Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Synthesis and Preclinical Evaluation of Indole Triazole Conjugates as Microtubule Targeting Agents that are Effective against MCF-7 Breast Cancer Cell Lines

Author(s): Vidyasrilekha Yele*, Sai Kiran S.S. Pindiprolu, Sravani Sana, D.S.V.N.M. Ramamurty, Jayanthi R.K. Madasi and Swapna Vadlamani*

Volume 21, Issue 8, 2021

Published on: 25 September, 2020

Page: [1047 - 1055] Pages: 9

DOI: 10.2174/1871520620666200925102940

Price: $65

Abstract

Background: Microtubules are considered to be an important therapeutic target for most of the anticancer drugs. These are highly dynamic structures comprising of α-tubulin and β-tubulin which are usually heterodimers and found to be involved in cell movement, intracellular trafficking, and mitosis inhibition of which might kill the tumour cells or inhibit the abnormal proliferation of cells. Most of the tubulin polymerization inhibitors, such as Vinca alkaloids, consist of Indole as the main scaffold. The literature also suggests using triazole moiety in the chemical entities, potentiating the inhibitory activity against cell proliferation. So, in our study, we used indole triazole scaffolds to synthesize the derivatives against tubulin polymerization.

Objective: The main objective of this study to synthesize indole triazole conjugates by using environmentally friendly solvents (green chemistry) and click chemistry. To carry out the MTT assay and tubulin polymerization assay for the synthesized indole triazole conjugates.

Methods: All the synthesized molecules were subjected to molecular docking studies using Schrodinger suite and the structural confirmation was performed by Mass, proton-NMR and carbon-NMR, documented in DMSO and CDCL3. Biological studies were performed using DU145 (prostate cancer), A-549 (lung cancer) and, MCF-7 (breast cancer), cell lines obtained from ATCC were maintained as a continuous culture. MTT assay was performed for the analogues using standard protocol. Cell cycle analysis was carried out using flow cytometry.

Results: The Indole triazole scaffolds were synthesized using the principles of Green chemistry. The triazole formation is mainly achieved by using the Click chemistry approach. Structural elucidation of synthesized compounds was performed using Mass spectroscopy (HR-MS), Proton-Nuclear Magnetic Spectroscopy (1H-NMR) and Carbon-Nuclear Magnetic Spectroscopy (13C-NMR). The XP-docked poses and free energy binding calculations revealed that 2c and 2g molecules exhibited the highest docking affinity against the tubulin-colchicine domain (PDB:1SA0). In vitro cytotoxic assessment revealed that 2c and 2g displayed promising cytotoxicity in MTT assay (with CTC50 values 3.52μM and 2.37μM) which are in good agreement with the computational results. 2c and 2g also arrested 63 and 66% of cells in the G2/M phase, respectively, in comparison to control cells (10%) and tubulin polymerization inhibition assay revealed that 2c and 2g exhibited significant inhibition of tubulin polymerization with IC50 values of 2.31μM, and 2.62μM, respectively in comparison to Nocodazole, a positive control, resulted in an IC50 value of 2.51μM.

Conclusion: Indole triazole hybrids were synthesized using click chemistry, and docking studies were carried out using Schrodinger for the designed molecules. Process Optimization has been done for both the schemes. Twelve compounds (2a-2l) have been successfully synthesized and analytical evaluation was performed using NMR and HR-MS. In vitro evaluation was for the synthesized molecules to check tubulin polymerization inhibition for antiproliferative action. Among the synthesized compounds, 2c and 2g have potent anticancer activities by inhibiting tubulin polymerization.

Keywords: Indole triazole conjugates, tubulin polymerization, antiproliferation, click chemistry, molecular modeling studies, breast cancer.

Graphical Abstract

[1]
El-Sayed, M.T.; Hamdy, N.A.; Osman, D.A.; Ahmed, K.M. Indoles as anticancer agents. Adv. Mod. Oncol. Res., 2015, 1(1), 20-35.
[http://dx.doi.org/10.18282/amor.v1.i1.12]
[2]
Kaushik, N.K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C.H.; Verma, A.K.; Choi, E.H. Biomedical importance of indoles. Molecules, 2013, 18(6), 6620-6662.
[http://dx.doi.org/10.3390/molecules18066620] [PMID: 23743888]
[3]
Welsch, M.E.; Snyder, S.A.; Stockwell, B.R. Privileged scaffolds for library design and drug discovery. Curr. Opin. Chem. Biol., 2010, 14(3), 347-361.
[http://dx.doi.org/10.1016/j.cbpa.2010.02.018] [PMID: 20303320]
[4]
Manju, K.; Jat, R.; Anju, G. A review on medicinal plants used as a source of anticancer agents. Int. J. Drug Res. Technol., 2017, 2(2), 6.
[5]
Singh Sidhu, J.; Singla, R.; Jaitak, V. Indole derivatives as anticancer agents for breast cancer therapy: A review. Anticancer. Agents Med. Chem., 2016, 16(2), 160-173.
[6]
de Sá Alves, F.R.; Barreiro, E.J.; Fraga, C.A.; Fraga, M.; Alberto, C. From nature to drug discovery: The indole scaffold as a ‘privileged structure’. Mini Rev. Med. Chem., 2009, 9(7), 782-793.
[http://dx.doi.org/10.2174/138955709788452649] [PMID: 19519503]
[7]
Wang, Z.; Sun, Y. Targeting p53 for novel anticancer therapy. Transl. Oncol., 2010, 3(1), 1-12.
[http://dx.doi.org/10.1593/tlo.09250] [PMID: 20165689]
[8]
O’Connor, P.M.; Jackman, J.; Bae, I.; Myers, T.G.; Fan, S.; Mutoh, M.; Scudiero, D.A.; Monks, A.; Sausville, E.A.; Weinstein, J.N.; Friend, S.; Fornace, A.J., Jr; Kohn, K.W. Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res., 1997, 57(19), 4285-4300.
[PMID: 9331090]
[9]
Dumontet, C.; Jordan, M.A. Microtubule-binding agents: A dynamic field of cancer therapeutics. Nat. Rev. Drug Discov., 2010, 9(10), 790-803.
[http://dx.doi.org/10.1038/nrd3253] [PMID: 20885410]
[10]
Risinger, A.L.; Giles, F.J.; Mooberry, S.L. Microtubule dynamics as a target in oncology. Cancer Treat. Rev., 2009, 35(3), 255-261.
[http://dx.doi.org/10.1016/j.ctrv.2008.11.001] [PMID: 19117686]
[11]
Stanton, R.A.; Gernert, K.M.; Nettles, J.H.; Aneja, R. Drugs that target dynamic microtubules: A new molecular perspective. Med. Res. Rev., 2011, 31(3), 443-481.
[http://dx.doi.org/10.1002/med.20242] [PMID: 21381049]
[12]
Dong, M.; Liu, F.; Zhou, H.; Zhai, S.; Yan, B. Novel natural product-and privileged scaffold-based tubulin inhibitors targeting the colchicine binding site. Molecules, 2016, 21(10), 1375.
[http://dx.doi.org/10.3390/molecules21101375] [PMID: 27754459]
[13]
Dupeyre, G.; Chabot, G.G.; Thoret, S.; Cachet, X.; Seguin, J.; Guénard, D.; Tillequin, F.; Scherman, D.; Koch, M.; Michel, S. Synthesis and biological evaluation of (3,4,5-trimethoxyphenyl)indol-3-ylmethane derivatives as potential antivascular agents. Bioorg. Med. Chem., 2006, 14(13), 4410-4426.
[http://dx.doi.org/10.1016/j.bmc.2006.02.037] [PMID: 16529936]
[14]
Lu, Y.; Chen, J.; Xiao, M.; Li, W.; Miller, D.D. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm. Res., 2012, 29(11), 2943-2971.
[http://dx.doi.org/10.1007/s11095-012-0828-z] [PMID: 22814904]
[15]
Massarotti, A.; Coluccia, A.; Silvestri, R.; Sorba, G.; Brancale, A. The tubulin colchicine domain: A molecular modeling perspective. ChemMedChem, 2012, 7(1), 33-42.
[http://dx.doi.org/10.1002/cmdc.201100361] [PMID: 21990124]
[16]
Kasibhatla, S.; Baichwal, V.; Cai, S.X.; Roth, B.; Skvortsova, I.; Skvortsov, S.; Lukas, P.; English, N.M.; Sirisoma, N.; Drewe, J.; Pervin, A.; Tseng, B.; Carlson, R.O.; Pleiman, C.M. MPC-6827: A small-molecule inhibitor of microtubule formation that is not a substrate for multidrug resistance pumps. Cancer Res., 2007, 67(12), 5865-5871.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0127] [PMID: 17575155]
[17]
Tsimberidou, A-M.; Akerley, W.; Schabel, M.C.; Hong, D.S.; Uehara, C.; Chhabra, A.; Warren, T.; Mather, G.G.; Evans, B.A.; Woodland, D.P.; Swabb, E.A.; Kurzrock, R. Phase I clinical trial of MPC-6827 (Azixa), a microtubule destabilizing agent, in patients with advanced cancer. Mol. Cancer Ther., 2010, 9(12), 3410-3419.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0516] [PMID: 21159616]
[18]
Löwe, J.; Li, H.; Downing, K.H.; Nogales, E. Refined structure of α β-tubulin at 3.5 A resolution. J. Mol. Biol., 2001, 313(5), 1045-1057.
[http://dx.doi.org/10.1006/jmbi.2001.5077] [PMID: 11700061]
[19]
Rao, S.; He, L.; Chakravarty, S.; Ojima, I.; Orr, G.A.; Horwitz, S.B. Characterization of the Taxol binding site on the microtubule. Identification of Arg(282) in β-tubulin as the site of photoincorporation of a 7-benzophenone analogue of Taxol. J. Biol. Chem., 1999, 274(53), 37990-37994.
[http://dx.doi.org/10.1074/jbc.274.53.37990] [PMID: 10608867]
[20]
DeVita, V.T.; Lawrence, T.S.; Rosenberg, S.A. DeVita, Hellman, and Rosenberg’s cancer: principles & practice of oncology; Lippincott Williams & Wilkins: USA, 2008.
[21]
Prota, A.E.; Bargsten, K.; Northcote, P.T.; Marsh, M.; Altmann, K.H.; Miller, J.H.; Díaz, J.F.; Steinmetz, M.O. Structural basis of microtubule stabilization by laulimalide and peloruside A. Angew. Chem. Int. Ed. Engl., 2014, 53(6), 1621-1625.
[http://dx.doi.org/10.1002/anie.201307749] [PMID: 24470331]
[22]
Prota, A.E.; Bargsten, K.; Diaz, J.F.; Marsh, M.; Cuevas, C.; Liniger, M.; Neuhaus, C.; Andreu, J.M.; Altmann, K.H.; Steinmetz, M.O. A new tubulin-binding site and pharmacophore for microtubule-destabilizing anticancer drugs. Proc. Natl. Acad. Sci. USA, 2014, 111(38), 13817-13821.
[http://dx.doi.org/10.1073/pnas.1408124111] [PMID: 25114240]
[23]
Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des., 2013, 27(3), 221-234.
[http://dx.doi.org/10.1007/s10822-013-9644-8] [PMID: 23579614]
[24]
Jacobson, M.P.; Pincus, D.L.; Rapp, C.S.; Day, T.J.; Honig, B.; Shaw, D.E.; Friesner, R.A. A hierarchical approach to all-atom protein loop prediction. Proteins, 2004, 55(2), 351-367.
[http://dx.doi.org/10.1002/prot.10613] [PMID: 15048827]
[25]
Azam, M.A.; Jupudi, S. Extra precision docking, free energy calculation and molecular dynamics studies on glutamic acid derivatives as MurD inhibitors. Comput. Biol. Chem., 2017, 69, 55-63.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.05.004] [PMID: 28575732]
[26]
Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J.Y.; Wang, L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L.; Kaus, J.W.; Cerutti, D.S.; Krilov, G.; Jorgensen, W.L.; Abel, R.; Friesner, R.A. OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. J. Chem. Theory Comput., 2016, 12(1), 281-296.
[http://dx.doi.org/10.1021/acs.jctc.5b00864] [PMID: 26584231]
[27]
Li, J.; Abel, R.; Zhu, K.; Cao, Y.; Zhao, S.; Friesner, R.A. The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins, 2011, 79(10), 2794-2812.
[http://dx.doi.org/10.1002/prot.23106] [PMID: 21905107]
[28]
Nunez, R. DNA measurement and cell cycle analysis by flow cytometry. Curr. Issues Mol. Biol., 2001, 3(3), 67-70.
[PMID: 11488413]
[29]
Ghanta, V.R.; Madala, N.; Pasula, A.; Pindiprolu, S.K.; Battula, K.S.; Krishnamurthy, P.T.; Raman, B. Novel dermacozine-1-carboxamides as promising anticancer agents with tubulin polymerization inhibitory activity. RSC Advances, 2019, 9(32), 18670-18677.
[http://dx.doi.org/10.1039/C9RA02416F]
[30]
Harris, R. A convenient synthesis of 3-indolylthiol and derivates., 1969.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy