Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Prebiotic Carbohydrates for Therapeutics

Author(s): Renuka Basavaiah and Prapulla S. Gurudutt*

Volume 21, Issue 2, 2021

Published on: 29 September, 2020

Page: [230 - 245] Pages: 16

DOI: 10.2174/1871530320666200929140522

Price: $65

Abstract

The food industry is constantly shifting focus based on prebiotics as health-promoting substrates rather than just food supplements. A prebiotic is “a selectively fermented ingredient that allows specific changes, both in the composition and/or activity in the gastrointestinal microflora that confers benefits upon host well-being and health.” Prebiotics exert a plethora of health-promoting effects, which has lead to the establishment of multimillion food and pharma industries. The following are the health benefits attributed to prebiotics: mineral absorption, better immune response, increased resistance to bacterial infection, improved lipid metabolism, possible protection against cancer, relief from poor digestion of lactose, and reduction in the risk of diseases such as intestinal disease, non-insulin-dependent diabetes, obesity and allergy. Numerous studies in both animals and humans have demonstrated the health benefits of prebiotics.

Keywords: Prebiotics, sweeteners, dietary fiber, sugar substitutes, oligosaccharides, probiotics, lipid metabolism, immunity, cancer, diabetes, allergy, gastrointestinal tract.

Graphical Abstract

[1]
Gibson, G.R.; Probert, H.M.; Loo, J.V.; Rastall, R.A.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr. Res. Rev., 2004, 17(2), 259-275.
[http://dx.doi.org/10.1079/NRR200479] [PMID: 19079930]
[2]
Pineiro, M.; Asp, N.G.; Reid, G.; Macfarlane, S.; Morelli, L.; Brunser, O.; Tuohy, K. FAO Technical meeting on prebiotics. J. Clin. Gastroenterol., 2008, 42(3)(Suppl. 3 Pt 2), S156-S159.
[http://dx.doi.org/10.1097/MCG.0b013e31817f184e] [PMID: 18685504]
[3]
van Loo, J.; Coussement, P.; de Leenheer, L.; Hoebregs, H.; Smits, G. On the presence of inulin and oligofructose as natural ingredients in the western diet. Crit. Rev. Food Sci. Nutr., 1995, 35(6), 525-552.
[http://dx.doi.org/10.1080/10408399509527714] [PMID: 8777017]
[4]
Macfarlane, G.T.; Steed, H.; Macfarlane, S. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J. Appl. Microbiol., 2008, 104(2), 305-344.
[PMID: 18215222]
[5]
Manning, T.S.; Gibson, G.R. Prebiotics. Best Practice Res. Clin. Gastroenterol., 2004, 18(2), 287-298.
[6]
Wang, X.; Gibson, G.R. Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. J. Appl. Bacteriol., 1993, 75(4), 373-380.
[http://dx.doi.org/10.1111/j.1365-2672.1993.tb02790.x] [PMID: 8226394]
[7]
Durieux, A.; Fougnies, C.; Jacobs, H.; Simon, J.P. Metabolism of chicory fructooligosaccharides by bifidobacteria. Biotechnol. Lett., 2001, 23, 1523-1527.
[http://dx.doi.org/10.1023/A:1011645608848]
[8]
Park, Y.K.; Almeida, M.M. Production of fructooligosaccharides from sucrose by a transfructosylase from Aspergillus niger. World J. Microbiol. Biotechnol., 1991, 7(3), 331-334.
[http://dx.doi.org/10.1007/BF00329399] [PMID: 24425020]
[9]
Yun, J.W. Fructooligosaccharides occurrence, preparation and application. Enzyme Microb. Technol., 1996, 19, 107-117.
[http://dx.doi.org/10.1016/0141-0229(95)00188-3]
[10]
Crittenden, R.C.; Playne, M.J. Production, properties and applications of food grade oligosaccharides. Trends Food Sci. Technol., 1996, 7, 353-360.
[http://dx.doi.org/10.1016/S0924-2244(96)10038-8]
[11]
Vazquez, M.J.; Alonso, J.L.; Domınguez, H.; Parajo, J.C. Xylooligosaccharides: manufacture and applications. Trends Food Sci. Technol., 2000, 11, 387-393.
[http://dx.doi.org/10.1016/S0924-2244(01)00031-0]
[12]
Kaneko, T.; Kohmoto, T.; Kikuchi, H.; Shiota, M.; Iino, H.; Mitsuoka, T. Effects of isomaltooligosaccharides with different degrees of polymerization on human fecal bifidobacteria. Biosci. Biotechnol. Biochem., 1994, 58, 2288-2290.
[http://dx.doi.org/10.1271/bbb.58.2288]
[13]
Karr-Lilienthal, L.K.; Kadzere, C.T.; Grieshop, C.M.; Fahey, G.C., Jr Chemical and nutritional properties of soybean carbohydrates as related to non-ruminants. Livest. Prod. Sci., 2005, 97, 1-12.
[http://dx.doi.org/10.1016/j.livprodsci.2005.01.015]
[14]
Playne, M.J.; Crittenden, R.G. Prebiotics from lactose, sucrose, starch, and plant polysaccharides.Bioprocesses Biotechnol. Func. Foods Neutraceut; Neeser, J-R.; German, J.B., Eds.; Marcel Dekker: New York, 2004, pp. 99-134.
[15]
Hara, H.; Li, S.; Sasaki, M.; Maruyama, T.; Terada, A.; Ogata, Y.; Fujita, K.; Ishigami, H.; Hara, K.; Fujimori, I.; Mitsuoka, T. Effective dose of lactosucrose on fecal flora and fecal metabolites of humans. Bifidobact. Microflora, 1994, 13, 51-63.
[http://dx.doi.org/10.12938/bifidus1982.13.2_8]
[16]
Roberfroid, M. Prebiotics: the concept revisited. J. Nutr., 2007, 137(3)(Suppl. 2), 830S-837S.
[http://dx.doi.org/10.1093/jn/137.3.830S] [PMID: 17311983]
[17]
Kleessen, B.; Hartmann, L.; Blaut, M. Oligofructose and long-chain inulin: influence on the gut microbial ecology of rats associated with a human faecal flora. Br. J. Nutr., 2001, 86(2), 291-300.
[http://dx.doi.org/10.1079/BJN2001403] [PMID: 11502244]
[18]
Walker, A.W.; Ince, J.; Duncan, S.H.; Webster, L.M.; Holtrop, G.; Ze, X.; Brown, D.; Stares, M.D.; Scott, P.; Bergerat, A.; Louis, P.; McIntosh, F.; Johnstone, A.M.; Lobley, G.E.; Parkhill, J.; Flint, H.J. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J., 2011, 5(2), 220-230.
[http://dx.doi.org/10.1038/ismej.2010.118] [PMID: 20686513]
[19]
Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; Mende, D.R.; Li, J.; Xu, J.; Li, S.; Li, D.; Cao, J.; Wang, B.; Liang, H.; Zheng, H.; Xie, Y.; Tap, J.; Lepage, P.; Bertalan, M.; Batto, J.M.; Hansen, T.; Le Paslier, D.; Linneberg, A.; Nielsen, H.B.; Pelletier, E.; Renault, P.; Sicheritz-Ponten, T.; Turner, K.; Zhu, H.; Yu, C.; Li, S.; Jian, M.; Zhou, Y.; Li, Y.; Zhang, X.; Li, S.; Qin, N.; Yang, H.; Wang, J.; Brunak, S.; Doré, J.; Guarner, F.; Kristiansen, K.; Pedersen, O.; Parkhill, J.; Weissenbach, J.; Bork, P.; Ehrlich, S.D.; Wang, J. MetaHIT Consortium. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464(7285), 59-65.
[http://dx.doi.org/10.1038/nature08821] [PMID: 20203603]
[20]
Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Magris, M.; Hidalgo, G.; Baldassano, R.N.; Anokhin, A.P.; Heath, A.C.; Warner, B.; Reeder, J.; Kuczynski, J.; Caporaso, J.G.; Lozupone, C.A.; Lauber, C.; Clemente, J.C.; Knights, D.; Knight, R.; Gordon, J.I. Human gut microbiome viewed across age and geography. Nature, 2012, 486(7402), 222-227.
[http://dx.doi.org/10.1038/nature11053] [PMID: 22699611]
[21]
van der Beek, C.M.; Dejong, C.H.C.; Troost, F.J.; Masclee, A.A.M.; Lenaerts, K. Role of short-chain fatty acids in colonic inflammation, carcinogenesis, and mucosal protection and healing. Nutr. Rev., 2017, 75(4), 286-305.
[http://dx.doi.org/10.1093/nutrit/nuw067] [PMID: 28402523]
[22]
Gibson, G.R.; Beatty, E.R.; Wang, X.; Cummings, J.H. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin Gastroenterol, 1995, 108, 975-82.
[http://dx.doi.org/10.1016/0016-5085(95)90192-2]
[23]
Bouhnik, Y.; Flouriffe, B.; D'Agay-Abensour, L.; Pochart, P.; Gramet, G.; Durand, M. Administration of transgalactooligosaccharides increases fecal bifidobacteria and modifies colonic fermentation metabolism in health humans J. Nutr., 1997, 127, 444-8.
[24]
Cummings, J.H.; Macfarlane, G.T. The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol., 1991, 70(6), 443-459.
[http://dx.doi.org/10.1111/j.1365-2672.1991.tb02739.x] [PMID: 1938669]
[25]
Lee, Y.K. Handbook of probiotics and prebiotics; John Wiley & Sons Inc.: New Jersey, 2009.
[26]
Yang, J.; Martínez, I.; Walter, J.; Keshavarzian, A.; Rose, D.J. In vitro characterization of the impact of selected dietary fibers on fecal microbiota composition and short chain fatty acid production Anaerob, 2013, 23, 74-81.
[http://dx.doi.org/10.1016/j.anaerobe.2013.06.012]
[27]
den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D-J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res., 2013, 54(9), 2325-2340.
[http://dx.doi.org/10.1194/jlr.R036012] [PMID: 23821742]
[28]
Ventura, M.; Canchaya, C.; Tauch, A.; Chandra, G.; Fitzgerald, G.F.; Chater, K.F.; van Sinderen, D. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. Rev., 2007, 71(3), 495-548.
[http://dx.doi.org/10.1128/MMBR.00005-07] [PMID: 17804669]
[29]
Marzorati, M.; Van de Wiele, T. An advanced in vitro technology platform to study the mechanism of action of prebiotics and probiotics in the gastrointestinal tract. J. Clin. Gastroenterol., 2016, 50(Suppl 2, Proceedings from the 8th Probiotics, Prebiotics & New Foods for Microbiota and Human Health meeting held in Rome, Italy on September 13-15, 2015), S124-S125.
[http://dx.doi.org/10.1097/MCG.0000000000000711] [PMID: 27741154]
[30]
Van den Abbeele, P.; Roos, S.; Eeckhaut, V.; MacKenzie, D.A.; Derde, M.; Verstraete, W.; Marzorati, M.; Possemiers, S.; Vanhoecke, B.; Van Immerseel, F.; Van de Wiele, T. Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli. Microb. Biotechnol., 2012, 5(1), 106-115.
[http://dx.doi.org/10.1111/j.1751-7915.2011.00308.x] [PMID: 21989255]
[31]
Possemiers, S.; Pinheiro, I.; Verhelst, A.; Van den Abbeele, P.; Maignien, L.; Laukens, D.; Reeves, S.G.; Robinson, L.E.; Raas, T.; Schneider, Y.J.; Van de Wiele, T.; Marzorati, M. A dried yeast fermentate selectively modulates both the luminal and mucosal gut microbiota and protects against inflammation, as studied in an integrated in vitro approach. J. Agric. Food Chem., 2013, 61(39), 9380-9392.
[http://dx.doi.org/10.1021/jf402137r] [PMID: 24006902]
[32]
Marzorati, M.; Vanhoecke, B.; De Ryck, T.; Sadaghian Sadabad, M.; Pinheiro, I.; Possemiers, S.; Van den Abbeele, P.; Derycke, L.; Bracke, M.; Pieters, J.; Hennebel, T.; Harmsen, H.J.; Verstraete, W.; Van de Wiele, T. The HMI™ module: a new tool to study the host-microbiota interaction in the human gastrointestinal tract in vitro. BMC Microbiol., 2014, 14, 133.
[http://dx.doi.org/10.1186/1471-2180-14-133] [PMID: 24884540]
[33]
Delzenne, N.; Aertssens, J.; Verplaetse, H.; Roccaro, M.; Roberfroid, M. Effect of fermentable fructo-oligosaccharides on mineral, nitrogen and energy digestive balance in the rat. Life Sci., 1995, 57(17), 1579-1587.
[http://dx.doi.org/10.1016/0024-3205(95)02133-4] [PMID: 7564905]
[34]
Abrams, S.A.; Griffin, I.J.; Hawthorne, K.M.; Liang, L.; Gunn, S.K.; Darlington, G.; Ellis, K.J. A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am. J. Clin. Nutr., 2005, 82(2), 471-476.
[http://dx.doi.org/10.1093/ajcn/82.2.471] [PMID: 16087995]
[35]
Griffin, I.J.; Davila, P.M.; Abrams, S.A. Non-digestible oligosaccharides and calcium absorption in girls with adequate calcium intakes. Br. J. Nutr., 2002, 87(2)(Suppl. 2), S187-S191.
[http://dx.doi.org/10.1079/BJN/2002536] [PMID: 12088517]
[36]
van den Heuvel, E.G.; Muys, T.; van Dokkum, W.; Schaafsma, G. Oligofructose stimulates calcium absorption in adolescents. Am. J. Clin. Nutr., 1999, 69(3), 544-548.
[http://dx.doi.org/10.1093/ajcn/69.3.544] [PMID: 10075343]
[37]
Griffin, I.J.; Hicks, P.M.D.; Heaney, R.P.; Abrams, S.A. Enriched chicory inulin increases calcium absorption mainly in girls with lower calcium absorption. Nutr. Res., 2003, 23, 901-909.
[http://dx.doi.org/10.1016/S0271-5317(03)00085-X]
[38]
Kim, Y.; Jang, K.; Lee, E.; Cho, Y.; Kang, S.; Ha, W.; Choue, R. The effect of chicory fructan fiber on calcium absorption and bone metabolism in Korean postmenopausal women. Nutr. Sci., 2004, 7, 151-157.
[39]
Kruger, M.C.; Chan, Y.M.; Kuhn-Sherlock, B.; Lau, L.T.; Lau, C.; Chin, Y.S.; Todd, J.M.; Schollum, L.M. Differential effects of calcium- and vitamin D-fortified milk with FOS-inulin compared to regular milk, on bone biomarkers in Chinese pre- and postmenopausal women. Eur. J. Nutr., 2016, 55(5), 1911-1921.
[http://dx.doi.org/10.1007/s00394-015-1007-x] [PMID: 26264387]
[40]
van den Heuvel, E.G.H.M.; Schoterman, M.H.; Muijs, T. Transgalactooligosaccharides stimulate calcium absorption in postmenopausal women. J. Nutr., 2000, 130(12), 2938-2942.
[http://dx.doi.org/10.1093/jn/130.12.2938] [PMID: 11110850]
[41]
Hicks, P.D.; Hawthorne, K.M.; Berseth, C.L.; Marunycz, J.D.; Heubi, J.E.; Abrams, S.A. Total calcium absorption is similar from infant formulas with and without prebiotics and exceeds that in human milk-fed infants. BMC Pediatr., 2012, 12, 118.
[http://dx.doi.org/10.1186/1471-2431-12-118] [PMID: 22871243]
[42]
Yap, K.W.; Mohamed, S.; Yazid, A.M.; Maznah, I.; Meyer, D.M. Dose-response effects of inulin on the faecal short-chain fatty acids content and mineral absorption of formula-fed infants. Nutr. Food Sci., 2005, 35, 208-219.
[http://dx.doi.org/10.1108/00346650510605603]
[43]
Whisner, C.M.; Martin, B.R.; Schoterman, M.H.C.; Nakatsu, C.H.; McCabe, L.D.; McCabe, G.P.; Wastney, M.E.; van den Heuvel, E.G.; Weaver, C.M. Galacto-oligosaccharides increase calcium absorption and gut bifidobacteria in young girls: a double-blind cross-over trial. Br. J. Nutr., 2013, 110(7), 1292-1303.
[http://dx.doi.org/10.1017/S000711451300055X] [PMID: 23507173]
[44]
Holloway, L.; Moynihan, S.; Abrams, S.A.; Kent, K.; Hsu, A.R.; Friedlander, A.L. Effects of oligofructose-enriched inulin on intestinal absorption of calcium and magnesium and bone turnover markers in postmenopausal women. Br. J. Nutr., 2007, 97(2), 365-372.
[http://dx.doi.org/10.1017/S000711450733674X] [PMID: 17298707]
[45]
Martin, B.R.; Braun, M.M.; Wigertz, K.; Bryant, R.; Zhao, Y.; Lee, W.; Kempa-Steczko, A.; Weaver, C.M. Fructo-oligosaccharides and calcium absorption and retention in adolescent girls. J. Am. Coll. Nutr., 2010, 29(4), 382-386.
[http://dx.doi.org/10.1080/07315724.2010.10719855] [PMID: 21041813]
[46]
Van den Heuvel, E.G.H.M.; Muijs, T.; Van Dokkum, W.; Schaafsma, G. Lactulose stimulates calcium absorption in postmenopausal women. J. Bone Miner. Res., 1999, 14(7), 1211-1216.
[http://dx.doi.org/10.1359/jbmr.1999.14.7.1211] [PMID: 10404023]
[47]
Seki, N.; Hamano, H.; Iiyama, Y.; Asano, Y.; Kokubo, S.; Yamauchi, K.; Tamura, Y.; Uenishi, K.; Kudou, H. Effect of lactulose on calcium and magnesium absorption: a study using stable isotopes in adult men. J. Nutr. Sci. Vitaminol. (Tokyo), 2007, 53(1), 5-12.
[http://dx.doi.org/10.3177/jnsv.53.5] [PMID: 17484373]
[48]
Gabriel, B.; Magalí, Z.C.; Gretel, P.; Patricia, M.; María, E.R.; María, L.P. Effect of a combination GOS/FOS® probiotic mixture and interaction with calcium intake on mineral absorption and bone parameters in growing rats. Eur. J. Nutr., 2014. 54(6), 913-923.
[http://dx.doi.org/10.1007/s00394-014-0768-y]
[49]
Legette, L.L.; Lee, W.; Martin, B.R.; Story, J.A.; Campbell, J.K.; Weaver, C.M. Prebiotics enhance magnesium absorption and inulin-based fibers exert chronic effects on calcium utilization in a postmenopausal rodent model. J. Food Sci., 2012, 77(4), H88-H94.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02612.x] [PMID: 22394255]
[50]
Nathan, G. Prebiotic supplements could aid mineral absorption: Rat study. J. Food Sci., 2012, 19.
[51]
Lucas, S.; Omata, Y.; Hofmann, J.; Böttcher, M.; Iljazovic, A.; Sarter, K.; Albrecht, O.; Schulz, O.; Krishnacoumar, B.; Krönke, G.; Herrmann, M.; Mougiakakos, D.; Strowig, T.; Schett, G.; Zaiss, M.M. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat. Commun., 2018, 9(1), 55.
[http://dx.doi.org/10.1038/s41467-017-02490-4] [PMID: 29302038]
[52]
Yan, J.; Herzog, J.W.; Tsang, K.; Brennan, C.A.; Bower, M.A.; Garrett, W.S.; Sartor, B.R.; Aliprantis, A.O.; Charles, J.F. Gut microbiota induce IGF-1 and promote bone formation and growth. Proc. Natl. Acad. Sci. USA, 2016, 113(47), E7554-E7563.
[http://dx.doi.org/10.1073/pnas.1607235113] [PMID: 27821775]
[53]
Raschka, L.; Daniel, H. Diet composition and age determine the effects of inulin-type fructans on intestinal calcium absorption in rat. Eur. J. Nutr., 2005, 44(6), 360-364.
[http://dx.doi.org/10.1007/s00394-004-0535-6] [PMID: 15490199]
[54]
Younes, H.; Coudray, C.; Bellanger, J.; Demigné, C.; Rayssiguier, Y.; Rémésy, C. Effects of two fermentable carbohydrates (inulin and resistant starch) and their combination on calcium and magnesium balance in rats. Br. J. Nutr., 2001, 86(4), 479-485.
[http://dx.doi.org/10.1079/BJN2001430] [PMID: 11591235]
[55]
Chonan, O.; Matsumoto, K.; Watanuki, M. Effect of galactooligosaccharides on calcium absorption and preventing bone loss in ovariectomized rats. Biosci. Biotechnol. Biochem., 1995, 59(2), 236-239.
[http://dx.doi.org/10.1271/bbb.59.236] [PMID: 7766023]
[56]
Delgado, G.T.C.; Tamashiro, W.M.S.C.; Junior, M.R.M.; Moreno, Y.M.F.; Pastore, G.M. The putative effects of prebiotics as immunomodulatory agents. Food Res. Int., 2011, 44, 3167-3173.
[http://dx.doi.org/10.1016/j.foodres.2011.07.032]
[57]
Saad, N.; Delattre, C.; Urdaci, M.; Schmitter, J.M.; Bressollier, P. An overview of the last advances in probiotic and prebiotic field. Lebensm. Wiss. Technol., 2013, 50, 1-16.
[http://dx.doi.org/10.1016/j.lwt.2012.05.014]
[58]
Shokryazdan, P.; Faseleh Jahromi, M.; Navidshad, B.; Liang, J.B. Effects of prebiotics on immune system and cytokine expression. Med. Microbiol. Immunol. (Berl.), 2017, 206(1), 1-9.
[http://dx.doi.org/10.1007/s00430-016-0481-y] [PMID: 27704207]
[59]
Khangwal, I.; Shukla, P. Potential prebiotics and their transmission mechanisms: recent approaches. Yao Wu Shi Pin Fen Xi, 2019, 27(3), 649-656.
[http://dx.doi.org/10.1016/j.jfda.2019.02.003] [PMID: 31324281]
[60]
Kurita-Ochiai, T.; Amano, S.; Fukushima, K.; Ochiai, K. Cellular events involved in butyric acid-induced T cell apoptosis. J. Immunol., 2003, 171(7), 3576-3584.
[http://dx.doi.org/10.4049/jimmunol.171.7.3576] [PMID: 14500654]
[61]
Millard, A.L.; Mertes, P.M.; Ittelet, D.; Villard, F.; Jeannesson, P.; Bernard, J. Butyrate affects differentiation, maturation and function of human monocyte-derived dendritic cells and macrophages. Clin. Exp. Immunol., 2002, 130(2), 245-255.
[http://dx.doi.org/10.1046/j.0009-9104.2002.01977.x] [PMID: 12390312]
[62]
Inan, M.S.; Rasoulpour, R.J.; Yin, L.; Hubbard, A.K.; Rosenberg, D.W.; Giardina, C. The luminal short-chain fatty acid butyrate modulates NF-kappaB activity in a human colonic epithelial cell line. Gastroenterology, 2000, 118(4), 724-734.
[http://dx.doi.org/10.1016/S0016-5085(00)70142-9] [PMID: 10734024]
[63]
Ichikawa, H.; Shineha, R.; Satomi, S.; Sakata, T. Gastric or rectal instillation of short-chain fatty acids stimulates epithelial cell proliferation of small and large intestine in rats. Dig. Dis. Sci., 2002, 47(5), 1141-1146.
[http://dx.doi.org/10.1023/A:1015014829605] [PMID: 12018914]
[64]
Kripke, S.A.; Fox, A.D.; Berman, J.M.; Settle, R.G.; Rombeau, J.L. Stimulation of intestinal mucosal growth with intracolonic infusion of short-chain fatty acids. JPEN J. Parenter. Enteral Nutr., 1989, 13(2), 109-116.
[http://dx.doi.org/10.1177/0148607189013002109] [PMID: 2496241]
[65]
Cavaglieri, C.R.; Nishiyama, A.; Fernandes, L.C.; Curi, R.; Miles, E.A.; Calder, P.C. Differential effects of short-chain fatty acids on proliferation and production of pro- and anti-inflammatory cytokines by cultured lymphocytes. Life Sci., 2003, 73(13), 1683-1690.
[http://dx.doi.org/10.1016/S0024-3205(03)00490-9] [PMID: 12875900]
[66]
Saemann, M.D.; Bohmig, G.A.; Sterreicher, C.H.; Burtscher, H.; Parolini, O.; Diakos, C.; Stockl, J.; Horl, W.H.; Zlabinger, G.J. Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production FASEB. J., 2000, 14, 2380-2382.
[http://dx.doi.org/10.1096/fj.00-0359fje] [PMID: 11024006]
[67]
Murosaki, S.; Muroyama, K.; Yamamoto, Y.; Kusaka, H.; Liu, T.; Yoshikai, Y. Immunopotentiating activity of nigerooligosaccharides for the T helper 1-like immune response in mice. Biosci. Biotechnol. Biochem., 1999, 63(2), 373-378.
[http://dx.doi.org/10.1271/bbb.63.373] [PMID: 10192919]
[68]
Furrie, E.; Macfarlane, S.; Kennedy, A.; Cummings, J.H.; Walsh, S.V.; O’neil, D.A.; Macfarlane, G.T. Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial. Gut, 2005, 54(2), 242-249.
[http://dx.doi.org/10.1136/gut.2004.044834] [PMID: 15647189]
[69]
Lindsay, J.O.; Whelan, K.; Stagg, A.J.; Gobin, P.; Al-Hassi, H.O.; Rayment, N.; Kamm, M.A.; Knight, S.C.; Forbes, A. Clinical, microbiological, and immunological effects of fructo-oligosaccharide in patients with Crohn’s disease. Gut, 2006, 55(3), 348-355.
[http://dx.doi.org/10.1136/gut.2005.074971] [PMID: 16162680]
[70]
Kukkonen, K.; Savilahti, E.; Haahtela, T.; Juntunen-Backman, K.; Korpela, R.; Poussa, T.; Tuure, T.; Kuitunen, M. Probiotics and prebiotic galacto-oligosaccharides in the prevention of allergic diseases: a randomized, double-blind, placebo-controlled trial. J. Allergy Clin. Immunol., 2007, 119(1), 192-198.
[http://dx.doi.org/10.1016/j.jaci.2006.09.009] [PMID: 17208601]
[71]
Sheih, Y.H.; Chiang, B.L.; Wang, L.H.; Liao, C.K.; Gill, H.S. Systemic immunity-enhancing effects in healthy subjects following dietary consumption of the lactic acid bacterium Lactobacillus rhamnosus HN001. J. Am. Coll. Nutr., 2001, 20(2)(Suppl.), 149-156.
[http://dx.doi.org/10.1080/07315724.2001.10719027] [PMID: 11349938]
[72]
Chiang, B.L.; Sheih, Y.H.; Wang, L.H.; Liao, C.K.; Gill, H.S. Enhancing immunity by dietary consumption of a probiotic lactic acid bacterium (Bifidobacterium lactis HN019): optimization and definition of cellular immune responses. Eur. J. Clin. Nutr., 2000, 54(11), 849-855.
[http://dx.doi.org/10.1038/sj.ejcn.1601093] [PMID: 11114680]
[73]
Lecerf, J.M.; Dépeint, F.; Clerc, E.; Dugenet, Y.; Niamba, C.N.; Rhazi, L.; Cayzeele, A.; Abdelnour, G.; Jaruga, A.; Younes, H.; Jacobs, H.; Lambrey, G.; Abdelnour, A.M.; Pouillart, P.R. Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties. Br. J. Nutr., 2012, 108(10), 1847-1858.
[http://dx.doi.org/10.1017/S0007114511007252] [PMID: 22264499]
[74]
Dehghan, P.; Pourghassem Gargari, B.; Asghari Jafar-abadi, M. Oligofructose-enriched inulin improves some inflammatory markers and metabolic endotoxemia in women with type 2 diabetes mellitus: a randomized controlled clinical trial. Nutrition, 2014, 30(4), 418-423.
[http://dx.doi.org/10.1016/j.nut.2013.09.005] [PMID: 24332524]
[75]
Fava, F.; Lovegrove, J.A.; Gitau, R.; Jackson, K.G.; Tuohy, K.M. The gut microbiota and lipid metabolism: implications for human health and coronary heart disease. Curr. Med. Chem., 2006, 13(25), 3005-3021.
[http://dx.doi.org/10.2174/092986706778521814] [PMID: 17073643]
[76]
Beylot, M. Effects of inulin-type fructans on lipid metabolism in man and in animal models. Br. J. Nutr., 2005, 93(Suppl. 1), S163-S168.
[http://dx.doi.org/10.1079/BJN20041339] [PMID: 15877890]
[77]
Daubioul, C.A.; Horsmans, Y.; Lambert, P.; Danse, E.; Delzenne, N.M. Effects of oligofructose on glucose and lipid metabolism in patients with nonalcoholic steatohepatitis: results of a pilot study. Eur. J. Clin. Nutr., 2005, 59(5), 723-726.
[http://dx.doi.org/10.1038/sj.ejcn.1602127] [PMID: 15770222]
[78]
Williams, C.M.; Jackson, K.G. Inulin and oligofructose: effects on lipid metabolism from human studies. Br. J. Nutr., 2002, 87(Suppl. 2), S261-S264.
[http://dx.doi.org/10.1079/BJN/2002546] [PMID: 12088527]
[79]
Daubioul, C.A.; Taper, H.S.; De Wispelaere, L.D.; Delzenne, N.M. Dietary oligofructose lessens hepatic steatosis, but does not prevent hypertriglyceridemia in obese zucker rats. J. Nutr., 2000, 130(5), 1314-1319.
[http://dx.doi.org/10.1093/jn/130.5.1314] [PMID: 10801936]
[80]
Delzenne, N.M.; Williams, C.M. Actions of non-digestible carbohydrates on blood lipids in humans and animals.Colonic Microbio. Nutria. health; Gibson, G.R.; Roberfroid, M.B., Eds.; Kluwer Acad. Publ.: The Netherlands, 1999, pp. 213-232.
[http://dx.doi.org/10.1007/978-94-017-1079-4_13]
[81]
Delzenne, N.M.; Williams, C.M. Prebiotics and lipid metabolism. Curr. Opin. Lipidol., 2002, 13(1), 61-67.
[http://dx.doi.org/10.1097/00041433-200202000-00009] [PMID: 11790964]
[82]
Alles, M.S.; de Roos, N.M.; Bakx, J.C.; van de Lisdonk, E.; Zock, P.L.; Hautvast, G.A. Consumption of fructooligosaccharides does not favorably affect blood glucose and serum lipid concentrations in patients with type 2 diabetes. Am. J. Clin. Nutr., 1999, 69(1), 64-69.
[http://dx.doi.org/10.1093/ajcn/69.1.64] [PMID: 9925124]
[83]
Brighenti, F.; Casiraghi, M.C.; Canzi, E.; Ferrari, A. Effect of consumption of a ready-to-eat breakfast cereal containing inulin on the intestinal milieu and blood lipids in healthy male volunteers. Eur. J. Clin. Nutr., 1999, 53(9), 726-733.
[http://dx.doi.org/10.1038/sj.ejcn.1600841] [PMID: 10509770]
[84]
Russo, F.; Riezzo, G.; Chiloiro, M.; De Michele, G.; Chimienti, G.; Marconi, E.; D’Attoma, B.; Linsalata, M.; Clemente, C. Metabolic effects of a diet with inulin-enriched pasta in healthy young volunteers. Curr. Pharm. Des., 2010, 16(7), 825-831.
[http://dx.doi.org/10.2174/138161210790883570] [PMID: 20388093]
[85]
Schaafsma, G.; Meuling, W.J.; van Dokkum, W.; Bouley, C. Effects of a milk product, fermented by Lactobacillus acidophilus and with fructo-oligosaccharides added, on blood lipids in male volunteers. Eur. J. Clin. Nutr., 1998, 52(6), 436-440.
[http://dx.doi.org/10.1038/sj.ejcn.1600583] [PMID: 9683397]
[86]
Balcázar-Muñoz, B.R.; Martínez-Abundis, E.; González-Ortiz, M. [Effect of oral inulin administration on lipid profile and insulin sensitivity in subjects with obesity and dyslipidemia]. Rev. Med. Chil., 2003, 131(6), 597-604.
[PMID: 12942586]
[87]
Giacco, R.; Clemente, G.; Luongo, D.; Lasorella, G.; Fiume, I.; Brouns, F.; Bornet, F.; Patti, L.; Cipriano, P.; Rivellese, A.A.; Riccardi, G. Effects of short-chain fructo-oligosaccharides on glucose and lipid metabolism in mild hypercholesterolaemic individuals. Clin. Nutr., 2004, 23(3), 331-340.
[http://dx.doi.org/10.1016/j.clnu.2003.07.010] [PMID: 15158296]
[88]
Busserolles, J.; Gueux, E.; Rock, E.; Demigné, C.; Mazur, A.; Rayssiguier, Y. Oligofructose protects against the hypertriglyceridemic and pro-oxidative effects of a high fructose diet in rats. J. Nutr., 2003, 133(6), 1903-1908.
[http://dx.doi.org/10.1093/jn/133.6.1903] [PMID: 12771337]
[89]
Daubioul, C.N.; Rousseau, R.; Demeure, B.; Gallez, H.; Taper, B. Declerck, Delzenne, N. Dietary fructans, but not cellulose, decrease triglyceride accumulation in the liver of obese Zunker fa/fa rats. J. Nutr., 2002, 132, 967-973.
[http://dx.doi.org/10.1093/jn/132.5.967] [PMID: 11983823]
[90]
Lopez, H.W.; Levrat, M.A.; Guy, C.; Messager, A.; Demigné, C.; Rémésy, C. Effects of soluble corn bran arabinoxylans on cecal digestion, lipid metabolism, and mineral balance (Ca, Mg) in rats. J. Nutr. Biochem., 1999, 10(9), 500-509.
[http://dx.doi.org/10.1016/S0955-2863(99)00036-4] [PMID: 15539329]
[91]
Kellow, N.J.; Coughlan, M.T.; Reid, C.M. Metabolic benefits of dietary prebiotics in human subjects: a systematic review of randomised controlled trials. Br. J. Nutr., 2014, 111(7), 1147-1161.
[http://dx.doi.org/10.1017/S0007114513003607] [PMID: 24230488]
[92]
Burkitt, D.P. Related disease--related cause? Lancet, 1969, 2(7632), 1229-1231.
[http://dx.doi.org/10.1016/S0140-6736(69)90757-0] [PMID: 4187817]
[93]
Lim, C.C.; Ferguson, L.R.; Tannock, G.W. Dietary fibres as “prebiotics”: implications for colorectal cancer. Mol. Nutr. Food Res., 2005, 49(6), 609-619.
[http://dx.doi.org/10.1002/mnfr.200500015] [PMID: 15864790]
[94]
Rafter, J.; Bennett, M.; Caderni, G.; Clune, Y.; Hughes, R.; Karlsson, P.C.; Klinder, A.; O’Riordan, M.; O’Sullivan, G.C.; Pool-Zobel, B.; Rechkemmer, G.; Roller, M.; Rowland, I.; Salvadori, M.; Thijs, H.; Van Loo, J.; Watzl, B.; Collins, J.K. Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am. J. Clin. Nutr., 2007, 85(2), 488-496.
[http://dx.doi.org/10.1093/ajcn/85.2.488] [PMID: 17284748]
[95]
Ben, Q.; Sun, Y.; Chai, R.; Qian, A.; Xu, B.; Yuan, Y. Dietary fiber intake reduces risk for colorectal adenoma: a meta-analysis. Gastroenterology. , 2014, 146(3), 689-699.e6.
[http://dx.doi.org/10.1053/j.gastro.2013.11.003] [PMID: 24216326]
[96]
Ishikawa, H.; Akedo, I.; Otani, T.; Suzuki, T.; Nakamura, T.; Takeyama, I.; Ishiguro, S.; Miyaoka, E.; Sobue, T.; Kakizoe, T. Randomized trial of dietary fiber and Lactobacillus casei administration for prevention of colorectal tumors. Int. J. Cancer, 2005, 116(5), 762-767.
[http://dx.doi.org/10.1002/ijc.21115] [PMID: 15828052]
[97]
Aso, Y.; Akaza, H.; Kotake, T.; Tsukamoto, T.; Imai, K.; Naito, S. The BLP study group. Preventive effect of a Lactobacillus casei preparation on the recurrence of superficial bladder cancer in a double-blind trial. Eur. Urol., 1995, 27(2), 104-109.
[http://dx.doi.org/10.1159/000475138] [PMID: 7744150]
[98]
Ambalam, P.; Raman, M.; Purama, R.K.; Doble, M. Probiotics, prebiotics and colorectal cancer prevention. Best Pract. Res. Clin. Gastroenterol., 2016, 30(1), 119-131.
[http://dx.doi.org/10.1016/j.bpg.2016.02.009] [PMID: 27048903]
[99]
Bolognani, F.; Rumney, C.J.; Pool-Zobel, B.L.; Rowland, I.R. Effect of lactobacilli, bifidobacteria and inulin on the formation of aberrant crypt foci in rats. Eur. J. Nutr., 2001, 40(6), 293-300.
[http://dx.doi.org/10.1007/s394-001-8359-7] [PMID: 11876494]
[100]
Hughes, R.; Rowland, I.R. Stimulation of apoptosis by two prebiotic chicory fructans in the rat colon. Carcinogenesis, 2001, 22(1), 43-47.
[http://dx.doi.org/10.1093/carcin/22.1.43] [PMID: 11159739]
[101]
Pool-Zobel, B.L. Inulin-type fructans and reduction in colon cancer risk: review of experimental and human data. Br. J. Nutr., 2005, 93(Suppl. 1), S73-S90.
[http://dx.doi.org/10.1079/BJN20041349] [PMID: 15877900]
[102]
Femia, A.P.; Luceri, C.; Dolara, P.; Giannini, A.; Biggeri, A.; Salvadori, M.; Clune, Y.; Collins, K.J.; Paglierani, M.; Caderni, G. Antitumorigenic activity of the prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis on azoxymethane-induced colon carcinogenesis in rats. Carcinogenesis, 2002, 23(11), 1953-1960.
[http://dx.doi.org/10.1093/carcin/23.11.1953] [PMID: 12419846]
[103]
DuBois, R.N.; Radhika, A.; Reddy, B.S.; Entingh, A.J. Increased cyclooxygenase-2 levels in carcinogen-induced rat colonic tumors. Gastroenterology, 1996, 110(4), 1259-1262.
[http://dx.doi.org/10.1053/gast.1996.v110.pm8613017] [PMID: 8613017]
[104]
Fooks, L.J.; Gibson, G.R. In vitro investigations of the effect of probiotics and prebiotics on selected human intestinal pathogens. FEMS Microbiol. Ecol., 2002, 39(1), 67-75.
[http://dx.doi.org/10.1111/j.1574-6941.2002.tb00907.x] [PMID: 19709185]
[105]
Probiotics 2: Application and Practical Aspects; Fuller, R. ,Ed.; Chapman & Hall, 1997.
[http://dx.doi.org/10.1007/978-94-011-5860-2]
[106]
Mackey, B.M.; Gibson, G.R. Escherichia coli 0157 from farm to fork and beyond. Society General Microbiol. Quarterly, 1997, 24, 55-57.
[107]
Buddington, K.K.; Donahoo, J.B.; Buddington, R.K. Dietary oligofructose and inulin protect mice from enteric and systemic pathogens and tumor inducers. J. Nutr., 2002, 132(3), 472-477.
[http://dx.doi.org/10.1093/jn/132.3.472] [PMID: 11880573]
[108]
Chassaing, B.; Darfeuille-Michaud, A. The commensal microbiota and enteropathogens in the pathogenesis of inflammatory bowel diseases. Gastroenterol., 2011, 140(6), 1720-1728.
[http://dx.doi.org/10.1053/j.gastro.2011.01.054] [PMID: 21530738]
[109]
Nagalingam, N.A.; Lynch, S.V. Role of the microbiota in inflammatory bowel diseases. Inflamm. Bowel Dis., 2012, 18(5), 968-984.
[http://dx.doi.org/10.1002/ibd.21866] [PMID: 21936031]
[110]
De Hertogh, G.; Geboes, K. Crohn’s disease and infections: a complex relationship. MedGenMed, 2004, 6(3), 14.
[PMID: 15520637]
[111]
Comito, D.; Romano, C. Dysbiosis in the pathogenesis of pediatric inflammatory bowel diseases Inter. J. Inflamm, 2012.
[http://dx.doi.org/10.1155/2012/687143]
[112]
Langlands, S.J.; Hopkins, M.J.; Coleman, N.; Cummings, J.H. Prebiotic carbohydrates modify the mucosa associated microflora of the human large bowel. Gut, 2004, 53(11), 1610-1616.
[http://dx.doi.org/10.1136/gut.2003.037580] [PMID: 15479681]
[113]
Videla, S.; Vilaseca, J.; Antolín, M.; García-Lafuente, A.; Guarner, F.; Crespo, E.; Casalots, J.; Salas, A.; Malagelada, J.R. Dietary inulin improves distal colitis induced by dextran sodium sulfate in the rat. Am. J. Gastroenterol., 2001, 96(5), 1486-1493.
[http://dx.doi.org/10.1111/j.1572-0241.2001.03802.x] [PMID: 11374687]
[114]
Winkler, J.; Butler, R.; Symonds, E. Fructo-oligosaccharide reduces inflammation in a dextran sodium sulphate mouse model of colitis. Dig. Dis. Sci., 2007, 52(1), 52-58.
[http://dx.doi.org/10.1007/s10620-006-9224-z] [PMID: 17171454]
[115]
Cherbut, C.; Michel, C.; Lecannu, G. The prebiotic characteristics of fructooligosaccharides are necessary for reduction of TNBS-induced colitis in rats. J. Nutr., 2003, 133(1), 21-27.
[http://dx.doi.org/10.1093/jn/133.1.21] [PMID: 12514261]
[116]
Camuesco, D.; Peran, L.; Comalada, M.; Nieto, A.; Di Stasi, L.C.; Rodriguez-Cabezas, M.E.; Concha, A.; Zarzuelo, A.; Galvez, J. Preventative effects of lactulose in the trinitrobenzenesulphonic acid model of rat colitis. Inflamm. Bowel Dis., 2005, 11(3), 265-271.
[http://dx.doi.org/10.1097/01.MIB.0000160808.30988.d9] [PMID: 15735433]
[117]
Benjamin, J.L.; Hedin, C.R.; Koutsoumpas, A.; Ng, S.C.; McCarthy, N.E.; Hart, A.L.; Kamm, M.A.; Sanderson, J.D.; Knight, S.C.; Forbes, A.; Stagg, A.J.; Whelan, K.; Lindsay, J.O. Randomised, double-blind, placebo-controlled trial of fructo-oligosaccharides in active Crohn’s disease. Gut, 2011, 60(7), 923-929.
[http://dx.doi.org/10.1136/gut.2010.232025] [PMID: 21262918]
[118]
Casellas, F.; Borruel, N.; Torrejón, A.; Varela, E.; Antolin, M.; Guarner, F.; Malagelada, J.R. Oral oligofructose-enriched inulin supplementation in acute ulcerative colitis is well tolerated and associated with lowered faecal calprotectin. Aliment. Pharmacol. Ther., 2007, 25(9), 1061-1067.
[http://dx.doi.org/10.1111/j.1365-2036.2007.03288.x] [PMID: 17439507]
[119]
Ishikawa, H.; Matsumoto, S.; Ohashi, Y.; Imaoka, A.; Setoyama, H.; Umesaki, Y.; Tanaka, R.; Otani, T. Beneficial effects of probiotic bifidobacterium and galacto-oligosaccharide in patients with ulcerative colitis: a randomized controlled study. Digestion, 2011, 84(2), 128-133.
[http://dx.doi.org/10.1159/000322977] [PMID: 21525768]
[120]
Bennett, N.; Greco, D.S.; Peterson, M.E.; Kirk, C.; Mathes, M.; Fettman, M.J. Comparison of a low carbohydrate-low fiber diet and a moderate carbohydrate-high fiber diet in the management of feline diabetes mellitus. J. Feline Med. Surg., 2006, 8(2), 73-84.
[http://dx.doi.org/10.1016/j.jfms.2005.08.004] [PMID: 16275041]
[121]
Mini, S.; Mojibur, R.K.; Madhusmita, D.; Abnita, T.; Vasundhra, C. A comparative study of synbiotic and prebiotic supplementation on gut health, SCFA, HS-CRP and lipid profile of type 2 diabetic subjects with pre hypertension. Eur. J. Biomed. Pharma. Sci., 2016, 3, 148-155.
[122]
Parnell, J.A.; Reimer, R.A. Effect of prebiotic fibre supplementation on hepatic gene expression and serum lipids: a dose-response study in JCR:LA-cp rats. Br. J. Nutr., 2010, 103(11), 1577-1584.
[http://dx.doi.org/10.1017/S0007114509993539] [PMID: 20021705]
[123]
Everard, A.; Lazarevic, V.; Derrien, M.; Girard, M.; Muccioli, G.G.; Neyrinck, A.M.; Possemiers, S.; Van Holle, A.; François, P.; de Vos, W.M.; Delzenne, N.M.; Schrenzel, J.; Cani, P.D. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes, 2011, 60(11), 2775-2786.
[http://dx.doi.org/10.2337/db11-0227] [PMID: 21933985]
[124]
Dewulf, E.M.; Cani, P.D.; Claus, S.P.; Fuentes, S.; Puylaert, P.G.; Neyrinck, A.M.; Bindels, L.B.; de Vos, W.M.; Gibson, G.R.; Thissen, J.P.; Delzenne, N.M. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut, 2013, 62(8), 1112-1121.
[http://dx.doi.org/10.1136/gutjnl-2012-303304] [PMID: 23135760]
[125]
Everard, A.; Cani, P.D. Diabetes, obesity and gut microbiota. Best Pract. Res. Clin. Gastroenterol., 2013, 27(1), 73-83.
[http://dx.doi.org/10.1016/j.bpg.2013.03.007] [PMID: 23768554]
[126]
de Luis, D.A.; de la Fuente, B.; Izaola, O.; Conde, R.; Gutiérrez, S.; Morillo, M.; Teba Torres, C. Double blind randomized clinical trial controlled by placebo with an alpha linoleic acid and prebiotic enriched cookie on risk cardiovascular factor in obese patients. Nutr. Hosp., 2011, 26(4), 827-833.
[PMID: 22470031]
[127]
Brighenti, F.; Benini, L.; Del Rio, D.; Casiraghi, C.; Pellegrini, N.; Scazzina, F.; Jenkins, D.J.; Vantini, I. Colonic fermentation of indigestible carbohydrates contributes to the second-meal effect. Am. J. Clin. Nutr., 2006, 83(4), 817-822.
[http://dx.doi.org/10.1093/ajcn/83.4.817] [PMID: 16600933]
[128]
Chaudhri, O.B.; Salem, V.; Murphy, K.G.; Bloom, S.R. Gastrointestinal satiety signals. Annu. Rev. Physiol., 2008, 70, 239-255.
[http://dx.doi.org/10.1146/annurev.physiol.70.113006.100506] [PMID: 17937600]
[129]
Cuello-Garcia, C.A.; Fiocchi, A.; Pawankar, R.; Yepes-Nuñez, J.J.; Morgano, G.P.; Zhang, Y.; Ahn, K.; Al-Hammadi, S.; Agarwal, A.; Gandhi, S.; Beyer, K.; Burks, W.; Canonica, G.W.; Ebisawa, M.; Kamenwa, R.; Lee, B.W.; Li, H.; Prescott, S.; Riva, J.J.; Rosenwasser, L.; Sampson, H.; Spigler, M.; Terracciano, L.; Vereda, A.; Waserman, S.; Schünemann, H.J.; Brożek, J.L. World allergy organization-Mc Master university guidelines for allergic disease prevention (GLAD-P): prebiotics. World Allergy Organ. J., 2016, 9, 10.
[http://dx.doi.org/10.1186/s40413-016-0102-7] [PMID: 26962387]
[130]
West, C.E.; Dzidic, M.; Prescott, S.L.; Jenmalm, M.C. Bugging allergy; role of pre-, pro- and synbiotics in allergy prevention. Allergol. Int., 2017, 66(4), 529-538.
[http://dx.doi.org/10.1016/j.alit.2017.08.001] [PMID: 28865967]
[131]
Güngör, D.; Nadaud, P.; LaPergola, C.C.; Dreibelbis, C.; Wong, Y.P.; Terry, N.; Abrams, S.A.; Beker, L.; Jacobovits, T.; Järvinen, K.M.; Nommsen-Rivers, L.A.; O’Brien, K.O.; Oken, E.; Pérez-Escamilla, R.; Ziegler, E.E.; Spahn, J.M. Infant milk-feeding practices and food allergies, allergic rhinitis, atopic dermatitis, and asthma throughout the life span: a systematic review. Am. J. Clin. Nutr., 2019, 109(Suppl_7), 772S-799S.
[http://dx.doi.org/10.1093/ajcn/nqy283] [PMID: 30982870]
[132]
Kramer, M.S.; Chalmers, B.; Hodnett, E.D.; Sevkovskaya, Z.; Dzikovich, I.; Shapiro, S.; Collet, J.P.; Vanilovich, I.; Mezen, I.; Ducruet, T.; Shishko, G.; Zubovich, V.; Mknuik, D.; Gluchanina, E.; Dombrovskiy, V.; Ustinovitch, A.; Kot, T.; Bogdanovich, N.; Ovchinikova, L.; Helsing, E. PROBIT study group (promotion of breastfeeding intervention trial). Promotion of breastfeeding intervention trial (PROBIT): a randomized trial in the republic of belarus. JAMA, 2001, 285(4), 413-420.
[http://dx.doi.org/10.1001/jama.285.4.413] [PMID: 11242425]
[133]
Doherty, A.M.; Lodge, C.J.; Dharmage, S.C.; Dai, X.; Bode, L.; Lowe, A.J. Human milk oligosaccharides and associations with immune-mediated disease and infection in childhood: a systematic review. Front Pediatr., 2018, 6, 91.
[http://dx.doi.org/10.3389/fped.2018.00091] [PMID: 29732363]
[134]
Moro, G.; Arslanoglu, S.; Stahl, B.; Jelinek, J.; Wahn, U.; Boehm, G. A mixture of prebiotic oligosaccharides reduces the incidence of atopic dermatitis during the first six months of age. Arch. Dis. Child., 2006, 91(10), 814-819.
[http://dx.doi.org/10.1136/adc.2006.098251] [PMID: 16873437]
[135]
Arslanoglu, S.; Moro, G.E.; Boehm, G.; Wienz, F.; Stahl, B.; Bertino, E. Early neutral prebiotic oligosaccharide supplementation reduces the incidence of some allergic manifestations in the first 5 years of life. J. Biol. Regul. Homeost. Agents, 2012, 26(3)(Suppl.), 49-59.
[PMID: 23158515]
[136]
Boženský, J.; Hill, M.; Zelenka, R.; Skýba, T. Prebiotics do not influence the severity of atopic dermatitis in infants: a randomised controlled trial. PLoS One, 2015, 10(11)e0142897
[http://dx.doi.org/10.1371/journal.pone.0142897] [PMID: 26571488]
[137]
Boyle, R.J.; Tang, M.L.; Chiang, W.C.; Chua, M.C.; Ismail, I.; Nauta, A.; Hourihane, J.O.B.; Smith, P.; Gold, M.; Ziegler, J.; Peake, J.; Quinn, P.; Rao, R.; Brown, N.; Rijnierse, A.; Garssen, J.; Warner, J.O. PATCH study investigators. Prebiotic-supplemented partially hydrolysed cow’s milk formula for the prevention of eczema in high-risk infants: a randomized controlled trial. Allergy, 2016, 71(5), 701-710.
[http://dx.doi.org/10.1111/all.12848] [PMID: 27111273]
[138]
Ivakhnenko, O.S.; Nyankovskyy, S.L. Effect of the specific infant formula mixture of oligosaccharides on local immunity and development of allergic and infectious disease in young children: randomized study. Pediatr. Pol., 2013, 8, 398-404.
[http://dx.doi.org/10.1016/j.pepo.2013.07.002]
[139]
Carlos, C.G.; Alessandro, F.; Ruby, P.; Juan, J.Y.N.; Gian, P.M.; Yuan, Z.; Arnav, A.; Shreyas, G.; Luigi, T.; Holger, J.S.; Jan, L.B. Prebiotics for the prevention of allergies: a systematic review and meta-analysis of randomized controlled trials. Systematic reviews and Meta-analysis. J. Allergy Clin. Immunol., 2015, 136(4), 952-961.
[http://dx.doi.org/10.1016/j.jaci.2015.04.031] [PMID: 26044853]
[140]
Shibata, R.; Kimura, M.; Takahashi, H.; Mikami, K.; Aiba, Y.; Takeda, H.; Koga, Y. Clinical effects of kestose, a prebiotic oligosaccharide, on the treatment of atopic dermatitis in infants. Clin. Exp. Allergy, 2009, 39(9), 1397-1403.
[http://dx.doi.org/10.1111/j.1365-2222.2009.03295.x] [PMID: 19508323]
[141]
Niele, N.; van Zwol, A.; Westerbeek, E.A.; Lafeber, H.N.; van Elburg, R.M. Effect of non-human neutral and acidic oligosaccharides on allergic and infectious diseases in preterm infants. Eur. J. Pediatr., 2013, 172(3), 317-323.
[http://dx.doi.org/10.1007/s00431-012-1886-2] [PMID: 23132642]
[142]
Luoto, R.; Ruuskanen, O.; Waris, M.; Kalliomäki, M.; Salminen, S.; Isolauri, E. Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: a randomized, placebo-controlled trial. J. Allergy Clin. Immunol., 2014, 133(2), 405-413.
[http://dx.doi.org/10.1016/j.jaci.2013.08.020] [PMID: 24131826]
[143]
Helen, W. Lactose intolerance 101- causes, symptoms and treatment. Healthline (Bhavnagar), https://www.healthline.com/nutrition/lactose-intolerance-101. (Accessed June 24, 2017).
[144]
WGO handbook on diet and the gut. World Gastroenterology Organisation, http://www.worldgastroenterology.org/UserFiles/file/ 2016 . (Accessed May 2, 2017).
[145]
Azcarate-Peril, M.A.; Ritter, A.J.; Savaiano, D.; Monteagudo-Mera, A.; Anderson, C.; Magness, S.T.; Klaenhammer, T.R. Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals. Proc. Natl. Acad. Sci. USA, 2017, 114(3), E367-E375.
[http://dx.doi.org/10.1073/pnas.1606722113] [PMID: 28049818]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy