Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Anti-cancer Immunotoxins, Challenges, and Approaches

Author(s): Maryam Dashtiahangar, Leila Rahbarnia, Safar Farajnia*, Arash Salmaninejad, Arezoo Gowhari Shabgah and Samaneh Ghasemali

Volume 27, Issue 7, 2021

Published on: 06 October, 2020

Page: [932 - 941] Pages: 10

DOI: 10.2174/1381612826666201006155346

Price: $65

Abstract

The development of recombinant immunotoxins (RITs) as a novel therapeutic strategy has made a revolution in the treatment of cancer. RITs result from the fusion of antibodies to toxin proteins for targeting and eliminating cancerous cells by inhibiting protein synthesis. Despite indisputable outcomes of RITs regarding inhibition of multiple cancer types, high immunogenicity has been known as the main obstacle in the clinical use of RITs. Various strategies have been proposed to overcome these limitations, including immunosuppressive therapy, humanization of the antibody fragment moiety, generation of immunotoxins originated from endogenous human cytotoxic enzymes, and modification of the toxin moiety to escape the immune system. This paper is devoted to review recent advances in the design of immunotoxins with lower immunogenicity.

Keywords: Recombinant immunotoxin, toxins, immunogenicity, immunosuppressive therapy, anti-drug antibodies, humanization, fragment.

[1]
Pastan I, Hassan R, FitzGerald DJ, Kreitman RJ. Immunotoxin treatment of cancer. Annu Rev Med 2007; 58: 221-37.
[http://dx.doi.org/10.1146/annurev.med.58.070605.115320] [PMID: 17059365]
[2]
Kim J-S, Jun S-Y, Kim Y-S. Critical issues in the development of immunotoxins for anticancer therapy. J Pharm Sci 2020; 109(1): 104-15.
[http://dx.doi.org/10.1016/j.xphs.2019.10.037] [PMID: 31669121]
[3]
Akbari B, Farajnia S, Ahdi Khosroshahi S, et al. Immunotoxins in cancer therapy: Review and update. Int Rev Immunol 2017; 36(4): 207-19.
[http://dx.doi.org/10.1080/08830185.2017.1284211] [PMID: 28282218]
[4]
Rahbarnia L, Farajnia S, Babaei H, Majidi J, Dariushnejad H, Hosseini MK. Isolation and characterization of a novel human scFv inhibiting EGFR vIII expressing cancers. Immunol Lett 2016; 180: 31-8.
[http://dx.doi.org/10.1016/j.imlet.2016.10.008] [PMID: 27984065]
[5]
Antignani A, Fitzgerald D. Immunotoxins: the role of the toxin. Toxins (Basel) 2013; 5(8): 1486-502.
[http://dx.doi.org/10.3390/toxins5081486] [PMID: 23965432]
[6]
Kunwar S, Chang SM, Prados MD, et al. Safety of intraparenchymal convection-enhanced delivery of cintredekin besudotox in early-phase studies. Neurosurg Focus 2006; 20(4): E15.
[PMID: 16709020]
[7]
Gilabert-Oriol R, Weng A, Mallinckrodt Bv, Melzig MF, Fuchs H, Thakur M. Immunotoxins constructed with ribosome-inactivating proteins and their enhancers: a lethal cocktail with tumor specific efficacy. Curr Pharm Des 2014; 20(42): 6584-643.
[http://dx.doi.org/10.2174/1381612820666140826153913] [PMID: 25341935]
[8]
Mazor R, Onda M, Pastan I. Immunogenicity of therapeutic recombinant immunotoxins. Immunol Rev 2016; 270(1): 152-64.
[http://dx.doi.org/10.1111/imr.12390] [PMID: 26864110]
[9]
Weldon JE, Pastan I. A guide to taming a toxin--recombinant immunotoxins constructed from Pseudomonas exotoxin A for the treatment of cancer. FEBS J 2011; 278(23): 4683-700.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08182.x] [PMID: 21585657]
[10]
Hollevoet K, Mason-Osann E, Liu XF, Imhof-Jung S, Niederfellner G, Pastan I. In vitro and in vivo activity of the low-immunogenic antimesothelin immunotoxin RG7787 in pancreatic cancer. Mol Cancer Ther 2014; 13(8): 2040-9.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0089-T] [PMID: 24928849]
[11]
Mazor R, King EM, Pastan I. Strategies to reduce the immunogenicity of recombinant immunotoxins. Am J Pathol 2018; 188(8): 1736-43.
[http://dx.doi.org/10.1016/j.ajpath.2018.04.016] [PMID: 29870741]
[12]
Allured VS, Collier RJ, Carroll SF, McKay DB. Structure of exotoxin A of Pseudomonas aeruginosa at 3.0-Angstrom resolution. Proc Natl Acad Sci USA 1986; 83(5): 1320-4.
[http://dx.doi.org/10.1073/pnas.83.5.1320] [PMID: 3006045]
[13]
Iglewski BH, Liu PV, Kabat D. Mechanism of action of Pseudomonas aeruginosa exotoxin Aiadenosine diphosphate-ribosylation of mammalian elongation factor 2 in vitro and in vivo. Infect Immun 1977; 15(1): 138-44.
[http://dx.doi.org/10.1128/IAI.15.1.138-144.1977] [PMID: 188760]
[14]
Grinberg Y, Benhar I. Addressing the immunogenicity of the cargo and of the targeting antibodies with a focus on demmunized bacterial toxins and on antibody-targeted human effector proteins. Biomedicines 2017; 5(2): 28.
[http://dx.doi.org/10.3390/biomedicines5020028] [PMID: 28574434]
[15]
Wick MJ, Frank DW, Storey DG, Iglewski BH. Structure, function, and regulation of Pseudomonas aeruginosa exotoxin A. Annu Rev Microbiol 1990; 44(1): 335-63.
[http://dx.doi.org/10.1146/annurev.mi.44.100190.002003] [PMID: 2123620]
[16]
Wilkins DK, Mayer A. Development of antibodies for cancer therapy. Expert Opin Biol Ther 2006; 6(8): 787-96.
[http://dx.doi.org/10.1517/14712598.6.8.787] [PMID: 16856800]
[17]
Kreitman RJ, Dearden C, Zinzani PL, et al. Moxetumomab pasudotox in relapsed/refractory hairy cell leukemia. Leukemia 2018; 32(8): 1768-77.
[http://dx.doi.org/10.1038/s41375-018-0210-1] [PMID: 30030507]
[18]
Janus A, Robak T. Moxetumomab pasudotox for the treatment of hairy cell leukemia. Expert Opin Biol Ther 2019; 19(6): 501-8.
[http://dx.doi.org/10.1080/14712598.2019.1614558] [PMID: 31045462]
[19]
Rezaie E, Amani J, Bidmeshki Pour A, Mahmoodzadeh Hosseini H. A new scfv-based recombinant immunotoxin against EPHA2-overexpressing breast cancer cells; High in vitro anti-cancer potency. Eur J Pharmacol 2020; 870: 172912.
[http://dx.doi.org/10.1016/j.ejphar.2020.172912] [PMID: 31926992]
[20]
Goleij Z, Mahmoodzadeh Hosseini H, Sedighian H, et al. Breast cancer targeted/ therapeutic with double and triple fusion Immunotoxins. J Steroid Biochem Mol Biol 2020; 200: 105651.
[http://dx.doi.org/10.1016/j.jsbmb.2020.105651] [PMID: 32147458]
[21]
Holmes RK. Biology and molecular epidemiology of diphtheria toxin and the tox gene Journal of Infectious Diseases 2000; 181(1): 156-67.
[22]
Bennett MJ, Eisenberg D. Refined structure of monomeric diphtheria toxin at 2.3 A resolution. Protein Sci 1994; 3(9): 1464-75.
[http://dx.doi.org/10.1002/pro.5560030912] [PMID: 7833808]
[23]
Shafiee F, Aucoin MG, Jahanian-Najafabadi A. Targeted diphtheria toxin-based therapy: a review article. Front Microbiol 2019; 10: 2340.
[http://dx.doi.org/10.3389/fmicb.2019.02340] [PMID: 31681205]
[24]
Shapira A, Benhar I. Toxin-based therapeutic approaches. Toxins (Basel) 2010; 2(11): 2519-83.
[http://dx.doi.org/10.3390/toxins2112519] [PMID: 22069564]
[25]
Beilhartz GL, Sugiman-Marangos SN, Melnyk RA. Repurposing bacterial toxins for intracellular delivery of therapeutic proteins. Biochem Pharmacol 2017; 142: 13-20.
[http://dx.doi.org/10.1016/j.bcp.2017.04.009] [PMID: 28408344]
[26]
Terol GL, Gallego-Jara J, Martínez RAS, Díaz MC, de Diego Puente T. Engineering protein production by rationally choosing a carbon and nitrogen source using E. coli BL21 acetate metabolism knockout strains. Microb Cell Fact 2019; 18(1): 1-19.
[PMID: 30609921]
[27]
Wang Z, Zheng Q, Zhang H, et al. Ontak-like human IL-2 fusion toxin. J Immunol Methods 2017; 448: 51-8.
[http://dx.doi.org/10.1016/j.jim.2017.05.008] [PMID: 28551309]
[28]
Cheung LS, Fu J, Kumar P, et al. Second-generation IL-2 receptor-targeted diphtheria fusion toxin exhibits antitumor activity and synergy with anti-PD-1 in melanoma. Proc Natl Acad Sci USA 2019; 116(8): 3100-5.
[http://dx.doi.org/10.1073/pnas.1815087116] [PMID: 30718426]
[29]
Syed YY. Tagraxofusp: first global approval. Drugs 2019; 79(5): 579-83.
[http://dx.doi.org/10.1007/s40265-019-01087-z] [PMID: 30859413]
[30]
Mazor R, Kaplan G, Park D, et al. Rational design of low immunogenic anti CD25 recombinant immunotoxin for T cell malignancies by elimination of T cell epitopes in PE38. Cell Immunol 2017; 313: 59-66.
[http://dx.doi.org/10.1016/j.cellimm.2017.01.003] [PMID: 28087047]
[31]
Akbari B, Farajnia S, Zarghami N, et al. Design, expression and evaluation of a novel humanized single chain antibody against epidermal growth factor receptor (EGFR). Protein Expr Purif 2016; 127: 8-15.
[http://dx.doi.org/10.1016/j.pep.2016.06.001] [PMID: 27298212]
[32]
Hwang WYK, Foote J. Immunogenicity of engineered antibodies. Methods 2005; 36(1): 3-10.
[http://dx.doi.org/10.1016/j.ymeth.2005.01.001] [PMID: 15848070]
[33]
Harding FA, Stickler MM, Razo J, DuBridge R. The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions MAbsTaylor & Francis. 2010.
[http://dx.doi.org/10.4161/mabs.2.3.11641]
[34]
Inada Y, Furukawa M, Sasaki H, et al. Biomedical and biotechnological applications of PEG- and PM-modified proteins. Trends Biotechnol 1995; 13(3): 86-91.
[http://dx.doi.org/10.1016/S0167-7799(00)88912-X] [PMID: 7766222]
[35]
Jevševar S, Kunstelj M, Porekar VG. PEGylation of therapeutic proteins. Biotechnol J 2010; 5(1): 113-28.
[http://dx.doi.org/10.1002/biot.200900218] [PMID: 20069580]
[36]
Kreitman RJ, Wilson WH, White JD, et al. Phase I trial of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) in patients with hematologic malignancies. J Clin Oncol 2000; 18(8): 1622-36.
[http://dx.doi.org/10.1200/JCO.2000.18.8.1622] [PMID: 10764422]
[37]
Tsutsumi Y, Onda M, Nagata S, Lee B, Kreitman RJ, Pastan I. Site-specific chemical modification with polyethylene glycol of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) improves antitumor activity and reduces animal toxicity and immunogenicity. Proc Natl Acad Sci USA 2000; 97(15): 8548-53.
[http://dx.doi.org/10.1073/pnas.140210597] [PMID: 10890891]
[38]
Filpula D, Yang K, Basu A, et al. Releasable PEGylation of mesothelin targeted immunotoxin SS1P achieves single dosage complete regression of a human carcinoma in mice. Bioconjug Chem 2007; 18(3): 773-84.
[http://dx.doi.org/10.1021/bc060314x] [PMID: 17346030]
[39]
Munasinghe A, Mathavan A, Mathavan A, Lin P, Colina CM. PEGylation within a confined hydrophobic cavity of a protein. Phys Chem Chem Phys 2019; 21(46): 25584-96.
[http://dx.doi.org/10.1039/C9CP04387J] [PMID: 31720639]
[40]
Zheng Z, Okada R, Kobayashi H, et al. Site-Specific PEGylation of anti-mesothelin recombinant immunotoxins increases half-life and antitumor activity. Mol Cancer Ther 2020; 19(3): 812-21.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0890] [PMID: 31871266]
[41]
Hlongwane P, Mungra N, Madheswaran S, Akinrinmade OA, Chetty S, Barth S. Human granzyme B based targeted cytolytic fusion proteins. Biomedicines 2018; 6(2): 72.
[http://dx.doi.org/10.3390/biomedicines6020072] [PMID: 29925790]
[42]
Mathew M, Verma RS. Humanized immunotoxins: a new generation of immunotoxins for targeted cancer therapy. Cancer Sci 2009; 100(8): 1359-65.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01192.x] [PMID: 19459847]
[43]
Weidle UH, Georges G, Brinkmann U. Fully human targeted cytotoxic fusion proteins: new anticancer agents on the horizon. Cancer Genomics Proteomics 2012; 9(3): 119-33.
[PMID: 22593247]
[44]
Garcia-Sanz JA, MacDonald HR, Jenne DE, Tschopp J, Nabholz M. Cell specificity of granzyme gene expression. J Immunol 1990; 145(9): 3111-8.
[PMID: 2212674]
[45]
Phillips T, Opferman JT, Shah R, Liu N, Froelich CJ, Ashton-Rickardt PG. A role for the granzyme B inhibitor serine protease inhibitor 6 in CD8+ memory cell homeostasis. J Immunol 2004; 173(6): 3801-9.
[http://dx.doi.org/10.4049/jimmunol.173.6.3801] [PMID: 15356127]
[46]
Stahnke B, Thepen T, Stöcker M, et al. Granzyme B-H22(scFv), a human immunotoxin targeting CD64 in acute myeloid leukemia of monocytic subtypes. Mol Cancer Ther 2008; 7(9): 2924-32.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0554] [PMID: 18790773]
[47]
Liu Y, Cheung LH, Thorpe P, Rosenblum MG. Mechanistic studies of a novel human fusion toxin composed of vascular endothelial growth factor (VEGF)121 and the serine protease granzyme B: directed apoptotic events in vascular endothelial cells. Mol Cancer Ther 2003; 2(10): 949-59.
[PMID: 14578460]
[48]
Schiffer S, Hansen H, Hehmann-Titt G, et al. Efficacy of an adapted granzyme B-based anti-CD30 cytolytic fusion protein against PI-9-positive classical Hodgkin lymphoma cells in a murine model Blood cancer journal 2013; 3(3): e106.
[49]
Niesen J, Hehmann-Titt G, Woitok M, et al. A novel fully-human cytolytic fusion protein based on granzyme B shows in vitro cytotoxicity and ex vivo binding to solid tumors overexpressing the epidermal growth factor receptor. Cancer Lett 2016; 374(2): 229-40.
[http://dx.doi.org/10.1016/j.canlet.2016.02.020] [PMID: 26912070]
[50]
Hehmann-Titt G, Schiffer S, Berges N, Melmer G, Barth S. Improving the therapeutic potential of human granzyme B for targeted cancer therapy. Antibodies (Basel) 2013; 2(1): 19-49.
[http://dx.doi.org/10.3390/antib2010019]
[51]
Ibáñez-Pérez R, Guerrero-Ochoa P, Al-Wasaby S, et al. Anti-tumoral potential of a human granulysin-based, CEA-targeted cytolytic immunotoxin. OncoImmunology 2019; 8(11): 1641392.
[http://dx.doi.org/10.1080/2162402X.2019.1641392] [PMID: 31646080]
[52]
Mungra N, Jordaan S, Hlongwane P, Naran K, Chetty S, Barth S. Targeted human cytolytic fusion proteins at the cutting edge: harnessing the apoptosis-inducing properties of human enzymes for the selective elimination of tumor cells. Oncotarget 2019; 10(8): 897-915.
[http://dx.doi.org/10.18632/oncotarget.26618] [PMID: 30783518]
[53]
Schwartz L, Cohen A, Thomas J, Spencer JD. The immunomodulatory and antimicrobial properties of the vertebrate ribonuclease A superfamily. Vaccines (Basel) 2018; 6(4): 76.
[http://dx.doi.org/10.3390/vaccines6040076] [PMID: 30463297]
[54]
Fett JW, Strydom DJ, Lobb RR, et al. Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry 1985; 24(20): 5480-6.
[http://dx.doi.org/10.1021/bi00341a030] [PMID: 4074709]
[55]
Shapiro R, Riordan JF, Vallee BL. Characteristic ribonucleolytic activity of human angiogenin. Biochemistry 1986; 25(12): 3527-32.
[http://dx.doi.org/10.1021/bi00360a008] [PMID: 2424496]
[56]
De Lorenzo C, Arciello A, Cozzolino R, et al. A fully human antitumor immunoRNase selective for ErbB-2-positive carcinomas. Cancer Res 2004; 64(14): 4870-4.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3717] [PMID: 15256457]
[57]
Braschoss S, Hirsch B, Dübel S, Stein H, Dürkop H. New anti-CD30 human pancreatic ribonuclease-based immunotoxin reveals strong and specific cytotoxicity in vivo. Leuk Lymphoma 2007; 48(6): 1179-86.
[http://dx.doi.org/10.1080/10428190701272264] [PMID: 17577782]
[58]
Schirrmann T, Frenzel A, Linden L, Stelte-Ludwig B, Willuda J, Harrenga A, et al. Evaluation of human pancreatic RNase as effector molecule in a therapeutic antibody platform MAbsTaylor & Francis. 2014.
[59]
Menzel C, Schirrmann T, Konthur Z, Jostock T, Dübel S. Human antibody RNase fusion protein targeting CD30+ lymphomas. Blood 2008; 111(7): 3830-7.
[http://dx.doi.org/10.1182/blood-2007-04-082768] [PMID: 18230757]
[60]
Hu X, Zhang M, Zhang C, et al. Removal of B-cell epitopes for decreasing immunogenicity in recombinant immunotoxin against B-cell malignancies. J BUON 2016; 21(6): 1374-8.
[PMID: 28039694]
[61]
Hansen JK, Weldon JE, Xiang L, Beers R, Onda M, Pastan I. A recombinant immunotoxin targeting CD22 with low immunogenicity, low nonspecific toxicity, and high antitumor activity in mice J Immunother 2010; 33(3): 297-304.
[http://dx.doi.org/10.1097/CJI.0b013e3181cd1164]
[62]
Weldon JE, Xiang L, Chertov O, et al. A protease-resistant immunotoxin against CD22 with greatly increased activity against CLL and diminished animal toxicity. Blood 2009; 113(16): 3792-800.
[http://dx.doi.org/10.1182/blood-2008-08-173195] [PMID: 18988862]
[63]
Onda M, Nagata S, FitzGerald DJ, et al. Characterization of the B cell epitopes associated with a truncated form of Pseudomonas exotoxin (PE38) used to make immunotoxins for the treatment of cancer patients. J Immunol 2006; 177(12): 8822-34.
[http://dx.doi.org/10.4049/jimmunol.177.12.8822] [PMID: 17142785]
[64]
Liu W, Onda M, Lee B, et al. Recombinant immunotoxin engineered for low immunogenicity and antigenicity by identifying and silencing human B-cell epitopes. Proc Natl Acad Sci USA 2012; 109(29): 11782-7.
[http://dx.doi.org/10.1073/pnas.1209292109] [PMID: 22753489]
[65]
Salvatore G, Beers R, Margulies I, Kreitman RJ, Pastan I. Improved cytotoxic activity toward cell lines and fresh leukemia cells of a mutant anti-CD22 immunotoxin obtained by antibody phage display. Clin Cancer Res 2002; 8(4): 995-1002.
[PMID: 11948105]
[66]
Onda M, Beers R, Xiang L, et al. Recombinant immunotoxin against B-cell malignancies with no immunogenicity in mice by removal of B-cell epitopes. Proc Natl Acad Sci USA 2011; 108(14): 5742-7.
[http://dx.doi.org/10.1073/pnas.1102746108] [PMID: 21436054]
[67]
Bera TK, Onda M, Kreitman RJ, Pastan I. An improved recombinant Fab-immunotoxin targeting CD22 expressing malignancies. Leuk Res 2014; 38(10): 1224-9.
[http://dx.doi.org/10.1016/j.leukres.2014.06.014] [PMID: 25127689]
[68]
Kreitman RJ, Stetler-Stevenson M, Margulies I, et al. Phase II trial of recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) in patients with hairy cell leukemia. J Clin Oncol 2009; 27(18): 2983-90.
[http://dx.doi.org/10.1200/JCO.2008.20.2630] [PMID: 19414673]
[69]
Dhillon S. Moxetumomab pasudotox: first global approval. Drugs 2018; 78(16): 1763-7.
[http://dx.doi.org/10.1007/s40265-018-1000-9] [PMID: 30357593]
[70]
Alderson RF, Kreitman RJ, Chen T, et al. CAT-8015: a second-generation pseudomonas exotoxin A-based immunotherapy targeting CD22-expressing hematologic malignancies. Clin Cancer Res 2009; 15(3): 832-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1456] [PMID: 19188153]
[71]
Niederfellner G, Bauss F, Imhof-Jung S, et al. RG7787-a novel de-immunized PE based fusion protein for therapy of mesothelin-positive solid tumorsAACR. 2014.
[72]
Alewine C, Xiang L, Yamori T, Niederfellner G, Bosslet K, Pastan I. Efficacy of RG7787, a next-generation mesothelin-targeted immunotoxin, against triple-negative breast and gastric cancers. Mol Cancer Ther 2014; 13(11): 2653-61.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0132] [PMID: 25239937]
[73]
Bera TK, Liu W, Leshem Y, King E, Kozlov S, Pastan I. Generation of a transgenic balb/c mouse line with selective expression of human mesothelin in thyroid gland: application in mesothelin targeted immunotherapy. J Immunother 2019; 42(4): 119.
[74]
Yeung VP, Chang J, Miller J, Barnett C, Stickler M, Harding FA. Elimination of an immunodominant CD4+ T cell epitope in human IFN-β does not result in an in vivo response directed at the subdominant epitope. J Immunol 2004; 172(11): 6658-65.
[http://dx.doi.org/10.4049/jimmunol.172.11.6658] [PMID: 15153481]
[75]
Pieters J. MHC class II-restricted antigen processing and presentation. Adv Immunol 2000; 75: 159-208.
[http://dx.doi.org/10.1016/S0065-2776(00)75004-8] [PMID: 10879284]
[76]
Brons NH, Blaich A, Wiesmüller KH, Schneider F, Jung G, Muller CP. Hierarchic T-cell help to non-linked B-cell epitopes. Scand J Immunol 1996; 44(5): 478-84.
[http://dx.doi.org/10.1046/j.1365-3083.1996.d01-336.x] [PMID: 8947599]
[77]
Cantor JR, Yoo TH, Dixit A, Iverson BL, Forsthuber TG, Georgiou G. Therapeutic enzyme deimmunization by combinatorial T-cell epitope removal using neutral drift. Proc Natl Acad Sci USA 2011; 108(4): 1272-7.
[http://dx.doi.org/10.1073/pnas.1014739108] [PMID: 21209329]
[78]
Cizeau J, Grenkow DM, Brown JG, Entwistle J, MacDonald GC. Engineering and biological characterization of VB6-845, an anti-EpCAM immunotoxin containing a T-cell epitope-depleted variant of the plant toxin bouganin. J Immunother 2009; 32(6): 574-84.
[http://dx.doi.org/10.1097/CJI.0b013e3181a6981c] [PMID: 19483652]
[79]
Mazor R, Tai C-H, Lee B, Pastan I. Poor correlation between T-cell activation assays and HLA-DR binding prediction algorithms in an immunogenic fragment of Pseudomonas exotoxin A. J Immunol Methods 2015; 425: 10-20.
[http://dx.doi.org/10.1016/j.jim.2015.06.003] [PMID: 26056938]
[80]
Mazor R, Vassall AN, Eberle JA, et al. Identification and elimination of an immunodominant T-cell epitope in recombinant immunotoxins based on Pseudomonas exotoxin A. Proc Natl Acad Sci USA 2012; 109(51): E3597-603.
[http://dx.doi.org/10.1073/pnas.1218138109] [PMID: 23213206]
[81]
Mazor R, Eberle JA, Hu X, et al. Recombinant immunotoxin for cancer treatment with low immunogenicity by identification and silencing of human T-cell epitopes. Proc Natl Acad Sci USA 2014; 111(23): 8571-6.
[http://dx.doi.org/10.1073/pnas.1405153111] [PMID: 24799704]
[82]
Kaplan G, Mazor R, Lee F, Jang Y, Leshem Y, Pastan I. Improving the in vivo efficacy of an anti-Tac (CD25) immunotoxin by Pseudomonas exotoxin A domain II engineering. Mol Cancer Ther 2018; 17(7): 1486-93.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1041] [PMID: 29695631]
[83]
Moss DL, Park H-W, Mettu RR, Landry SJ. Deimmunizing substitutions in Pseudomonas exotoxin domain III perturb antigen processing without eliminating T-cell epitopes. J Biol Chem 2019; 294(12): 4667-81.
[http://dx.doi.org/10.1074/jbc.RA118.006704] [PMID: 30683694]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy