdi, M.A. Sensitive detection of dengue virus type 2 E-proteins signals using self-assembled monolayers/reduced graphene oxide-PAMAM dendrimer thin film-SPR optical sensor. Sci. Rep., 2020, 10(1), 2374.
[http://dx.doi.org/10.1038/s41598-020-59388-3] [PMID: 32047209]
[42]
Zhang, F.; Wang, B.; He, S.; Man, R. Preparation of graphene-oxide/polyamidoamine dendrimers and their adsorption properties toward some heavy metal ions. J. Chem. Eng. Data, 2014, 59(5), 1719-1726.
[http://dx.doi.org/10.1021/je500219e ]
[43]
Piao, Y.; Wu, T.; Chen, B. One-step synthesis of graphene oxide-polyamidoamine dendrimer nanocomposite hydrogels by self-assembly. Ind. Eng. Chem. Res., 2016, 55(21), 6113-6121.
[http://dx.doi.org/10.1021/acs.iecr.6b00947]
[44]
Satija, J.; Sai, V.V.R.; Mukherji, S. Dendrimers in biosensors: Concept and applications. J. Mater. Chem., 2011, 21(38), 14367-14386.
[http://dx.doi.org/10.1039/c1jm10527b]
[45]
Carvalho, M.R.; Reis, R.L.; Oliveira, J.M. Dendrimer nanoparticles for colorectal cancer applications. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(6), 1128-1138.
[http://dx.doi.org/10.1039/C9TB02289A] [PMID: 31971528]
[46]
Augustus, E.N.; Allen, E.T.; Nimibofa, A.; Donbebe, W. A review of synthesis, characterization and applications of functionalized dendrimers. Am. J. Pol. Sci., 2017, 7(1), 8-14.
[http://dx.doi.org/10.5923/j.ajps.20170701.02]
[47]
Sajid, M. Dendrimers based sorbents: Promising materials for analytical extractions. TrAC -. Trends Analyt. Chem., 2018, 98, 114-127.
[http://dx.doi.org/10.1016/j.trac.2017.11.005]
[48]
Ceroni, P.; Venturi, M. Photoactive and electroactive dendrimers: future trends and applications. Aust. J. Chem., 2011, 64(2), 131-146.
[http://dx.doi.org/10.1071/CH10326]
[49]
Tomalia, D.A. Birth of a new macromolecular architecture: Dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog. Polym. Sci., 2005, 30(3–4), 294-324.
[http://dx.doi.org/10.1016/j.progpolymsci.2005.01.007]
[50]
Kaur, D.; Jain, K.; Mehra, N.K.; Kesharwani, P.; Jain, N.K. A review on comparative study of PPI and PAMAM dendrimers. J. Nanopart. Res., 2016, 18(6), 146.
[http://dx.doi.org/10.1007/s11051-016-3423-0]
[51]
Hawker, C.J.; Fréchet, J.M.J. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc., 1990, 112(21), 7638-7647.
[http://dx.doi.org/10.1021/ja00177a027]
[52]
Walter, M.V.; Malkoch, M. Simplifying the synthesis of dendrimers: accelerated approaches. Chem. Soc. Rev., 2012, 41(13), 4593-4609.
[http://dx.doi.org/10.1039/c2cs35062a] [PMID: 22592560]
[53]
Cason, C.A.; Fabré, T.A.; Buhrlage, A.; Haik, K.L.; Bullen, H.A. Low-level detection of poly(amidoamine) PAMAM dendrimers using immunoimaging scanning probe microscopy. Int. J. Anal. Chem., 2012, 2012, 341260.
[http://dx.doi.org/10.1155/2012/341260] [PMID: 22505915]
[54]
Taghavi Pourianazar, N.; Mutlu, P.; Gunduz, U. Bioapplications of poly(amidoamine) (PAMAM) dendrimers in nanomedicine. J. Nanopart. Res., 2014, 16, 1-38.
[http://dx.doi.org/10.1007/s11051-014-2342-1]
[55]
Scott, R.W.J.; Wilson, O.M.; Crooks, R.M. Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J. Phys. Chem. B, 2005, 109(2), 692-704.
[http://dx.doi.org/10.1021/jp0469665] [PMID: 16866429]
[56]
Mourey, T.H.; Turner, S.R.; Rubinstein, M.; Fréchet, J.M.J.; Hawker, C.J.; Wooley, K.L. Unique behavior of dendritic macromolecules: Intrinsic viscosity of polyether dendrimers. Macromolecules, 1992, 25(9), 2401-2406.
[http://dx.doi.org/10.1021/ma00035a017]
[57]
Jasmine, M.J.; Kavitha, M.; Prasad, E. Effect of solvent-controlled aggregation on the intrinsic emission properties of PAMAM dendrimers. J. Lumin., 2009, 129(5), 506-513.
[http://dx.doi.org/10.1016/j.jlumin.2008.12.005]
[58]
Xie, H.; Li, L.; Sun, Y.; Wang, Y.; Gao, S.; Tian, Y.; Ma, X.; Guo, C.; Bo, F.; Zhang, L. An available strategy for nasal brain transport of nanocomposite based on PAMAM dendrimers via in situ gel. Nanomaterials (Basel), 2019, 9(2), 147.
[http://dx.doi.org/10.3390/nano9020147] [PMID: 30682799]
[59]
Dobrovolskaia, M.A.; Patri, A.K.; Simak, J.; Hall, J.B.; Semberova, J.; De Paoli Lacerda, S.H.; McNeil, S.E. Nanoparticle size and surface charge determine effects of PAMAM dendrimers on human platelets in vitro. Mol. Pharm., 2012, 9(3), 382-393.
[http://dx.doi.org/10.1021/mp200463e] [PMID: 22026635]
[60]
Sellinger, A.; Zhou, T. Conjugated Dendrimers.In: Encyclopedia of Polymeric Nanomaterials; Kobayashi, S.; Müllen, K., Eds.; Springer: Berlin, Heidelberg, 2015, pp. 412-427.
[http://dx.doi.org/10.1007/978-3-642-29648-2_94]
[61]
Wang, J.L.; Zhou, Y.; Li, Y.; Pei, J. Solution-processable gradient red-emitting π-conjugated dendrimers based on benzothiadiazole as core: synthesis, characterization, and device performances. J. Org. Chem., 2009, 74(19), 7449-7456.
[http://dx.doi.org/10.1021/jo901539a] [PMID: 19743807]
[62]
Bosman, A.W.; Janssen, H.M.; Meijer, E.W. About dendrimers: structure, physical properties, and applications. Chem. Rev., 1999, 99(7), 1665-1688.
[http://dx.doi.org/10.1021/cr970069y] [PMID: 11849007]
[63]
Shan, J.; Ma, Z. A review on amperometric immunoassays for tumor markers based on the use of hybrid materials consisting of conducting polymers and noble metal nanomaterials. Mikrochim. Acta, 2017, 184(4), 969-979.
[http://dx.doi.org/10.1007/s00604-017-2146-y]
[64]
Filik, H.; Avan, A.A. Nanostructures for nonlabeled and labeled electrochemical immunosensors: Simultaneous electrochemical detection of cancer markers: A review. Talanta, 2019, 205, 120153.
[http://dx.doi.org/10.1016/j.talanta.2019.120153] [PMID: 31450406]
[65]
Filik, H.; Avan, A.A. Electrochemical immunosensors for the detection of cytokine tumor necrosis factor alpha: A review. Talanta, 2020, 211, 120758.
[http://dx.doi.org/10.1016/j.talanta.2020.120758] [PMID: 32070602]
[66]
Myers, V.S.; Weir, M.G.; Carino, E.V.; Yancey, D.F.; Pande, S.; Crooks, R.M. Dendrimer-encapsulated nanoparticles: new synthetic and characterization methods and catalytic applications. Chem. Sci. (Camb.), 2011, 2(9), 1632-1646.
[http://dx.doi.org/10.1039/c1sc00256b ]
[67]
Mollarasouli, F.; Kurbanoglu, S.; Ozkan, S.A. The role of electrochemical immunosensors in clinical analysis. Biosensors (Basel), 2019, 9(3), 86.
[http://dx.doi.org/10.3390/bios9030086] [PMID: 31324020]
[68]
Chikkaveeraiah, B.V.; Bhirde, A.A.; Morgan, N.Y.; Eden, H.S.; Chen, X. Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano, 2012, 6(8), 6546-6561.
[http://dx.doi.org/10.1021/nn3023969] [PMID: 22835068]
[69]
Zhang, Y.; Zhang, R.; Yang, X.; Qi, H.; Zhang, C. Recent advances in electrogenerated chemiluminescence biosensing methods for pharmaceuticals. J. Pharm. Anal., 2019, 9(1), 9-19.
[http://dx.doi.org/10.1016/j.jpha.2018.11.004] [PMID: 30740252]
[70]
Alizadeh, N.; Salimi, A.; Hallaj, R. Magnetoimmunosensor for simultaneous electrochemical detection of carcinoembryonic antigen and α-fetoprotein using multifunctionalized Au nanotags. J. Electroanal. Chem. (Lausanne Switz.), 2018, 811, 8-15.
[http://dx.doi.org/10.1016/j.jelechem.2017.12.080]
[71]
Sun, W.; Mignani, S.; Shen, M.; Shi, X. Dendrimer-based magnetic iron oxide nanoparticles: their synthesis and biomedical applications. Drug Discov. Today, 2016, 21(12), 1873-1885.
[http://dx.doi.org/10.1016/j.drudis.2016.06.028] [PMID: 27388223]
[72]
Kim, H.R.; Jang, J.W.; Park, J.W. Carboxymethyl chitosan-modified magnetic-cored dendrimer as an amphoteric adsorbent. J. Hazard. Mater., 2016, 317, 608-616.
[http://dx.doi.org/10.1016/j.jhazmat.2016.06.025] [PMID: 27351905]
[73]
Khodadust, R.; Unsoy, G.; Yalcin, S.; Gunduz, G.; Gunduz, U. PAMAM dendrimer-coated iron oxide nanoparticles: synthesis and characterization of different generations. J. Nanopart. Res., 2013, 15(3), 1488.
[http://dx.doi.org/10.1007/s11051-013-1488-6]
[74]
Fu, X-H. Poly(amidoamine) dendrimer-functionalized magnetic beads as an immunosensing probe for electrochemical immunoassay for carbohydrate antigen-125 in human serum. Anal. Lett., 2010, 43(3), 455-465.
[http://dx.doi.org/10.1080/00032710903402374 ]
[75]
Gawande, M.B.; Goswami, A.; Asefa, T.; Guo, H.; Biradar, A.V.; Peng, D-L.; Zboril, R.; Varma, R.S. Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev., 2015, 44(21), 7540-7590.
[http://dx.doi.org/10.1039/C5CS00343A] [PMID: 26288197]
[76]
Ge, S.; Yu, J.; Jiao, X.; Chen, D. Ultrasensitive electrochemiluminescence immunoassay for protein specific detection based on dendrimer-encapsulated gold nanoparticles labels. J. Inorg. Organomet. Polym. Mater., 2013, 23(5), 1113-1121.
[http://dx.doi.org/10.1007/s10904-013-9895-9]
[77]
Kavosi, B.; Salimi, A.; Hallaj, R.; Moradi, F. Ultrasensitive electrochemical immunosensor for PSA biomarker detection in prostate cancer cells using gold nanoparticles/PAMAM dendrimer loaded with enzyme linked aptamer as integrated triple signal amplification strategy. Biosens. Bioelectron., 2015, 74, 915-923.
[http://dx.doi.org/10.1016/j.bios.2015.07.064] [PMID: 26257183]
[78]
Lin, J.; He, C.; Zhang, L.; Zhang, S. Sensitive amperometric immunosensor for α-fetoprotein based on carbon nanotube/gold nanoparticle doped chitosan film. Anal. Biochem., 2009, 384(1), 130-135.
[http://dx.doi.org/10.1016/j.ab.2008.09.033] [PMID: 18848914]
[79]
Lin, J.; Qu, W.; Zhang, S. Disposable biosensor based on enzyme immobilized on Au-chitosan-modified indium tin oxide electrode with flow injection amperometric analysis. Anal. Biochem., 2007, 360(2), 288-293.
[http://dx.doi.org/10.1016/j.ab.2006.10.030] [PMID: 17134672]
[80]
Maleki, N.; Safavi, A.; Tajabadi, F. High-performance carbon composite electrode based on an ıonic liquid as a binder. Anal. Chem., 2006, 78(11), 3820-3826.
[http://dx.doi.org/10.1021/ac060070+ ] [PMID: 16737243]
[81]
Lai, W.; Zhuang, J.; Tang, J.; Chen, G.; Tang, D. One-step electrochemical ımmunosensing for simultaneous detection of two biomarkers using thionine and ferrocene as distinguishable signal tags. Mikrochim. Acta, 2012, 178(3–4), 357-365.
[http://dx.doi.org/10.1007/s00604-012-0839-9]
[82]
Kavosi, B.; Salimi, A.; Hallaj, R.; Amani, K. A highly sensitive prostate-specific antigen immunosensor based on gold nanoparticles/PAMAM dendrimer loaded on MWCNTS/chitosan/ionic liquid nanocomposite. Biosens. Bioelectron., 2014, 52, 20-28.
[http://dx.doi.org/10.1016/j.bios.2013.08.012] [PMID: 24016535]
[83]
Ravi Kumar, M.N.V. A Review of chitin and chitosan applications. React. Funct. Polym., 2000, 46(1), 1-27.
[http://dx.doi.org/10.1016/S1381-5148(00)00038-9]
[84]
Rinaudo, M. Chitin and chitosan: properties and applications. Prog. Polym. Sci., 2006, 31(7), 603-632.
[http://dx.doi.org/10.1016/j.progpolymsci.2006.06.001]
[85]
Jeong, B.; Akter, R.; Han, O.H.; Rhee, C.K.; Rahman, M.A. Increased electrocatalyzed performance through dendrimer-encapsulated gold nanoparticles and carbon nanotube-assisted multiple bienzymatic labels: highly sensitive electrochemical immunosensor for protein detection. Anal. Chem., 2013, 85(3), 1784-1791.
[http://dx.doi.org/10.1021/ac303142e] [PMID: 23289608]
[86]
Xu, X.; Ying, Y.; Li, Y. One-step and label-free detection of alpha-fetoprotein based on aggregation of gold nanorods. Sens. Actuators B Chem., 2012, 175, 194-200.
[http://dx.doi.org/10.1016/j.snb.2012.04.091]
[87]
Guo, J.; Han, X.; Wang, J.; Zhao, J.; Guo, Z.; Zhang, Y. Horseradish peroxidase functionalized gold nanorods as a label for sensitive electrochemical detection of alpha-fetoprotein antigen. Anal. Biochem., 2015, 491, 58-64.
[http://dx.doi.org/10.1016/j.ab.2015.09.006] [PMID: 26384641]
[88]
Yan, H.; Gong, L.; Zang, L.; Dai, H.; Xu, G.; Zhang, S.; Lin, Y. Dual-responsive competitive immunosensor for sensitive detection of tumor marker on g-CN/RGO conjugation. Sens. Actuators B Chem., 2016, 230, 810-817.
[http://dx.doi.org/10.1016/j.snb.2016.02.144]
[89]
Liu, M.L.; Chen, B. Bin; Li, C.M.; Huang, C.Z. Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem., 2019, 21(3), 449-471.
[http://dx.doi.org/10.1039/C8GC02736F]
[90]
Xia, C.; Zhu, S.; Feng, T.; Yang, M.; Yang, B. Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots. Adv. Sci. (Weinh.), 2019, 6(23), 1901316.
[http://dx.doi.org/10.1002/advs.201901316] [PMID: 31832313]
[91]
Gao, Q.; Han, J.; Ma, Z. Polyamidoamine dendrimers-capped carbon dots/Au nanocrystal nanocomposites and its application for electrochemical immunosensor. Biosens. Bioelectron., 2013, 49, 323-328.
[http://dx.doi.org/10.1016/j.bios.2013.05.048] [PMID: 23792654]
[92]
Zhang, S.; Zang, L.; Zhang, X.; Dai, H.; Xu, G.; Zhang, Q.; Yang, C.; Lin, Y. Signal-on electrochemiluminescent immunosensor based on poly(amidoamine) dendrimer functionalized carbon nanodots amplification for ultrasensitive detection of α-fetoprotein. Electrochim. Acta, 2016, 196, 67-74.
[http://dx.doi.org/10.1016/j.electacta.2016.02.162]
[93]
Han, T.; Jin, J.; Wang, C.; Sun, Y.; Zhang, Y.; Liu, Y. Ag nanoparticles‐modified 3D graphene foam for binder‐free electrodes of electrochemical sensors. Nanomaterials (Basel), 2017, 7(2), 40.
[http://dx.doi.org/10.3390/nano7020040] [PMID: 28336878]
[94]
Chen, P.; Wang, T.; Zheng, X.; Tian, D.; Xia, F.; Zhou, C. An ultrasensitive electrochemical immunosensor based on C60-modified polyamidoamine dendrimers and Au NPs for co-catalytic silver deposition. New J. Chem., 2018, 42(6), 4653-4660.
[http://dx.doi.org/10.1039/C8NJ00059J]
[95]
Xiong, C.; Wang, H.; Yuan, Y.; Chai, Y.; Yuan, R. A novel solid-state Ru(bpy)3(2+) electrochemiluminescence immunosensor based on poly(ethylenimine) and polyamidoamine dendrimers as co-reactants. Talanta, 2015, 131, 192-197.
[http://dx.doi.org/10.1016/j.talanta.2014.07.072] [PMID: 25281092]
[96]
Dai, H.; Yang, C.; Tong, Y.; Xu, G.; Ma, X.; Lin, Y.; Chen, G. Label-free electrochemiluminescent immunosensor for α-fetoprotein: performance of Nafion-carbon nanodots nanocomposite films as antibody carriers. Chem. Commun. (Camb.), 2012, 48(25), 3055-3057.
[http://dx.doi.org/10.1039/C1CC16571B] [PMID: 22180857]
[97]
Crooks, R.M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L.K. Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc. Chem. Res., 2001, 34(3), 181-190.
[http://dx.doi.org/10.1021/ar000110a] [PMID: 11263876]
[98]
Çevik, E.; Bahar, Ö.; Şenel, M.; Abasıyanık, M.F. Construction of novel electrochemical immunosensor for detection of prostate specific antigen using ferrocene-PAMAM dendrimers. Biosens. Bioelectron., 2016, 86, 1074-1079.
[http://dx.doi.org/10.1016/j.bios.2016.07.064] [PMID: 27641479]
[99]
Cevik, E. High sensitive detection of prostate specific antigen by using ferrocene cored asymmetric PAMAM dendrimer interface screen printed electrodes. Electroanalysis, 2019, 31(1), 31-39.
[http://dx.doi.org/10.1002/elan.201800440]
[100]
Shen, Y.; Shen, G.; Zhang, Y. Voltammetric immunoassay for α-fetoprotein by using a gold nanoparticle/dendrimer conjugate and a ferrocene derived ionic liquid. Mikrochim. Acta, 2018, 185(7), 346.
[http://dx.doi.org/10.1007/s00604-018-2886-3] [PMID: 29961150]
[101]
Wang, X-L.; Tao, G-H.; Meng, Y-H. Double-layer nanogold and poly(amidoamine) dendrimer- functionalized PVC membrane electrode for enhanced electrochemical immunoassay of total prostate specific antigen. Electroanalysis, 2009, 21(19), 2109-2115.
[http://dx.doi.org/10.1002/elan.200904629]
[102]
Pei, X.; Xu, Z.; Zhang, J.; Liu, Z.; Tian, J. Electroactive dendrimer-encapsulated silver nanoparticles for sensing low-abundance proteins with signal amplification. Anal. Methods, 2013, 5(13), 3235-3241.
[http://dx.doi.org/10.1039/c3ay40518d]
[103]
Sun, A.L. Sensitive electrochemical immunoassay with signal enhancement based on nanogold-encapsulated poly(amidoamine) dendrimer-stimulated hydrogen evolution reaction. Analyst (Lond.), 2015, 140(23), 7948-7954.
[http://dx.doi.org/10.1039/C5AN01827G] [PMID: 26501366]
[104]
Akhter, S.; Ahmad, I.; Ahmad, M.Z.; Ramazani, F.; Singh, A.; Rahman, Z.; Ahmad, F.J.; Storm, G.; Kok, R.J. Nanomedicines as cancer therapeutics: current status. Curr. Cancer Drug Targets, 2013, 13(4), 362-378.
[http://dx.doi.org/10.2174/1568009611313040002] [PMID: 23517593]
[105]
Avti, P.K.; Kakkar, A. Dendrimers as anti-inflammatory agents. Brazilian J. Pharm. Sci., 2013, 49(SPL.ISS.), 57-65.
[http://dx.doi.org/10.1590/S1984-82502013000700006]
[106]
Cheng, Y.; Qu, H.; Ma, M.; Xu, Z.; Xu, P.; Fang, Y.; Xu, T. Polyamidoamine (PAMAM) dendrimers as biocompatible carriers of quinolone antimicrobials: an in vitro study. Eur. J. Med. Chem., 2007, 42(7), 1032-1038.
[http://dx.doi.org/10.1016/j.ejmech.2006.12.035] [PMID: 17336426]
[107]
Shao, N.; Su, Y.; Hu, J.; Zhang, J.; Zhang, H.; Cheng, Y. Comparison of generation 3 polyamidoamine dendrimer and generation 4 polypropylenimine dendrimer on drug loading, complex structure, release behavior, and cytotoxicity. Int. J. Nanomedicine, 2011, 6, 3361-3372.
[http://dx.doi.org/10.2147/ijn.s27028] [PMID: 22267921]
[108]
Idris, A.O.; Mabuba, N.; Arotiba, O.A. A dendrimer supported electrochemical ımmunosensor for the detection of alpha-feto protein - a cancer biomarker. Electroanalysis, 2018, 30(1), 31-37.
[http://dx.doi.org/10.1002/elan.201700491]
[109]
Zhuo, Y.; Gui, G.; Chai, Y.; Liao, N.; Xiao, K.; Yuan, R. Sandwich-format electrochemiluminescence assays for tumor marker based on PAMAM dendrimer-L-cysteine-hollow gold nanosphere nanocomposites. Biosens. Bioelectron., 2014, 53, 459-464.
[http://dx.doi.org/10.1016/j.bios.2013.10.014] [PMID: 24211458]
[110]
Jiang, X.; Wang, H.; Yuan, R.; Chai, Y. Sensitive electrochemiluminescence detection for CA15-3 based on immobilizing luminol on dendrimer functionalized ZnO nanorods. Biosens. Bioelectron., 2015, 63, 33-38.
[http://dx.doi.org/10.1016/j.bios.2014.07.009] [PMID: 25051535]
[111]
Kim, D.M.; Noh, H.B.; Park, D.S.; Ryu, S.H.; Koo, J.S.; Shim, Y.B. Immunosensors for detection of Annexin II and MUC5AC for early diagnosis of lung cancer. Biosens. Bioelectron., 2009, 25(2), 456-462.
[http://dx.doi.org/10.1016/j.bios.2009.08.007] [PMID: 19717294]
[112]
Giannetto, M.; Mori, L.; Mori, G.; Careri, M.; Mangia, A. New amperometric ımmunosensor with response enhanced by PAMAM-dendrimers linked via self assembled monolayers for determination of alpha-fetoprotein in human serum. Sens. Actuators B Chem., 2011, 159(1), 185-192.
[http://dx.doi.org/10.1016/j.snb.2011.06.070]
[113]
Oh, S. Y.; Jie, H. S.; Choi, H. S.; Choi, J. W. Deep UV photopatterning of self-assembled monolayer and its application in bioelectronic device. Int. J. Nanosci., 2002, 1(05n06), 611-616.
[http://dx.doi.org/10.1142/S0219581X02000759]
[114]
Lee, S.Y.; Lee, S.J.; Jung, H-T. Protein microarrays and chips. J. Ind. Eng. Chem., 2003, 9(1), 9-15.
[115]
Namgung, M.O.; Jung, S.K.; Chung, C.M.; Oh, S.Y. Electrochemical immunosensor for prostate-specific antigen using self-assembled oligophenylethynylenethiol monolayer containing dendrimer. Ultramicroscopy, 2009, 109(8), 907-910.
[http://dx.doi.org/10.1016/j.ultramic.2009.03.039] [PMID: 19477074]
[116]
Kubo, Y.; Ishida, T.; Kobayashi, A.; James, T.D. Fluorescent alizarin-phenylboronic acid ensembles: design of self-organized molecular sensors for metal ions and anions. J. Mater. Chem., 2005, 15(27-28), 2889-2895.
[http://dx.doi.org/10.1039/B501243K]
[117]
Sun, X.; Odyniec, M.L.; Sedgwick, A.C.; Lacina, K.; Xu, S.; Qiang, T.; Bull, S.D.; Marken, F.; James, T.D. Reaction-based ındicator displacement assay (RIA) for the colorimetric and fluorometric detection of hydrogen peroxide. Org. Chem. Front., 2017, 4(6), 1058-1062.
[http://dx.doi.org/10.1039/C6QO00448B]
[118]
Sun, X.; Lacina, K.; Ramsamy, E.C.; Flower, S.E.; Fossey, J.S.; Qian, X.; Anslyn, E.V.; Bull, S.D.; James, T.D. Reaction-based indicator displacement assay (RIA) for the selective colorimetric and fluorometric detection of peroxynitrite. Chem. Sci. (Camb.), 2015, 6(5), 2963-2967.
[http://dx.doi.org/10.1039/C4SC03983A] [PMID: 28706677]
[119]
Zhang, B.; Ding, C. Displacement-type amperometric immunosensing platform for sensitive determination of tumour markers. Biosens. Bioelectron., 2016, 82, 112-118.
[http://dx.doi.org/10.1016/j.bios.2016.03.053] [PMID: 27058441]
[120]
Carroll-Portillo, A.; Bachand, M.; Greene, A.C.; Bachand, G.D. In vitro capture, transport, and detection of protein analytes using kinesin-based nanoharvesters. Small, 2009, 5(16), 1835-1840.
[http://dx.doi.org/10.1002/smll.200900491] [PMID: 19415649]
[121]
Zou, Z.; Du, D.; Wang, J.; Smith, J.N.; Timchalk, C.; Li, Y.; Lin, Y. Quantum dot-based immunochromatographic fluorescent biosensor for biomonitoring trichloropyridinol, a biomarker of exposure to chlorpyrifos. Anal. Chem., 2010, 82(12), 5125-5133.
[http://dx.doi.org/10.1021/ac100260m] [PMID: 20507134]
[122]
Li, H.; Liu, R.; Liu, Y.; Huang, H.; Yu, H.; Ming, H.; Lian, S.; Lee, S.T.; Kang, Z. Carbon quantum dots/Cu2O composites with protruding nanostructures and their highly efficient (near) infrared photocatalytic behavior. J. Mater. Chem., 2012, 22(34), 17470-17475.
[http://dx.doi.org/10.1039/c2jm32827e]
[123]
Li, Q.; Jin, J.; Lou, F.; Tang, D. Metal sulfide quantum dots-aggregated PAMAM dendrimer for cadmium ion-selective electrode-based immunoassay of alpha-fetoprotein. Sci. China Chem., 2018, 61(6), 750-756.
[http://dx.doi.org/10.1007/s11426-017-9211-7]
[124]
Babamiri, B.; Hallaj, R.; Salimi, A. Ultrasensitive electrochemiluminescence immunoassay for simultaneous determination of CA125 and CA15-3 tumor markers based on PAMAM-sulfanilic acid-Ru(bpy)32+ and PAMAM-CdTe@CdS nanocomposite. Biosens. Bioelectron., 2018, 99, 353-360.
[http://dx.doi.org/10.1016/j.bios.2017.07.062] [PMID: 28800507]
[125]
Fabre, B. Ferrocene-terminated monolayers covalently bound to hydrogen-terminated silicon surfaces. Toward the development of charge storage and communication devices. Acc. Chem. Res., 2010, 43(12), 1509-1518.
[http://dx.doi.org/10.1021/ar100085q] [PMID: 20949977]
[126]
Moriuchi, T.; Hirao, T. Design of ferrocene-dipeptide bioorganometallic conjugates to induce chirality-organized structures. Acc. Chem. Res., 2010, 43(7), 1040-1051.
[http://dx.doi.org/10.1021/ar100022n] [PMID: 20377253]
[127]
Deng, S.; Lei, J.; Liu, Y.; Huang, Y.; Ju, H. A ferrocenyl-terminated dendrimer as an efficient quencher via electron and energy transfer for cathodic electrochemiluminescent bioanalysis. Chem. Commun. (Camb.), 2013, 49(21), 2106-2108.
[http://dx.doi.org/10.1039/c3cc39208b] [PMID: 23389586]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy