Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

General Research Article

Trigonella foenum-graecum Seeds Oil Attenuated Inflammation and Angiogenesis in vivo through Down-Regulation of TNF-α

Author(s): Muhammad Asif*, Hafiz M. Yousaf, Mohammad Saleem, Malik Saadullah, Tahir A. Chohan, Muhammad U. Shamas, Hafiza S. Yaseen, Mahrukh , Muhammad U. Yousaf and Maria Yaseen

Volume 21, Issue 11, 2021

Published on: 05 October, 2020

Page: [1460 - 1471] Pages: 12

DOI: 10.2174/1871520620666201005100132

Price: $65

Abstract

Introduction: Inflammation is a vital reaction of the natural immune system that protects against encroaching agents. However, uncontrolled inflammation can lead to complications. Trigonella foenumgraecum is traditionally used as an anti-inflammatory herb.

Objectives: The current study was conducted to explore the antioxidant, anti-inflammatory, and antiangiogenic potentials of Trigonella foenum-graecum seeds oil.

Methods: Oil was extracted from seeds of Trigonella foenum-graecum by cold press method and labelled as TgSO. Phytochemical (GC-MS, Folin-Ciocalteu method) and metal analyses were conducted to evaluate the metalo-chemical profile of TgSO. In vitro antioxidant assays (2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis-3- ethylbenzothiazoline-6-sulfonic acid and ferric reducing antioxidant power) were performed to assess its antioxidant potential. In vitro antimicrobial activity was evaluated using agar disc diffusion method and the safety profile of TgSO was assessed in acute toxicological studies following OECD 425 guidelines. In vivo antiinflammatory activities of TgSO were assessed in carrageenan, serotonin, histamine, formalin, and cotton pelletinduced oedema models. Serum TNF-α, Superoxide Dismutase (SOD) and, Catalases (CAT) levels were assessed by ELISA kits. In vivo antiangiogenic activity of TgSO was screened in chick Chorioallantoic Membrane (CAM) assay. Histopathological studies using excised paws were conducted to observe the effects of TgSO treatment at the tissue level. In silico docking studies were conducted to screen the binding potentials of identified compounds with TNF-α.

Results: Extraction by cold press method yielded 16% of TgSO. Phytochemical analysis of TgSO through GCMS showed the presence of eugenol, dihydrocoumairn, heptadecanoic acid, tri- and tetradecanoic acid, and hexadecanoic acid, respectively. Total phenolic contents of TgSO were found to be 0.30±0.01mg/g gallic acid equivalent in Folin-Ciocalteu method. Metal analysis indicated the presence of different metals in TgSO. Findings of antioxidant models showed the moderate antioxidant potential of TgSO. Findings of antimicrobial assays showed that TgSO was active against bacterial (S. aureus, S. epidermidis) and fungal (C. albicans, and A. niger) strains. In vivo toxicity study data showed that TgSO was safe up to the dose of 5000 mg/kg. Data of oedema models showed a significant (p<0.05) reduction in oedema development in TgSO treated animals in both acute and chronic models. Histopathological evaluations of paws showed minimum tissue infiltration with inflammatory cells in TgSO-treated animals. Treatment with TgSO also significantly (p<0.05) down-regulated TNF-α in serum while levels of SOD and CAT were up-regulated. Findings of the CAM assay revealed the antiangiogenic activity of TgSO. Findings of in silico docking studies showed that identified phytoconstituents can bind with culprit cytokine (TNF-α).

Conclusion: Data obtained from the current study conclude that TgSO has antioxidant, anti-inflammatory, and antiangiogenic effects that validate its traditional uses. Synergistic actions of different phytoconstituents are proposed to be responsible for the observed effects.

Keywords: Oedema, TNF- α, antioxidants, angiogenesis, Trigonella foenum-graecum, inflammation.

Graphical Abstract

[1]
Khan, S.; Choi, R.J.; Shehzad, O.; Kim, H.P.; Islam, M.N.; Choi, J.S.; Kim, Y.S. Molecular mechanism of capillarisin-mediated inhibition of MyD88/TIRAP inflammatory signaling in in vitro and in vivo experimental models. J. Ethnopharmacol., 2013, 145(2), 626-637.
[http://dx.doi.org/10.1016/j.jep.2012.12.001] [PMID: 23237934]
[2]
de Lima, F.O.; Nonato, F.R.; Couto, R.D.; Barbosa Filho, J.M.; Nunes, X.P.; Ribeiro dos Santos, R.; Soares, M.B.; Villarreal, C.F. Mechanisms involved in the antinociceptive effects of 7-hydroxycoumarin. J. Nat. Prod., 2011, 74(4), 596-602.
[http://dx.doi.org/10.1021/np100621c] [PMID: 21417376]
[3]
Vendramini-Costa, D.B.; Carvalho, J.E. Molecular link mechanisms between inflammation and cancer. Curr. Pharm. Des., 2012, 18(26), 3831-3852.
[http://dx.doi.org/10.2174/138161212802083707] [PMID: 22632748]
[4]
Asif, M. Mahrukh, Saadullah, M.; Yaseen, H.S.; Saleem, M.; Yousaf, H.M.; Khan, I.U.; Yaseen, M.; Shams, M.U. Evaluation of in vivo anti-inflammatory and anti-angiogenic attributes of methanolic extract of Launaea spinosa. Inflammopharmacology, 2020, 28(4), 993-1008.
[http://dx.doi.org/10.1007/s10787-020-00687-6] [PMID: 32172496]
[5]
Li, S.; Yu, Y.; Yue, Y.; Zhang, Z.; Su, K. Microbial infection and rheumatoid arthritis. J. Clin. Cell. Immunol., 2013, 4(6), 174.
[PMID: 25133066]
[6]
Springer, J.; Chatterjee, S. Candida albicans prosthetic shoulder joint infection in a patient with rheumatoid arthritis on multidrug therapy. J. Clin. Rheumatol., 2012, 18(1), 52-53.
[http://dx.doi.org/10.1097/RHU.0b013e31823ed485] [PMID: 22157273]
[7]
Çevik, R.; Tekin, R.; Gem, M. Candida arthritis in a patient diagnosed with spondyloarthritis. Rev. Soc. Bras. Med. Trop., 2016, 49(6), 793-795.
[http://dx.doi.org/10.1590/0037-8682-0089-2016] [PMID: 28001233]
[8]
Ahmad, N.; Subhan, F.; Islam, N.U.; Shahid, M.; Rahman, F.U.; Fawad, K. A novel pregabalin functionalized salicylaldehyde derivative afforded prospective pain, inflammation, and pyrexia alleviating propensities. Arch. Pharm. (Weinheim), 2017, 350(6), e201600365.
[http://dx.doi.org/10.1002/ardp.201600365] [PMID: 28498506]
[9]
Salehi Surmaghi, M. Medicinal plants and herbal therapy. Tehran Univ. Publ., 2008, 1, 253.
[10]
Karimi, A.; Moradi, M.T.; Saeedi, M.; Asgari, S.; Rafieian-Kopaei, M. Antiviral activity of Quercus persica L.: High efficacy and low toxicity. Adv. Biomed. Res., 2013, 2, 36.
[http://dx.doi.org/10.4103/2277-9175.109722] [PMID: 24516836]
[11]
Abedinzade, M.; Nasri, S.; Jamal Omodi, M.; Ghasemi, E.; Ghorbani, A. Efficacy of Trigonella foenum-graecum seed extract in reducing metabolic and inflammatory alterations associated with menopause. Iran. Red Crescent Med. J., 2015, 17(11), e26685-e26685.
[http://dx.doi.org/10.5812/ircmj.26685] [PMID: 26732240]
[12]
Pundarikakshudu, K.; Shah, D.H.; Panchal, A.H.; Bhavsar, G.C. Anti-inflammatory activity of fenugreek (Trigonella foenum-graecum Linn) seed petroleum ether extract. Indian J. Pharmacol., 2016, 48(4), 441-444.
[http://dx.doi.org/10.4103/0253-7613.186195] [PMID: 27756958]
[13]
Pournamdari, M.; Mandegary, A.; Sharififar, F.; Zarei, G.; Zareshahi, R.; Asadi, A.; Mehdipour, M. Anti-inflammatory subfractions separated from acidified chloroform fraction of fenugreek seeds (Trigonella foenum-graecum L.). J. Diet. Suppl., 2018, 15(1), 98-107.
[http://dx.doi.org/10.1080/19390211.2017.1326431] [PMID: 28558255]
[14]
Liu, Y.; Kakani, R.; Nair, M.G. Compounds in functional food fenugreek spice exhibit anti-inflammatory and antioxidant activities. Food Chem., 2012, 131(4), 1187-1192.
[http://dx.doi.org/10.1016/j.foodchem.2011.09.102]
[15]
Kawabata, T.; Cui, M.Y.; Hasegawa, T.; Takano, F.; Ohta, T. Anti-inflammatory and anti-melanogenic steroidal saponin glycosides from Fenugreek (Trigonella foenum-graecum L.) seeds. Planta Med., 2011, 77(7), 705-710.
[http://dx.doi.org/10.1055/s-0030-1250477] [PMID: 20979021]
[16]
Mandegary, A.; Pournamdari, M.; Sharififar, F.; Pournourmohammadi, S.; Fardiar, R.; Shooli, S. Alkaloid and flavonoid rich fractions of fenugreek seeds (Trigonella foenum-graecum L.) with antinociceptive and anti-inflammatory effects. Food Chem. Toxicol., 2012, 50(7), 2503-2507.
[http://dx.doi.org/10.1016/j.fct.2012.04.020] [PMID: 22542922]
[17]
Kiralan, M. Physicochemical properties and stability of black cumin (Nigella sativa) seed oil as affected by different extraction methods. Ind. Crops Prod., 2014, 57, 52-58.
[http://dx.doi.org/10.1016/j.indcrop.2014.03.026]
[18]
Lyra, F.H. Determination of Na, K, Ca and Mg in biodiesel samples by flame atomic absorption spectrometry (FAAS) using microemulsion as sample preparation. Microchem. J., 2010, 96(1), 180-185.
[http://dx.doi.org/10.1016/j.microc.2010.03.005]
[19]
Thirumurugan, K. Antimicrobial activity and phytochemical analysis of selected Indian folk medicinal plants. Steroids, 2010, 1, 7.
[20]
Botinestean, C. Fatty acids composition by Gas Chromatography-Mass Spectrometry (GC-MS) and most important physical-chemicals parameters of tomato seed oil. J. Agroaliment. Processes Technol., 2012, 18, 89-94.
[21]
Hussain, A. Chemical composition and biological activities of essential oil and extracts from Ocimum sanctum. Int. J. Food Prop., 2017, 20(7), 1569-1581.
[22]
Asif, M. Anticancer attributes of Illicium verum essential oils against colon cancer. S. Afr. J. Bot., 2016, 103, 156-161.
[http://dx.doi.org/10.1016/j.sajb.2015.08.017]
[23]
Yaseen, H.S.; Asif, M.; Saadullah, M. Mahrukh; Asghar, S.; Shams, M.U.; Bazmi, R.R.; Saleem, M.; Yousaf, H.M.; Yaseen, M. Methanolic extract of Ephedra ciliata promotes wound healing and arrests inflammatory cascade in vivo through downregulation of TNF-α. Inflammopharmacology, 2020, 28(6), 1691-1704.
[http://dx.doi.org/10.1007/s10787-020-00713-7] [PMID: 32385747]
[24]
Umar, M.I.; Asmawi, M.Z.; Sadikun, A.; Abdul Majid, A.M.; Atangwho, I.J.; Khadeer Ahamed, M.B.; Altaf, R.; Ahmad, A. Multi-constituent synergism is responsible for anti-inflammatory effect of Azadirachta indica leaf extract. Pharm. Biol., 2014, 52(11), 1411-1422.
[http://dx.doi.org/10.3109/13880209.2014.895017] [PMID: 25026347]
[25]
Akindele, A.J.; Adeyemi, O.O. Antiinflammatory activity of the aqueous leaf extract of Byrsocarpus coccineus. Fitoterapia, 2007, 78(1), 25-28.
[http://dx.doi.org/10.1016/j.fitote.2006.09.002] [PMID: 17118572]
[26]
Shabbir, A.; Batool, S.A.; Basheer, M.I.; Shahzad, M.; Sultana, K.; Tareen, R.B.; Iqbal, J. Saeed-Ul-Hassan. Ziziphora clinopodioides ameliorated rheumatoid arthritis and inflammatory paw edema in different models of acute and chronic inflammation. Biomed. Pharmacother., 2018, 97, 1710-1721.
[http://dx.doi.org/10.1016/j.biopha.2017.11.118] [PMID: 29793335]
[27]
Saleem, M.; Asif, M.; Parveen, A.; Yaseen, H.S.; Saadullah, M.; Bashir, A.; Asif, J.; Arif, M.; Khan, I.U.; Khan, R.U. Investigation of in vivo anti-inflammatory and anti-angiogenic attributes of coumarin-rich ethanolic extract of Melilotus indicus. Inflammopharmacology, 2021, 29(1), 281-293.
[http://dx.doi.org/10.1007/s10787-020-00703-9] [PMID: 32297069]
[28]
Clark, M.; Cramer, R.D., III; Van Opdenbosch, N. Validation of the general purpose Tripos 5.2 force field. J. Comput. Chem., 1989, 10(8), 982-1012.
[http://dx.doi.org/10.1002/jcc.540100804]
[29]
Blevitt, J.M.; Hack, M.D.; Herman, K.L.; Jackson, P.F.; Krawczuk, P.J.; Lebsack, A.D.; Liu, A.X.; Mirzadegan, T.; Nelen, M.I.; Patrick, A.N.; Steinbacher, S.; Milla, M.E.; Lumb, K.J. Structural basis of small-molecule aggregate induced inhibition of a protein-protein interaction. J. Med. Chem., 2017, 60(8), 3511-3517.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01836] [PMID: 28300404]
[30]
Ruppert, J.; Welch, W.; Jain, A.N. Automatic identification and representation of protein binding sites for molecular docking. Protein Sci., 1997, 6(3), 524-533.
[http://dx.doi.org/10.1002/pro.5560060302] [PMID: 9070435]
[31]
Tsai, D.H.; Riediker, M.; Berchet, A.; Paccaud, F.; Waeber, G.; Vollenweider, P.; Bochud, M. Effects of short- and long-term exposures to particulate matter on inflammatory marker levels in the general population. Environ. Sci. Pollut. Res. Int., 2019, 26(19), 19697-19704.
[http://dx.doi.org/10.1007/s11356-019-05194-y] [PMID: 31079306]
[32]
Deepak, P.; Axelrad, J.E.; Ananthakrishnan, A.N. The role of the radiologist in determining disease severity in inflammatory bowel diseases. Gastrointest. Endosc. Clin. N. Am., 2019, 29(3), 447-470.
[http://dx.doi.org/10.1016/j.giec.2019.02.006] [PMID: 31078247]
[33]
Wongrakpanich, S.; Wongrakpanich, A.; Melhado, K.; Rangaswami, J. A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. Aging Dis., 2018, 9(1), 143-150.
[http://dx.doi.org/10.14336/AD.2017.0306] [PMID: 29392089]
[34]
Takaki, I.; Bersani-Amado, L.E.; Vendruscolo, A.; Sartoretto, S.M.; Diniz, S.P.; Bersani-Amado, C.A.; Cuman, R.K. Anti-inflammatory and antinociceptive effects of Rosmarinus officinalis L. essential oil in experimental animal models. J. Med. Food, 2008, 11(4), 741-746.
[http://dx.doi.org/10.1089/jmf.2007.0524] [PMID: 19053868]
[35]
Vasudevan, M.; Gunnam, K.K.; Parle, M. Antinociceptive and anti-inflammatory properties of Daucus carota seeds extract. J. Health Sci., 2006, 52(5), 598-606.
[http://dx.doi.org/10.1248/jhs.52.598]
[36]
Shah, K.K.; Pritt, B.S.; Alexander, M.P. Histopathologic review of granulomatous inflammation. J. Clin. Tuberc. Other Mycobact. Dis., 2017, 7, 1-12.
[http://dx.doi.org/10.1016/j.jctube.2017.02.001] [PMID: 31723695]
[37]
Iranmanesh, M.; Mohebbati, R.; Forouzanfar, F.; Roshan, M.K.; Ghorbani, A.; Nik, M.J.; Soukhtanloo, M. In vivo and in vitro effects of ethanolic extract of Trigonella foenum-graecum L. seeds on proliferation, angiogenesis and tube formation of endothelial cells. Res. Pharm. Sci., 2018, 13(4), 343-352.
[http://dx.doi.org/10.4103/1735-5362.235161] [PMID: 30065767]
[38]
Habib-Martin, Z.A. In vitro and in vivo evaluation of the antiangiogenic activities of Trigonella foenum-graecum extracts. Asian Pac. J. Trop. Biomed., 2017, 7(8), 732-738.
[http://dx.doi.org/10.1016/j.apjtb.2017.07.013]
[39]
Mbiantcha, M. Analgesic and anti-inflammatory properties of extracts from the bulbils of Dioscorea bulbifera L. var sativa (Dioscoreaceae) in mice and rats. Evid.-Based Complement. Alternat. Med., 2011, 2011, 912935.
[40]
Younus, H. Therapeutic potentials of superoxide dismutase. Int. J. Health Sci. (Qassim), 2018, 12(3), 88-93.
[PMID: 29896077]
[41]
Aparna, V.; Dileep, K.V.; Mandal, P.K.; Karthe, P.; Sadasivan, C.; Haridas, M. Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chem. Biol. Drug Des., 2012, 80(3), 434-439.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01418.x] [PMID: 22642495]
[42]
Shen, C-Y.; Zhang, T.T.; Zhang, W.L.; Jiang, J.G. Anti-inflammatory activities of essential oil isolated from the calyx of Hibiscus sabdariffa L. Food Funct., 2016, 7(10), 4451-4459.
[http://dx.doi.org/10.1039/C6FO00795C] [PMID: 27713954]
[43]
Kim, S.S.; Oh, O.J.; Min, H.Y.; Park, E.J.; Kim, Y.; Park, H.J.; Nam Han, Y.; Lee, S.K. Eugenol suppresses cyclooxygenase-2 expression in lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells. Life Sci., 2003, 73(3), 337-348.
[http://dx.doi.org/10.1016/S0024-3205(03)00288-1] [PMID: 12757841]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy