Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Applications of Exosomes in Targeted Drug Delivery for the Treatment of Parkinson’s Disease: A Review of Recent Advances and Clinical Challenges

Author(s): Bhumika Kumar, Mukesh Pandey, Faizana Fayaz, Tareq Abu Izneid, Faheem Hyder Pottoo, Satish Manchanda, Anjali Sharma and Pravat Kumar Sahoo*

Volume 20, Issue 30, 2020

Page: [2777 - 2788] Pages: 12

DOI: 10.2174/1568026620666201019112557

Price: $65

Abstract

Parkinson’s disease (PD) is one of the most prevalent and severe neurodegenerative disease affecting more than 6.1 million people globally. It is characterized by age-related progressive deterioration of neurological functions caused by neuronal damage or neuronal death. During PD, the dopamineproducing cells in the substantia nigra region of the brain degenerate, which leads to symptoms like resting tremors and rigidity. Treatment of PD is very challenging due to the blood-brain barrier, which restricts the drug from reaching the brain. Conventional drug delivery systems possess a limited capacity to cross the blood barrier, leading to low bioavailability and high toxicity (due to off-site drug release). Therefore, it becomes necessary to accelerate the development of novel drug delivery systems, including nanoparticles, microemulsions, matrix systems, solid dispersions, liposomes, and solid lipid nanoparticles for the treatment of PD. Exosomes are biological lipid bilayer membrane vesicles produced by nearly all mammalian cells. The characteristics of vesicles are unique to their cell of origin and are primarily involved in intracellular communication. Exosomes, due to their nanoscale size, could easily permeate across the central nervous system, which makes them ideal for targeting the neurons in the substantia nigra. Exosomes could be efficient drug carrier systems for brain targeting, which can increase the efficacy of the drug and minimize the side effects. The review aims at providing a broad updated view of exosomes and their application in the treatment of PD.

Keywords: Parkinson's disease, Neurodegenerative disorders, Exosomes, Blood-brain barrier, Nanoformulation, Targeted drug delivery, Brain targeting.

Graphical Abstract

[1]
Hamza, T.H.; Chen, H.; Hill-Burns, E.M.; Rhodes, S.L.; Montimurro, J.; Kay, D.M.; Tenesa, A.; Kusel, V.I.; Sheehan, P.; Eaaswarkhanth, M.; Yearout, D.; Samii, A.; Roberts, J.W.; Agarwal, P.; Bordelon, Y.; Park, Y.; Wang, L.; Gao, J.; Vance, J.M.; Kendler, K.S.; Bacanu, S.A.; Scott, W.K.; Ritz, B.; Nutt, J.; Factor, S.A.; Zabetian, C.P.; Payami, H. Genome-wide gene-environment study identifies glutamate receptor gene GRIN2A as a Parkinson’s disease modifier gene via interaction with coffee. PLoS Genet., 2011, 7(8), e1002237.
[http://dx.doi.org/10.1371%2Fjournal.pgen.1002237] [PMID: 21876681]
[2]
Sharma, S.; Rabbani, S.A.; Narang, J.K.; Hyder Pottoo, F.; Ali, J.; Kumar, S.; Baboota, S. Role of rutin nanoemulsion in ameliorating oxidative stress: pharmacokinetic and pharmacodynamics studies. Chem. Phys. Lipids, 2020, 228, 104890.
[http://dx.doi.org/10.1016/j.chemphyslip.2020.104890] [PMID: 32032570]
[3]
Moore, S.F.; Barker, R.A. Predictors of Parkinson’s disease dementia: towards targeted therapies for a heterogeneous disease. Parkinsonism Relat. Disord., 2014, 20(1)(Suppl. 1), S104-S107.
[http://dx.doi.org/10.1016/S1353-8020(13)70026-9] [PMID: 24262158]
[4]
Alavijeh, M.S.; Chishty, M.; Qaiser, M.Z.; Palmer, A.M. Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. NeuroRx, 2005, 2(4), 554-571.
[http://dx.doi.org/10.1602/neurorx.2.4.554] [PMID: 16489365]
[5]
Weintraub, D.; Comella, C.L.; Horn, S. Parkinson’s disease--Part 1: Pathophysiology, symptoms, burden, diagnosis, and assessment. Am. J. Manag. Care, 2008, 14(2)(Suppl.), S40-S48.
[PMID: 18402507]
[6]
Weintraub, D.; Comella, C.L.; Horn, S. Parkinson’s disease--Part 2: Treatment of motor symptoms. Am. J. Manag. Care, 2008, 14(2)(Suppl.), S49-S58.
[PMID: 18402508]
[7]
Barchet, T.M.; Amiji, M.M. Challenges and opportunities in CNS delivery of therapeutics for neurodegenerative diseases. Expert Opin. Drug Deliv., 2009, 6(3), 211-225.
[http://dx.doi.org/10.1517/17425240902758188] [PMID: 19290842]
[8]
Azzouz, M.; Ralph, S.; Wong, L.F.; Day, D.; Askham, Z.; Barber, R.D.; Mitrophanous, K.A.; Kingsman, S.M.; Mazarakis, N.D. Neuroprotection in a rat Parkinson model by GDNF gene therapy using EIAV vector. Neuroreport, 2004, 15(6), 985-990.
[http://dx.doi.org/10.1097/00001756-200404290-00011] [PMID: 15076720]
[9]
Bickel, U.; Yoshikawa, T.; Pardridge, W.M. Delivery of peptides and proteins through the blood-brain barrier. Adv. Drug Deliv. Rev., 2001, 46(1-3), 247-279.
[http://dx.doi.org/10.1016/s0169-409x(00)00139-3] [PMID: 11259843]
[10]
Helmschrodt, C.; Höbel, S.; Schöniger, S.; Bauer, A.; Bonicelli, J.; Gringmuth, M.; Fietz, S.A.; Aigner, A.; Richter, A.; Richter, F. Polyethylenimine nanoparticle-mediated sirna delivery to reduce α-synuclein expression in a model of parkinson’s disease. Mol. Ther. Nucleic Acids, 2017, 9, 57-68.
[http://dx.doi.org/10.1016%2Fj.omtn.2017.08.013] [PMID: 29246324]
[11]
Pottoo, F.H.; Javed, N.; Rahman, J.; Abu-Izneid, T.; Khan, F.A. Targeted delivery of miRNA based therapeuticals in the clinical management of Glioblastoma Multiforme. Semin. Cancer Biol., 2020(in press)
[12]
Kumar, B.; Pandey, M.; Pottoo, F.H.; Fayaz, F.; Sharma, A.; Sahoo, P.K. Liposomes: Novel drug delivery approach for targeting parkinson’s disease. Curr. Pharm. Des., 2020, 26(1) (Online ahead of Print)
[PMID: 32003666]
[13]
Berry, M.; Barrett, L.; Seymour, L.; Baird, A.; Logan, A. Gene therapy for central nervous system repair. Curr. Opin. Mol. Ther., 2001, 3(4), 338-349.
[PMID: 11525557]
[14]
Pottoo, F.H.; Sharma, S.; Javed, M.N.; Barkat, M.A. Harshita; Alam, M.S.; Naim, M.J.; Alam, O.; Ansari, M.A.; Barreto, G.E.; Ashraf, G.M. Lipid-based nanoformulations in the treatment of neurological disorders. Drug Metab. Rev., 2020, 52(1), 185-204.
[http://dx.doi.org/10.1080/03602532.2020.1726942] [PMID: 32116044]
[15]
Ansari, M.A.; Chung, I.M.; Rajakumar, G.; Alzohairy, M.A.; Alomary, M.N.; Thiruvengadam, M.; Pottoo, F.H.; Ahmad, N. Current nanoparticle approaches in nose to brain drug delivery and anticancer therapy - a review. Curr. Pharm. Des., 2020, 26(11), 1128-1137.
[http://dx.doi.org/10.2174/1381612826666200116153912] [PMID: 31951165]
[16]
Brasnjevic, I.; Steinbusch, H.W.; Schmitz, C.; Martinez-Martinez, P. European NanoBioPharmaceutics Research Initiative. Delivery of peptide and protein drugs over the blood-brain barrier. Prog. Neurobiol., 2009, 87(4), 212-251.
[http://dx.doi.org/10.1016/j.pneurobio.2008.12.002] [PMID: 19395337]
[17]
Pardridge, W.M. The blood-brain barrier: bottleneck in brain drug development. NeuroRx, 2005, 2(1), 3-14.
[http://dx.doi.org/10.1602/neurorx.2.1.3] [PMID: 15717053]
[18]
Abbott, N.J.; Chugani, D.C.; Zaharchuk, G.; Rosen, B.R.; Lo, E.H. Delivery of imaging agents into brain. Adv. Drug Deliv. Rev., 1999, 37(1-3), 253-277.
[http://dx.doi.org/10.1016/s0169-409x(98)00097-0] [PMID: 10837739]
[19]
Ehrlich, P. The organism's need for oxygen: Medicusbooks: Madburg, 1885.
[20]
Hawkins, B.T.; Davis, T.P. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol. Rev., 2005, 57(2), 173-185.
[http://dx.doi.org/10.1124/pr.57.2.4] [PMID: 15914466]
[21]
Nag, S.; Begley, D.J. Blood-brain barrier, exchange of metabolites and gases. Pathology and Genetics; ISN Neuropath Press, 2005, pp. 22-29.
[22]
Abbott, N.J.; Rönnbäck, L.; Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci., 2006, 7(1), 41-53.
[http://dx.doi.org/10.1038/nrn1824] [PMID: 16371949]
[23]
Abbott, N.J.; Patabendige, A.A.; Dolman, D.E.; Yusof, S.R.; Begley, D.J. Structure and function of the blood-brain barrier. Neurobiol. Dis., 2010, 37(1), 13-25.
[http://dx.doi.org/10.1016/j.nbd.2009.07.030] [PMID: 19664713]
[24]
Bradbury, M.W.; Stubbs, J.; Hughes, I.E.; Parker, P. The distribution of potassium, sodium, chloride, and urea between lumbar cerebrospinal fluid and blood serum in human subjects. Clin. Sci., 1963, 25, 97-105.
[PMID: 14058246]
[25]
Nischwitz, V.; Berthele, A.; Michalke, B. Speciation analysis of selected metals and determination of their total contents in paired serum and cerebrospinal fluid samples: An approach to investigate the permeability of the human blood-cerebrospinal fluid-barrier. Anal. Chim. Acta, 2008, 627(2), 258-269.
[http://dx.doi.org/10.1016/j.aca.2008.08.018] [PMID: 18809082]
[26]
Bernacki, J.; Dobrowolska, A.; Nierwińska, K.; Małecki, A. Physiology and pharmacological role of the blood-brain barrier. Pharmacol. Rep., 2008, 60(5), 600-622.
[PMID: 19066407]
[27]
Reiber, H. Dynamics of brain-derived proteins in cerebrospinal fluid. Clin. Chim. Acta, 2001, 310(2), 173-186.
[http://dx.doi.org/10.1016/s0009-8981(01)00573-3] [PMID: 11498083]
[28]
Liu, X.; Tu, M.; Kelly, R.S.; Chen, C.; Smith, B.J. Development of a computational approach to predict blood-brain barrier permeability. Drug Metab. Dispos., 2004, 32(1), 132-139.
[http://dx.doi.org/10.1124/dmd.32.1.132] [PMID: 14709630]
[29]
Zhang, E.Y.; Knipp, G.T.; Ekins, S.; Swaan, P.W. Structural biology and function of solute transporters: implications for identifying and designing substrates. Drug Metab. Rev., 2002, 34(4), 709-750.
[http://dx.doi.org/10.1081/dmr-120015692] [PMID: 12487148]
[30]
Dallasta, L.M.; Pisarov, L.A.; Esplen, J.E.; Werley, J.V.; Moses, A.V.; Nelson, J.A.; Achim, C.L. Blood-brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis. Am. J. Pathol., 1999, 155(6), 1915-1927.
[http://dx.doi.org/10.1016%2FS0002-9440(10)65511-3] [PMID: 10595922]
[31]
Begley, D.J. ABC transporters and the blood-brain barrier. Curr. Pharm. Des., 2004, 10(12), 1295-1312.
[http://dx.doi.org/10.2174/1381612043384844] [PMID: 15134482]
[32]
Kamiie, J.; Ohtsuki, S.; Iwase, R.; Ohmine, K.; Katsukura, Y.; Yanai, K.; Sekine, Y.; Uchida, Y.; Ito, S.; Terasaki, T. Quantitative atlas of membrane transporter proteins: development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in-silico peptide selection criteria. Pharm. Res., 2008, 25(6), 1469-1483.
[http://dx.doi.org/10.1007/s11095-008-9532-4] [PMID: 18219561]
[33]
Dean, M.; Rzhetsky, A.; Allikmets, R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res., 2001, 11(7), 1156-1166.
[http://dx.doi.org/10.1101/gr.184901] [PMID: 11435397]
[34]
Sauer, I.; Dunay, I.R.; Weisgraber, K.; Bienert, M.; Dathe, M. An apolipoprotein E-derived peptide mediates uptake of sterically stabilized liposomes into brain capillary endothelial cells. Biochemistry, 2005, 44(6), 2021-2029.
[http://dx.doi.org/10.1021/bi048080x] [PMID: 15697227]
[35]
Zlokovic, B.V. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron, 2008, 57(2), 178-201.
[http://dx.doi.org/10.1016/j.neuron.2008.01.003] [PMID: 18215617]
[36]
Ghersi-Egea, J.F.; Minn, A.; Siest, G. A new aspect of the protective functions of the blood-brain barrier: activities of four drug-metabolizing enzymes in isolated rat brain microvessels. Life Sci., 1988, 42(24), 2515-2523.
[http://dx.doi.org/10.1016/0024-3205(88)90351-7] [PMID: 3131610]
[37]
Minn, A.; Ghersi-Egea, J.F.; Perrin, R.; Leininger, B.; Siest, G. Drug metabolizing enzymes in the brain and cerebral microvessels. Brain Res. Brain Res. Rev., 1991, 16(1), 65-82.
[http://dx.doi.org/10.1016/0165-0173(91)90020-9] [PMID: 1907518]
[38]
Alexander, A.; Agrawal, M.; Uddin, A.; Siddique, S.; Shehata, A.M.; Shaker, M.A.; Ata Ur Rahman, S.; Abdul, M.I.M.; Shaker, M.A. Recent expansions of novel strategies towards the drug targeting into the brain. Int. J. Nanomedicine, 2019, 14, 5895-5909.
[http://dx.doi.org/10.2147%2FIJN.S210876] [PMID: 31440051]
[39]
Barar, J.; Rafi, M.A.; Pourseif, M.M.; Omidi, Y. Blood-brain barrier transport machineries and targeted therapy of brain diseases. Bioimpacts, 2016, 6(4), 225-248.
[http://dx.doi.org/10.15171%2Fbi.2016.30] [PMID: 28265539]
[40]
Dhankhar, R.; Vyas, S.P.; Jain, A.K.; Arora, S.; Rath, G.; Goyal, A.K. Advances in novel drug delivery strategies for breast cancer therapy. Artif. Cells Blood Substit. Immobil. Biotechnol., 2010, 38(5), 230-249.
[http://dx.doi.org/10.3109/10731199.2010.494578] [PMID: 20677900]
[41]
Appelboom, G.; Detappe, A.; LoPresti, M.; Kunjachan, S.; Mitrasinovic, S.; Goldman, S.; Chang, S.D.; Tillement, O. Stereotactic modulation of blood-brain barrier permeability to enhance drug delivery. Neuro-oncol., 2016, 18(12), 1601-1609.
[http://dx.doi.org/10.1093%2Fneuonc%2Fnow137] [PMID: 27407134]
[42]
Hamidi, M.; Azadi, A.; Rafiei, P. Pharmacokinetic consequences of pegylation. Drug Deliv., 2006, 13(6), 399-409.
[http://dx.doi.org/10.1080/10717540600814402] [PMID: 17002967]
[43]
Salmaso, S.; Caliceti, P. Stealth properties to improve therapeutic efficacy of drug nanocarriers. J. Drug Deliv., 2013, 2013, 374252.
[http://dx.doi.org/10.1155/2013/374252] [PMID: 23533769]
[44]
Vail, D.M.; Amantea, M.A.; Colbern, G.T.; Martin, F.J.; Hilger, R.A.; Working, P.K. Pegylated liposomal doxorubicin: proof of principle using preclinical animal models and pharmacokinetic studies. Semin. Oncol., 2004, 31(6)(Suppl. 13), 16-35.
[http://dx.doi.org/10.1053/j.seminoncol.2004.08.002] [PMID: 15717736]
[45]
Rodriguez-Devora, J.I.; Ambure, S.; Shi, Z.D.; Yuan, Y.; Sun, W.; Xui, T. Physically facilitating drug-delivery systems. Ther. Deliv., 2012, 3(1), 125-139.
[http://dx.doi.org/10.4155/tde.11.137] [PMID: 22485192]
[46]
Nobs, L.; Buchegger, F.; Gurny, R.; Allémann, E. Poly(lactic acid) nanoparticles labeled with biologically active Neutravidin for active targeting. Eur. J. Pharm. Biopharm., 2004, 58(3), 483-490.
[http://dx.doi.org/10.1016/j.ejpb.2004.04.006] [PMID: 15451522]
[47]
Davalos, R.V.; Rossmeisl, J.H.; Garcia, P.A. Immunotherapeutic methods using irreversible electroporation. US20190069945A1, 2019.
[48]
Jones, A.R.; Shusta, E.V. Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm. Res., 2007, 24(9), 1759-1771.
[http://dx.doi.org/10.1007/s11095-007-9379-0] [PMID: 17619996]
[49]
Chiou, B.; Neal, E.H.; Bowman, A.B.; Lippmann, E.S.; Simpson, I.A.; Connor, J.R. Pharmaceutical iron formulations do not cross a model of the human blood-brain barrier. PLoS One, 2018, 13(6), e0198775.
[http://dx.doi.org/10.1371%2Fjournal.pone.0198775] [PMID: 29889872]
[50]
Stalmans, S.; Bracke, N.; Wynendaele, E.; Gevaert, B.; Peremans, K.; Burvenich, C.; Polis, I.; De Spiegeleer, B. Cell-penetrating peptides selectively cross the blood-brain barrier in vivo. PLoS One, 2015, 10(10), e0139652.
[http://dx.doi.org/10.1371%2Fjournal.pone.0139652] [PMID: 26465925]
[51]
McGavin, M.D.; Zachary, J.F. Pathologic Basis of Veterinary Disease; Elsevier: Amsterdam, 2017.
[52]
Pardridge, W.M. Recent developments in peptide drug delivery to the brain. Pharmacol. Toxicol., 1992, 71(1), 3-10.
[http://dx.doi.org/10.1111/j.1600-0773.1992.tb00512.x] [PMID: 1523192]
[53]
Bich, L.; Pradeu, T.; Moreau, J.F. Understanding multicellularity: the functional organization of the intercellular space. Front. Physiol., 2019, 10, 1170.
[http://dx.doi.org/10.3389%2Ffphys.2019.01170] [PMID: 31620013]
[54]
Raposo, G.; Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol., 2013, 200(4), 373-383.
[http://dx.doi.org/10.1083/jcb.201211138] [PMID: 23420871]
[55]
Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; Ayre, D.C.; Bach, J.M.; Bachurski, D.; Baharvand, H.; Balaj, L.; Baldacchino, S.; Bauer, N.N.; Baxter, A.A.; Bebawy, M.; Beckham, C.; Bedina Zavec, A.; Benmoussa, A.; Berardi, A.C.; Bergese, P.; Bielska, E.; Blenkiron, C.; Bobis-Wozowicz, S.; Boilard, E.; Boireau, W.; Bongiovanni, A.; Borràs, F.E.; Bosch, S.; Boulanger, C.M.; Breakefield, X.; Breglio, A.M.; Brennan, M.Á.; Brigstock, D.R.; Brisson, A.; Broekman, M.L.; Bromberg, J.F.; Bryl-Górecka, P.; Buch, S.; Buck, A.H.; Burger, D.; Busatto, S.; Buschmann, D.; Bussolati, B.; Buzás, E.I.; Byrd, J.B.; Camussi, G.; Carter, D.R.; Caruso, S.; Chamley, L.W.; Chang, Y.T.; Chen, C.; Chen, S.; Cheng, L.; Chin, A.R.; Clayton, A.; Clerici, S.P.; Cocks, A.; Cocucci, E.; Coffey, R.J.; Cordeiro-da-Silva, A.; Couch, Y.; Coumans, F.A.; Coyle, B.; Crescitelli, R.; Criado, M.F.; D’Souza-Schorey, C.; Das, S.; Datta Chaudhuri, A.; de Candia, P.; De Santana, E.F.; De Wever, O.; Del Portillo, H.A.; Demaret, T.; Deville, S.; Devitt, A.; Dhondt, B.; Di Vizio, D.; Dieterich, L.C.; Dolo, V.; Dominguez Rubio, A.P.; Dominici, M.; Dourado, M.R.; Driedonks, T.A.; Duarte, F.V.; Duncan, H.M.; Eichenberger, R.M.; Ekström, K.; El Andaloussi, S.; Elie-Caille, C.; Erdbrügger, U.; Falcón-Pérez, J.M.; Fatima, F.; Fish, J.E.; Flores-Bellver, M.; Försönits, A.; Frelet-Barrand, A.; Fricke, F.; Fuhrmann, G.; Gabrielsson, S.; Gámez-Valero, A.; Gardiner, C.; Gärtner, K.; Gaudin, R.; Gho, Y.S.; Giebel, B.; Gilbert, C.; Gimona, M.; Giusti, I.; Goberdhan, D.C.; Görgens, A.; Gorski, S.M.; Greening, D.W.; Gross, J.C.; Gualerzi, A.; Gupta, G.N.; Gustafson, D.; Handberg, A.; Haraszti, R.A.; Harrison, P.; Hegyesi, H.; Hendrix, A.; Hill, A.F.; Hochberg, F.H.; Hoffmann, K.F.; Holder, B.; Holthofer, H.; Hosseinkhani, B.; Hu, G.; Huang, Y.; Huber, V.; Hunt, S.; Ibrahim, A.G.; Ikezu, T.; Inal, J.M.; Isin, M.; Ivanova, A.; Jackson, H.K.; Jacobsen, S.; Jay, S.M.; Jayachandran, M.; Jenster, G.; Jiang, L.; Johnson, S.M.; Jones, J.C.; Jong, A.; Jovanovic-Talisman, T.; Jung, S.; Kalluri, R.; Kano, S.I.; Kaur, S.; Kawamura, Y.; Keller, E.T.; Khamari, D.; Khomyakova, E.; Khvorova, A.; Kierulf, P.; Kim, K.P.; Kislinger, T.; Klingeborn, M.; Klinke, D.J., II; Kornek, M.; Kosanović, M.M.; Kovács, Á.F.; Krämer-Albers, E.M.; Krasemann, S.; Krause, M.; Kurochkin, I.V.; Kusuma, G.D.; Kuypers, S.; Laitinen, S.; Langevin, S.M.; Languino, L.R.; Lannigan, J.; Lässer, C.; Laurent, L.C.; Lavieu, G.; Lázaro-Ibáñez, E.; Le Lay, S.; Lee, M.S.; Lee, Y.X.F.; Lemos, D.S.; Lenassi, M.; Leszczynska, A.; Li, I.T.; Liao, K.; Libregts, S.F.; Ligeti, E.; Lim, R.; Lim, S.K.; Linē, A.; Linnemannstöns, K.; Llorente, A.; Lombard, C.A.; Lorenowicz, M.J.; Lörincz, Á.M.; Lötvall, J.; Lovett, J.; Lowry, M.C.; Loyer, X.; Lu, Q.; Lukomska, B.; Lunavat, T.R.; Maas, S.L.; Malhi, H.; Marcilla, A.; Mariani, J.; Mariscal, J.; Martens-Uzunova, E.S.; Martin-Jaular, L.; Martinez, M.C.; Martins, V.R.; Mathieu, M.; Mathivanan, S.; Maugeri, M.; McGinnis, L.K.; McVey, M.J.; Meckes, D.G., Jr; Meehan, K.L.; Mertens, I.; Minciacchi, V.R.; Möller, A.; Møller Jørgensen, M.; Morales-Kastresana, A.; Morhayim, J.; Mullier, F.; Muraca, M.; Musante, L.; Mussack, V.; Muth, D.C.; Myburgh, K.H.; Najrana, T.; Nawaz, M.; Nazarenko, I.; Nejsum, P.; Neri, C.; Neri, T.; Nieuwland, R.; Nimrichter, L.; Nolan, J.P.; Nolte-’t Hoen, E.N.; Noren Hooten, N.; O’Driscoll, L.; O’Grady, T.; O’Loghlen, A.; Ochiya, T.; Olivier, M.; Ortiz, A.; Ortiz, L.A.; Osteikoetxea, X.; Østergaard, O.; Ostrowski, M.; Park, J.; Pegtel, D.M.; Peinado, H.; Perut, F.; Pfaffl, M.W.; Phinney, D.G.; Pieters, B.C.; Pink, R.C.; Pisetsky, D.S.; Pogge von Strandmann, E.; Polakovicova, I.; Poon, I.K.; Powell, B.H.; Prada, I.; Pulliam, L.; Quesenberry, P.; Radeghieri, A.; Raffai, R.L.; Raimondo, S.; Rak, J.; Ramirez, M.I.; Raposo, G.; Rayyan, M.S.; Regev-Rudzki, N.; Ricklefs, F.L.; Robbins, P.D.; Roberts, D.D.; Rodrigues, S.C.; Rohde, E.; Rome, S.; Rouschop, K.M.; Rughetti, A.; Russell, A.E.; Saá, P.; Sahoo, S.; Salas-Huenuleo, E.; Sánchez, C.; Saugstad, J.A.; Saul, M.J.; Schiffelers, R.M.; Schneider, R.; Schøyen, T.H.; Scott, A.; Shahaj, E.; Sharma, S.; Shatnyeva, O.; Shekari, F.; Shelke, G.V.; Shetty, A.K.; Shiba, K.; Siljander, P.R.; Silva, A.M.; Skowronek, A.; Snyder, O.L., II; Soares, R.P.; Sódar, B.W.; Soekmadji, C.; Sotillo, J.; Stahl, P.D.; Stoorvogel, W.; Stott, S.L.; Strasser, E.F.; Swift, S.; Tahara, H.; Tewari, M.; Timms, K.; Tiwari, S.; Tixeira, R.; Tkach, M.; Toh, W.S.; Tomasini, R.; Torrecilhas, A.C.; Tosar, J.P.; Toxavidis, V.; Urbanelli, L.; Vader, P.; van Balkom, B.W.; van der Grein, S.G.; Van Deun, J.; van Herwijnen, M.J.; Van Keuren-Jensen, K.; van Niel, G.; van Royen, M.E.; van Wijnen, A.J.; Vasconcelos, M.H.; Vechetti, I.J., Jr; Veit, T.D.; Vella, L.J.; Velot, É.; Verweij, F.J.; Vestad, B.; Viñas, J.L.; Visnovitz, T.; Vukman, K.V.; Wahlgren, J.; Watson, D.C.; Wauben, M.H.; Weaver, A.; Webber, J.P.; Weber, V.; Wehman, A.M.; Weiss, D.J.; Welsh, J.A.; Wendt, S.; Wheelock, A.M.; Wiener, Z.; Witte, L.; Wolfram, J.; Xagorari, A.; Xander, P.; Xu, J.; Yan, X.; Yáñez-Mó, M.; Yin, H.; Yuana, Y.; Zappulli, V.; Zarubova, J.; Žėkas, V.; Zhang, J.Y.; Zhao, Z.; Zheng, L.; Zheutlin, A.R.; Zickler, A.M.; Zimmermann, P.; Zivkovic, A.M.; Zocco, D.; Zuba-Surma, E.K. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles, 2018, 7(1), 1535750.
[http://dx.doi.org/10.1080/20013078.2018.1535750] [PMID: 30637094]
[56]
Harding, C.; Stahl, P. Transferrin recycling in reticulocytes: pH and iron are important determinants of ligand binding and processing. Biochem. Biophys. Res. Commun., 1983, 113(2), 650-658.
[http://dx.doi.org/10.1016/0006-291x(83)91776-x] [PMID: 6870878]
[57]
Pan, B.T.; Johnstone, R.M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell, 1983, 33(3), 967-978.
[http://dx.doi.org/10.1016/0092-8674(83)90040-5] [PMID: 6307529]
[58]
Trams, E.G.; Lauter, C.J.; Salem, N., Jr; Heine, U. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim. Biophys. Acta, 1981, 645(1), 63-70.
[http://dx.doi.org/10.1016/0005-2736(81)90512-5] [PMID: 6266476]
[59]
Théry, C.; Zitvogel, L.; Amigorena, S. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol., 2002, 2(8), 569-579.
[http://dx.doi.org/0.1038/nri855] [PMID: 12154376]
[60]
Conlan, R.S.; Pisano, S.; Oliveira, M.I.; Ferrari, M.; Mendes Pinto, I. Exosomes as reconfigurable therapeutic systems. Trends Mol. Med., 2017, 23(7), 636-650.
[http://dx.doi.org/10.1016/j.molmed.2017.05.003] [PMID: 28648185]
[61]
Ratajczak, J.; Wysoczynski, M.; Hayek, F.; Janowska-Wieczorek, A.; Ratajczak, M.Z. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia, 2006, 20(9), 1487-1495.
[http://dx.doi.org/10.1038/sj.leu.2404296] [PMID: 16791265]
[62]
Blanchard, N.; Lankar, D.; Faure, F.; Regnault, A.; Dumont, C.; Raposo, G.; Hivroz, C. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/ζ complex. J. Immunol., 2002, 168(7), 3235-3241.
[http://dx.doi.org/10.4049/jimmunol.168.7.3235] [PMID: 11907077]
[63]
Wolfers, J.; Lozier, A.; Raposo, G.; Regnault, A.; Théry, C.; Masurier, C.; Flament, C.; Pouzieux, S.; Faure, F.; Tursz, T.; Angevin, E.; Amigorena, S.; Zitvogel, L. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat. Med., 2001, 7(3), 297-303.
[http://dx.doi.org/10.1038/85438] [PMID: 11231627]
[64]
Théry, C.; Boussac, M.; Véron, P.; Ricciardi-Castagnoli, P.; Raposo, G.; Garin, J.; Amigorena, S. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J. Immunol., 2001, 166(12), 7309-7318.
[http://dx.doi.org/10.4049/jimmunol.166.12.7309] [PMID: 11390481]
[65]
Heijnen, H.F.; Schiel, A.E.; Fijnheer, R.; Geuze, H.J.; Sixma, J.J. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood, 1999, 94(11), 3791-3799.
[PMID: 10572093]
[66]
van Niel, G.; Raposo, G.; Candalh, C.; Boussac, M.; Hershberg, R.; Cerf-Bensussan, N.; Heyman, M. Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology, 2001, 121(2), 337-349.
[http://dx.doi.org/10.1053/gast.2001.26263] [PMID: 11487543]
[67]
Théry, C.; Regnault, A.; Garin, J.; Wolfers, J.; Zitvogel, L.; Ricciardi-Castagnoli, P.; Raposo, G.; Amigorena, S. Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J. Cell Biol., 1999, 147(3), 599-610.
[http://dx.doi.org/10.1083/jcb.147.3.599] [PMID: 10545503]
[68]
de la Torre Gomez, C.; Goreham, R.V.; Bech Serra, J.J.; Nann, T.; Kussmann, M. “Exosomics”—A review of biophysics, biology and biochemistry of exosomes with a focus on human breast milk. Front. Genet., 2018, 9, 92.
[http://dx.doi.org/10.3389/fgene.2018.00092] [PMID: 29636770]
[69]
Thery, C.; Amigorena, S.; Raposo, G.; Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol., 2006, 3(3)
[70]
van der Pol, E.; Coumans, F.A.; Grootemaat, A.E.; Gardiner, C.; Sargent, I.L.; Harrison, P.; Sturk, A.; van Leeuwen, T.G.; Nieuwland, R. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J. Thromb. Haemost., 2014, 12(7), 1182-1192.
[http://dx.doi.org/10.1111/jth.12602] [PMID: 24818656]
[71]
Gurunathan, S.; Marash, M.; Weinberger, A.; Gerst, J.E. t-SNARE phosphorylation regulates endocytosis in yeast. Mol. Biol. Cell, 2002, 13(5), 1594-1607.
[http://dx.doi.org/10.1091/mbc.01-11-0541] [PMID: 12006655]
[72]
Gurunathan, S.; Kang, M.H.; Jeyaraj, M.; Qasim, M.; Kim, J.H. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells, 2019, 8(4), 307.
[http://dx.doi.org/10.3390/cells8040307] [PMID: 30987213]
[73]
Tauro, B.J.; Greening, D.W.; Mathias, R.A.; Ji, H.; Mathivanan, S.; Scott, A.M.; Simpson, R.J. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods, 2012, 56(2), 293-304.
[http://dx.doi.org/10.1016/j.ymeth.2012.01.002] [PMID: 22285593]
[74]
Lai, R.C.; Arslan, F.; Lee, M.M.; Sze, N.S.; Choo, A.; Chen, T.S.; Salto-Tellez, M.; Timmers, L.; Lee, C.N.; El Oakley, R.M.; Pasterkamp, G.; de Kleijn, D.P.; Lim, S.K. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. (Amst.), 2010, 4(3), 214-222.
[http://dx.doi.org/10.1016/j.scr.2009.12.003] [PMID: 20138817]
[75]
Anderson, W.; Lane, R.; Korbie, D.; Trau, M. Observations of tunable resistive pulse sensing for exosome analysis: improving system sensitivity and stability. Langmuir, 2015, 31(23), 6577-6587.
[http://dx.doi.org/10.1021/acs.langmuir.5b01402] [PMID: 25970769]
[76]
Colombo, M.; Raposo, G.; Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol., 2014, 30(1), 255-289.
[http://dx.doi.org/10.1146/annurev-cellbio-101512-122326] [PMID: 25288114]
[77]
Johnstone, R.M.; Adam, M.; Hammond, J.R.; Orr, L.; Turbide, C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem., 1987, 262(19), 9412-9420.
[PMID: 3597417]
[78]
Piccin, A.; Murphy, W.G.; Smith, O.P. Circulating microparticles: pathophysiology and clinical implications. Blood Rev., 2007, 21(3), 157-171.
[http://dx.doi.org/10.1016/j.blre.2006.09.001] [PMID: 17118501]
[79]
Ha, D.; Yang, N.; Nadithe, V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm. Sin. B, 2016, 6(4), 287-296.
[http://dx.doi.org/10.1016%2Fj.apsb.2016.02.001] [PMID: 27471669]
[80]
Qin, J.; Xu, Q. Functions and application of exosomes. Acta Pol. Pharm., 2014, 71(4), 537-543.
[PMID: 25272880]
[81]
Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol., 2007, 9(6), 654-659.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
[82]
Salido-Guadarrama, I.; Romero-Cordoba, S.; Peralta-Zaragoza, O.; Hidalgo-Miranda, A.; Rodríguez-Dorantes, M. MicroRNAs transported by exosomes in body fluids as mediators of intercellular communication in cancer. OncoTargets Ther., 2014, 7, 1327-1338.
[http://dx.doi.org/10.2147%2FOTT.S61562] [PMID: 25092989]
[83]
Simons, M.; Raposo, G. Exosomes--vesicular carriers for intercellular communication. Curr. Opin. Cell Biol., 2009, 21(4), 575-581.
[http://dx.doi.org/10.1016/j.ceb.2009.03.007] [PMID: 19442504]
[84]
Kanninen, K.M.; Bister, N.; Koistinaho, J.; Malm, T. Exosomes as new diagnostic tools in CNS diseases. Biochim. Biophys. Acta, 2016, 1862(3), 403-410.
[http://dx.doi.org/10.1016/j.bbadis.2015.09.020] [PMID: 26432482]
[85]
De Toro, J.; Herschlik, L.; Waldner, C.; Mongini, C. Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front. Immunol., 2015, 6, 203.
[http://dx.doi.org/10.3389/fimmu.2015.00203] [PMID: 25999947]
[86]
Morelli, A.E.; Larregina, A.T.; Shufesky, W.J.; Sullivan, M.L.; Stolz, D.B.; Papworth, G.D.; Zahorchak, A.F.; Logar, A.J.; Wang, Z.; Watkins, S.C.; Falo, L.D., Jr; Thomson, A.W. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood, 2004, 104(10), 3257-3266.
[http://dx.doi.org/10.1182/blood-2004-03-0824] [PMID: 15284116]
[87]
Heijnen, H.F.; Schiel, A.E.; Fijnheer, R.; Geuze, H.J.; Sixma, J.J. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and α-granules. Blood, 1999, 94(11), 3791-3799.
[PMID: 10572093]
[88]
Skog, J.; Würdinger, T.; van Rijn, S.; Meijer, D.H.; Gainche, L.; Sena-Esteves, M.; Curry, W.T., Jr; Carter, B.S.; Krichevsky, A.M.; Breakefield, X.O. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol., 2008, 10(12), 1470-1476.
[http://dx.doi.org/10.1038/ncb1800] [PMID: 19011622]
[89]
Rana, S.; Malinowska, K.; Zöller, M. Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia, 2013, 15(3), 281-295.
[http://dx.doi.org/10.1593%2Fneo.122010] [PMID: 23479506]
[90]
Ellwanger, J.H.; Veit, T.D.; Chies, J.A.B. Exosomes in HIV infection: A review and critical look. Infect. Genet. Evol., 2017, 53, 146-154.
[http://dx.doi.org/10.1016/j.meegid.2017.05.021] [PMID: 28546080]
[91]
Bellin, G.; Gardin, C.; Ferroni, L.; Chachques, J.C.; Rogante, M.; Mitrečić, D.; Ferrari, R.; Zavan, B. Exosome in cardiovascular diseases: a complex world full of hope. Cells, 2019, 8(2), 166.
[http://dx.doi.org/10.3390%2Fcells8020166] [PMID: 30781555]
[92]
Turturici, G.; Tinnirello, R.; Sconzo, G.; Geraci, F. Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. Am. J. Physiol. Cell Physiol., 2014, 306(7), C621-C633.
[http://dx.doi.org/10.1152/ajpcell.00228.2013] [PMID: 24452373]
[93]
Pascucci, L.; Coccè, V.; Bonomi, A.; Ami, D.; Ceccarelli, P.; Ciusani, E.; Viganò, L.; Locatelli, A.; Sisto, F.; Doglia, S.M.; Parati, E.; Bernardo, M.E.; Muraca, M.; Alessandri, G.; Bondiolotti, G.; Pessina, A. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J. Control. Release, 2014, 192, 262-270.
[http://dx.doi.org/10.1016/j.jconrel.2014.07.042] [PMID: 25084218]
[94]
Jang, S.C.; Kim, O.Y.; Yoon, C.M.; Choi, D.S.; Roh, T.Y.; Park, J.; Nilsson, J.; Lötvall, J.; Kim, Y.K.; Gho, Y.S. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano, 2013, 7(9), 7698-7710.
[http://dx.doi.org/10.1021/nn402232g] [PMID: 24004438]
[95]
Yang, T.; Martin, P.; Fogarty, B.; Brown, A.; Schurman, K.; Phipps, R.; Yin, V.P.; Lockman, P.; Bai, S. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm. Res., 2015, 32(6), 2003-2014.
[http://dx.doi.org/10.1007%2Fs11095-014-1593-y] [PMID: 25609010]
[96]
Sun, D.; Zhuang, X.; Xiang, X.; Liu, Y.; Zhang, S.; Liu, C.; Barnes, S.; Grizzle, W.; Miller, D.; Zhang, H.G. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol. Ther., 2010, 18(9), 1606-1614.
[http://dx.doi.org/110.1038/mt.2010.105] [PMID: 20571541]
[97]
Qu, M.; Lin, Q.; Huang, L.; Fu, Y.; Wang, L.; He, S.; Fu, Y.; Yang, S.; Zhang, Z.; Zhang, L.; Sun, X. Dopamine-loaded blood exosomes targeted to brain for better treatment of Parkinson’s disease. J. Control. Release, 2018, 287, 156-166.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.035] [PMID: 30165139]
[98]
Haney, M.J.; Zhao, Y.; Li, S.; Higginbotham, S.M.; Booth, S.L.; Han, H.Y.; Vetro, J.A.; Mosley, R.L.; Kabanov, A.V.; Gendelman, H.E.; Batrakova, E.V. Cell-mediated transfer of catalase nanoparticles from macrophages to brain endothelial, glial and neuronal cells. Nanomedicine (Lond.), 2011, 6(7), 1215-1230.
[http://dx.doi.org/10.2217/nnm.11.32] [PMID: 21449849]
[99]
Shtam, T.A.; Kovalev, R.A.; Varfolomeeva, E.Y.; Makarov, E.M.; Kil, Y.V.; Filatov, M.V. Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun. Signal., 2013, 11(1), 88.
[http://dx.doi.org/10.1186/1478-811X-11-88] [PMID: 24245560]
[100]
Ohno, S.; Takanashi, M.; Sudo, K.; Ueda, S.; Ishikawa, A.; Matsuyama, N.; Fujita, K.; Mizutani, T.; Ohgi, T.; Ochiya, T.; Gotoh, N.; Kuroda, M. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol. Ther., 2013, 21(1), 185-191.
[http://dx.doi.org/10.1038/mt.2012.180] [PMID: 23032975]
[101]
Porro, C.; Panaro, M.A.; Lofrumento, D.D.; Hasalla, E.; Trotta, T. The multiple roles of exosomes in Parkinson’s disease: an overview. Immunopharmacol. Immunotoxicol., 2019, 41(4), 469-476.
[http://dx.doi.org/10.1080/08923973.2019.1650371] [PMID: 31405314]
[102]
Keller, S.; Sanderson, M.P.; Stoeck, A.; Altevogt, P. Exosomes: from biogenesis and secretion to biological function. Immunol. Lett., 2006, 107(2), 102-108.
[http://dx.doi.org/110.1016/j.imlet.2006.09.005] [PMID: 17067686]
[103]
Fitzner, D.; Schnaars, M.; van Rossum, D.; Krishnamoorthy, G.; Dibaj, P.; Bakhti, M.; Regen, T.; Hanisch, U.K.; Simons, M. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J. Cell Sci., 2011, 124(Pt 3), 447-458.
[http://dx.doi.org/10.1242/jcs.074088] [PMID: 21242314]
[104]
Haney, M.J.; Klyachko, N.L.; Zhao, Y.; Gupta, R.; Plotnikova, E.G.; He, Z.; Patel, T.; Piroyan, A.; Sokolsky, M.; Kabanov, A.V.; Batrakova, E.V. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J. Control. Release, 2015, 207, 18-30.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.033] [PMID: 25836593]
[105]
Zhao, Y.; Haney, M.J.; Gupta, R.; Bohnsack, J.P.; He, Z.; Kabanov, A.V.; Batrakova, E.V. GDNF-transfected macrophages produce potent neuroprotective effects in Parkinson’s disease mouse model. PLoS One, 2014, 9(9), e106867.
[http://dx.doi.org/10.1371/journal.pone.0106867] [PMID: 25229627]
[106]
Vicario, M.; Cieri, D.; Brini, M.; Calì, T. The close encounter between alpha-synuclein and mitochondria. Front. Neurosci., 2018, 12, 388.
[http://dx.doi.org/10.3389/fnins.2018.00388] [PMID: 29930495]
[107]
Gui, Y.; Liu, H.; Zhang, L.; Lv, W.; Hu, X. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget, 2015, 6(35), 37043-37053.
[http://dx.doi.org/10.18632/oncotarget.6158] [PMID: 26497684]
[108]
Wu, X.; Zheng, T.; Zhang, B. Exosomes in Parkinson’s disease. Neurosci. Bull., 2017, 33(3), 331-338.
[http://dx.doi.org/10.1007/s12264-016-0092-z] [PMID: 28025780]
[109]
Bunggulawa, E.J.; Wang, W.; Yin, T.; Wang, N.; Durkan, C.; Wang, Y.; Wang, G. Recent advancements in the use of exosomes as drug delivery systems. J. Nanobiotechnology, 2018, 16(1), 81.
[http://dx.doi.org/10.1186/s12951-018-0403-9] [PMID: 30326899]
[110]
Kojima, R.; Bojar, D.; Rizzi, G.; Hamri, G.C.; El-Baba, M.D.; Saxena, P.; Ausländer, S.; Tan, K.R.; Fussenegger, M. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat. Commun., 2018, 9(1), 1305.
[http://dx.doi.org/10.1038/s41467-018-03733-8] [PMID: 29610454]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy