Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Repurposing of the PDE5 Inhibitor Sildenafil for the Treatment of Persistent Pulmonary Hypertension in Neonates

Author(s): Erika L. Poitras, Stephen L. Gust, Paul M. Kerr and Frances Plane*

Volume 28, Issue 12, 2021

Published on: 23 September, 2020

Page: [2418 - 2437] Pages: 20

DOI: 10.2174/0929867327666200923151924

Price: $65

Abstract

Nitric oxide (NO), an important endogenous signaling molecule released from vascular endothelial cells and nerves, activates the enzyme soluble guanylate cyclase to catalyze the production of cyclic guanosine monophosphate (cGMP) from guanosine triphosphate. cGMP, in turn, activates protein kinase G to phosphorylate a range of effector proteins in smooth muscle cells that reduce intracellular Ca2+ levels to inhibit both contractility and proliferation. The enzyme phosphodiesterase type 5 (PDE5) curtails the actions of cGMP by hydrolyzing it into inactive 5’-GMP. Small molecule PDE5 inhibitors (PDE5is), such as sildenafil, prolong the availability of cGMP and therefore, enhance NO-mediated signaling. PDE5is are the first-line treatment for erectile dysfunction but are also now approved for the treatment of pulmonary arterial hypertension (PAH) in adults. Persistent pulmonary hypertension in neonates (PPHN) is currently treated with inhaled NO, but this is an expensive option and around 1/3 of newborns are unresponsive, resulting in the need for alternative approaches. Here the development, chemistry and pharmacology of PDE5is, the use of sildenafil for erectile dysfunction and PAH, are summarized and then current evidence for the utility of further repurposing of sildenafil, as a treatment for PPHN, is critically reviewed.

Keywords: Sildenafil, nitric oxide, pulmonary hypertension, phosphodiesterase inhibitor, cyclic GMP, neonate.

[1]
Soyombo, A.A.; Angelini, G.D.; Newby, A.C. Neointima formation is promoted by surgical preparation and inhibited by cyclic nucleotides in human saphenous vein organ cultures. J. Thorac. Cardiovasc. Surg., 1995, 109(1), 2-12.
[http://dx.doi.org/10.1016/S0022-5223(95)70415-9] [PMID: 7529347]
[2]
Vanhoutte, P.M. Nitric oxide: from good to bad. Ann. Vasc. Dis., 2018, 11(1), 41-51.
[http://dx.doi.org/10.3400/avd.ra.17-00134] [PMID: 29682106]
[3]
Vanhoutte, P.M.; Zhao, Y.; Xu, A.; Leung, S.W. Thirty years of saying NO: sources, fate, actions, and misfortunes of the endothelium-derived vasodilator mediator. Circ. Res., 2016, 119(2), 375-396.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.306531] [PMID: 27390338]
[4]
Bult, H.; Boeckxstaens, G.E.; Pelckmans, P.A.; Jordaens, F.H.; Van Maercke, Y.M.; Herman, A.G. Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature, 1990, 345(6273), 346-347.
[http://dx.doi.org/10.1038/345346a0] [PMID: 1971425]
[5]
Thatte, H.S.; He, X.D.; Goyal, R.K. Imaging of nitric oxide in nitrergic neuromuscular neurotransmission in the gut. PLoS One, 2009, 4(4), e4990.
[http://dx.doi.org/10.1371/journal.pone.0004990] [PMID: 19340298]
[6]
Rajfer, J.; Aronson, W.J.; Bush, P.A.; Dorey, F.J.; Ignarro, L.J. Nitric oxide as a mediator of relaxation of the corpus cavernosum in response to nonadrenergic, noncholinergic neurotransmission. N. Engl. J. Med., 1992, 326(2), 90-94.
[http://dx.doi.org/10.1056/NEJM199201093260203] [PMID: 1309211]
[7]
Katsuki, S.; Arnold, W.; Mittal, C.; Murad, F. Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine. J. Cyclic Nucleotide Res., 1977, 3(1), 23-25.
[PMID: 14978]
[8]
Schlossmann, J.; Feil, R.; Hofmann, F. Signaling through NO and cGMP-dependent protein kinases. Ann. Med., 2003, 35(1), 21-27.
[http://dx.doi.org/10.1080/07853890310004093] [PMID: 12693609]
[9]
Rychter, M.; Gaucher, C.; Boudier, A.; Leroy, P.; Lulek, J. S-Nitrosothiols-NO donors regulating cardiovascular cell proliferation: Insight into intracellular pathway alterations. Int. J. Biochem. Cell Biol., 2016, 78, 156-161.
[http://dx.doi.org/10.1016/j.biocel.2016.07.003] [PMID: 27394657]
[10]
Bender, A.T.; Beavo, J.A. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol. Rev., 2006, 58(3), 488-520.
[http://dx.doi.org/10.1124/pr.58.3.5] [PMID: 16968949]
[11]
Lin, C.S.; Lau, A.; Tu, R.; Lue, T.F. Expression of three isoforms of cGMP-binding cGMP-specific phosphodiesterase (PDE5) in human penile cavernosum. Biochem. Biophys. Res. Commun., 2000, 268(2), 628-635.
[http://dx.doi.org/10.1006/bbrc.2000.2187] [PMID: 10679255]
[12]
Lin, C.S.; Lau, A.; Tu, R.; Lue, T.F. Identification of three alternative first exons and an intronic promoter of human PDE5A gene. Biochem. Biophys. Res. Commun., 2000, 268(2), 596-602.
[http://dx.doi.org/10.1006/bbrc.2000.2186] [PMID: 10679249]
[13]
Coquil, J.F.; Franks, D.J.; Wells, J.N.; Dupuis, M.; Hamet, P. Characteristics of a new binding protein distinct from the kinase for guanosine 3′:5′-monophosphate in rat platelets. Biochim. Biophys. Acta, 1980, 631(1), 148-165.
[http://dx.doi.org/10.1016/0304-4165(80)90063-X] [PMID: 6249389]
[14]
Francis, S.H.; Lincoln, T.M.; Corbin, J.D. Characterization of a novel cGMP binding protein from rat lung. J. Biol. Chem., 1980, 255(2), 620-626.
[PMID: 6153179]
[15]
Rybalkin, S.D.; Yan, C.; Bornfeldt, K.E.; Beavo, J.A. Cyclic GMP phosphodiesterases and regulation of smooth muscle function. Circ. Res., 2003, 93(4), 280-291.
[http://dx.doi.org/10.1161/01.RES.0000087541.15600.2B] [PMID: 12933699]
[16]
Lin, C.S.; Albersen, M.; Xin, Z.; Namiki, M.; Muller, D.; Lue, T.F. Phosphodiesterase-5 expression and function in the lower urinary tract: a critical review. Urology, 2013, 81(3), 480-487.
[http://dx.doi.org/10.1016/j.urology.2012.11.028] [PMID: 23333001]
[17]
Nagendran, J.; Archer, S.L.; Soliman, D.; Gurtu, V.; Moudgil, R.; Haromy, A.; St Aubin, C.; Webster, L.; Rebeyka, I.M.; Ross, D.B.; Light, P.E.; Dyck, J.R.; Michelakis, E.D. Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation, 2007, 116(3), 238-248.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.655266] [PMID: 17606845]
[18]
Pokreisz, P.; Vandenwijngaert, S.; Bito, V.; Van den Bergh, A.; Lenaerts, I.; Busch, C.; Marsboom, G.; Gheysens, O.; Vermeersch, P.; Biesmans, L.; Liu, X.; Gillijns, H.; Pellens, M.; Van Lommel, A.; Buys, E.; Schoonjans, L.; Vanhaecke, J.; Verbeken, E.; Sipido, K.; Herijgers, P.; Bloch, K.D.; Janssens, S.P. Ventricular phosphodiesterase-5 expression is increased in patients with advanced heart failure and contributes to adverse ventricular remodeling after myocardial infarction in mice. Circulation, 2009, 119(3), 408-416.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.822072] [PMID: 19139381]
[19]
Korkmaz-Icöz, S.; Radovits, T.; Szabó, G. Targeting phosphodiesterase 5 as a therapeutic option against myocardial ischaemia/reperfusion injury and for treating heart failure. Br. J. Pharmacol., 2018, 175(2), 223-231.
[http://dx.doi.org/10.1111/bph.13749] [PMID: 28213937]
[20]
Kelly, L.E.; Ohlsson, A.; Shah, P.S. Sildenafil for pulmonary hypertension in neonates. Cochrane Database Syst. Rev., 2017, 8(8), CD005494.
[http://dx.doi.org/10.1002/14651858.cd005494.pub4] [PMID: 28777888]
[21]
Goldstein, I.; Burnett, A.L.; Rosen, R.C.; Park, P.W.; Stecher, V.J. The serendipitous story of sildenafil: an unexpected oral therapy for erectile dysfunction. Sex. Med. Rev., 2019, 7(1), 115-128.
[http://dx.doi.org/10.1016/j.sxmr.2018.06.005] [PMID: 30301707]
[22]
Ignarro, L.J.; Bush, P.A.; Buga, G.M.; Wood, K.S.; Fukuto, J.M.; Rajfer, J. Nitric oxide and cyclic GMP formation upon electrical field stimulation cause relaxation of corpus cavernosum smooth muscle. Biochem. Biophys. Res. Commun., 1990, 170(2), 843-850.
[http://dx.doi.org/10.1016/0006-291X(90)92168-Y] [PMID: 2166511]
[23]
Hatzimouratidis, K.; Salonia, A.; Adaikan, G.; Buvat, J.; Carrier, S.; El-Meliegy, A.; McCullough, A.; Torres, L.O.; Khera, M. Pharmacotherapy for erectile dysfunction: recommendations from the fourth international consultation for sexual medicine (ICSM 2015). J. Sex. Med., 2016, 13(4), 465-488.
[http://dx.doi.org/10.1016/j.jsxm.2016.01.016] [PMID: 27045254]
[24]
Terrett, N.K.; Bell, A.S.; Brown, D.; Ellis, P. Sildenafil (VIAGRA™), a potent and selective inhibitor of type 5 cGMP phosphodiesterase with utility for the treatment of male erectile dysfunction. Bioorg. Med. Chem. Lett., 1996, 6, 1819-1824.
[http://dx.doi.org/10.1016/0960-894X(96)00323-X]
[25]
Raghava Reddy, A.V.; Srinivas, G.; Takshinamoorthy, C.; Gupta Peruri, B.; Naidu, A. A facile, improved synthesis of sildenafil and its analogues. Sci. Pharm., 2015, 84(3), 447-455.
[http://dx.doi.org/10.3390/scipharm84030447] [PMID: 28117311]
[26]
Corbin, J.D.; Blount, M.A.; Weeks, J.L., II; Beasley, A.; Kuhn, K.P.; Ho, Y.S.; Saidi, L.F.; Hurley, J.H.; Kotera, J.; Francis, S.H. [3H]sildenafil binding to phosphodiesterase-5 is specific, kinetically heterogeneous, and stimulated by cGMP. Mol. Pharmacol., 2003, 63(6), 1364-1372.
[http://dx.doi.org/10.1124/mol.63.6.1364] [PMID: 12761347]
[27]
Park, K.; Moreland, R.B.; Goldstein, I.; Atala, A.; Traish, A. Sildenafil inhibits phosphodiesterase type 5 in human clitoral corpus cavernosum smooth muscle. Biochem. Biophys. Res. Commun., 1998, 249(3), 612-617.
[http://dx.doi.org/10.1006/bbrc.1998.9206] [PMID: 9731184]
[28]
Turko, I.V.; Ballard, S.A.; Francis, S.H.; Corbin, J.D. Inhibition of cyclic GMP-binding cyclic GMP-specific phosphodiesterase (Type 5) by sildenafil and related compounds. Mol. Pharmacol., 1999, 56(1), 124-130.
[http://dx.doi.org/10.1124/mol.56.1.124] [PMID: 10385692]
[29]
Daugan, A.; Grondin, P.; Ruault, C.; Le Monnier de Gouville, A.C.; Coste, H.; Linget, J.M.; Kirilovsky, J.; Hyafil, F.; Labaudinière, R. The discovery of tadalafil: a novel and highly selective PDE5 inhibitor. 2: 2,3,6,7,12,12a-hexahydropyrazino[1′,2′:1,6]pyrido[3,4-b]indole-1,4-dione analogues. J. Med. Chem., 2003, 46(21), 4533-4542.
[http://dx.doi.org/10.1021/jm0300577] [PMID: 14521415]
[30]
Forgue, S.T.; Patterson, B.E.; Bedding, A.W.; Payne, C.D.; Phillips, D.L.; Wrishko, R.E.; Mitchell, M.I. Tadalafil pharmacokinetics in healthy subjects. Br. J. Clin. Pharmacol., 2006, 61(3), 280-288.
[http://dx.doi.org/10.1111/j.1365-2125.2005.02553.x] [PMID: 16487221]
[31]
Corbin, J.D.; Beasley, A.; Blount, M.A.; Francis, S.H. Vardenafil: structural basis for higher potency over sildenafil in inhibiting cGMP-specific phosphodiesterase-5 (PDE5). Neurochem. Int., 2004, 45(6), 859-863.
[http://dx.doi.org/10.1016/j.neuint.2004.03.016] [PMID: 15312980]
[32]
Blount, M.A.; Zoraghi, R.; Ke, H.; Bessay, E.P.; Corbin, J.D.; Francis, S.H. A 46-amino acid segment in phosphodiesterase-5 GAF-B domain provides for high vardenafil potency over sildenafil and tadalafil and is involved in phosphodiesterase-5 dimerization. Mol. Pharmacol., 2006, 70(5), 1822-1831.
[http://dx.doi.org/10.1124/mol.106.028688] [PMID: 16926278]
[33]
Saenz de Tejada, I.; Angulo, J.; Cuevas, P.; Fernández, A.; Moncada, I.; Allona, A.; Lledó, E.; Körschen, H.G.; Niewöhner, U.; Haning, H.; Pages, E.; Bischoff, E. The phosphodiesterase inhibitory selectivity and the in vitro and in vivo potency of the new PDE5 inhibitor vardenafil. Int. J. Impot. Res., 2001, 13(5), 282-290.
[http://dx.doi.org/10.1038/sj.ijir.3900726] [PMID: 11890515]
[34]
Klotz, T.; Sachse, R.; Heidrich, A.; Jockenhövel, F.; Rohde, G.; Wensing, G.; Horstmann, R.; Engelmann, R. Vardenafil increases penile rigidity and tumescence in erectile dysfunction patients: a RigiScan and pharmacokinetic study. World J. Urol., 2001, 19(1), 32-39.
[http://dx.doi.org/10.1007/s003450000168] [PMID: 11289568]
[35]
Nichols, D.J.; Muirhead, G.J.; Harness, J.A. Pharmacokinetics of sildenafil after single oral doses in healthy male subjects: absolute bioavailability, food effects and dose proportionality. Br. J. Clin. Pharmacol., 2002, 53(Suppl. 1), 5S-12S.
[http://dx.doi.org/10.1046/j.0306-5251.2001.00027.x] [PMID: 11879254]
[36]
Muirhead, G.J.; Rance, D.J.; Walker, D.K.; Wastall, P. Comparative human pharmacokinetics and metabolism of single-dose oral and intravenous sildenafil. Br. J. Clin. Pharmacol., 2002, 53(Suppl. 1), 13S-20S.
[http://dx.doi.org/10.1046/j.06-5251.2001.00028.x] [PMID: 11879255]
[37]
Hyland, R.; Roe, E.G.; Jones, B.C.; Smith, D.A. Identification of the cytochrome P450 enzymes involved in the N-demethylation of sildenafil. Br. J. Clin. Pharmacol., 2001, 51(3), 239-248.
[http://dx.doi.org/10.1046/j.1365-2125.2001.00318.x] [PMID: 11298070]
[38]
Liew, K.B.; Loh, G.O.; Tan, Y.T.; Peh, K.K. Simultaneous quantification of sildenafil and N-desmethyl sildenafil in human plasma by UFLC coupled with ESI-MS/MS and pharmacokinetic and bioequivalence studies in Malay population. Biomed. Chromatogr., 2015, 29(6), 953-960.
[http://dx.doi.org/10.1002/bmc.3378] [PMID: 25400284]
[39]
Elnaggar, Y.S.; El-Massik, M.A.; Abdallah, O.Y. Fabrication, appraisal, and transdermal permeation of sildenafil citrate-loaded nanostructured lipid carriers versus solid lipid nanoparticles. Int. J. Nanomedicine, 2011, 6, 3195-3205.
[http://dx.doi.org/10.2147/IJN.S25825] [PMID: 22238508]
[40]
De Toni, L.; De Rocco Ponce, M.; Franceschinis, E.; Dall’Acqua, S.; Padrini, R.; Realdon, N.; Garolla, A.; Foresta, C. Sublingual Administration of Sildenafil Oro-dispersible Film: New Profiles of Drug Tolerability and Pharmacokinetics for PDE5 Inhibitors. Front. Pharmacol., 2018, 9, 59.
[http://dx.doi.org/10.3389/fphar.2018.00059] [PMID: 29467656]
[41]
Deveci, S.; Peşkircioğlu, L.; Aygün, C.; Tekin, M.I.; Dirim, A.; Ozkardeş, H. Sublingual sildenafil in the treatment of erectile dysfunction: faster onset of action with less dose. Int. J. Urol., 2004, 11(11), 989-992.
[http://dx.doi.org/10.1111/j.1442-2042.2004.00933.x] [PMID: 15509203]
[42]
Shahin, H.I.; Vinjamuri, B.P.; Mahmoud, A.A.; Shamma, R.N.; Mansour, S.M.; Ammar, H.O.; Ghorab, M.M.; Chougule, M.B.; Chablani, L. Design and evaluation of novel inhalable sildenafil citrate spray-dried microparticles for pulmonary arterial hypertension. J. Control. Release, 2019, 302, 126-139.
[http://dx.doi.org/10.1016/j.jconrel.2019.03.029] [PMID: 30940497]
[43]
Beck-Broichsitter, M.; Kleimann, P.; Gessler, T.; Seeger, W.; Kissel, T.; Schmehl, T. Nebulization performance of biodegradable sildenafil-loaded nanoparticles using the aeroneb pro: formulation aspects and nanoparticle stability to nebulization. Int. J. Pharm., 2012, 422(1-2), 398-408.
[http://dx.doi.org/10.1016/j.ijpharm.2011.10.012] [PMID: 22001839]
[44]
Hanson, K.A.; Ziegler, J.W.; Rybalkin, S.D.; Miller, J.W.; Abman, S.H.; Clarke, W.R. Chronic pulmonary hypertension increases fetal lung cGMP phosphodiesterase activity. Am. J. Physiol., 1998, 275(5), L931-L941.
[http://dx.doi.org/10.1152/ajplung.1998.275.5.l931]] [PMID: 9815111]
[45]
Lowe, G.; Costabile, R.A. 10-Year analysis of adverse event reports to the food and drug administration for phosphodiesterase type-5 inhibitors. J. Sex. Med., 2012, 9(1), 265-270.
[http://dx.doi.org/10.1111/j.1743-6109.2011.02537.x] [PMID: 22023666]
[46]
Kayık, G.; Tüzün, N.Ş.; Durdagi, S. Investigation of PDE5/PDE6 and PDE5/PDE11 selective potent tadalafil-like PDE5 inhibitors using combination of molecular modeling approaches, molecular fingerprint-based virtual screening protocols and structure-based pharmacophore development. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 311-330.
[http://dx.doi.org/10.1080/14756366.2016.1250756] [PMID: 28150511]
[47]
Fawcett, L.; Baxendale, R.; Stacey, P.; McGrouther, C.; Harrow, I.; Soderling, S.; Hetman, J.; Beavo, J.A.; Phillips, S.C. Molecular cloning and characterization of a distinct human phosphodiesterase gene family: PDE11A. Proc. Natl. Acad. Sci. USA, 2000, 97(7), 3702-3707.
[http://dx.doi.org/10.1073/pnas.97.7.3702] [PMID: 10725373]
[48]
Lagman, D.; Franzén, I.E.; Eggert, J.; Larhammar, D.; Abalo, X.M. Evolution and expression of the phosphodiesterase 6 genes unveils vertebrate novelty to control photosensitivity. BMC Evol. Biol., 2016, 16(1), 124.
[http://dx.doi.org/10.1186/s12862-016-0695-z] [PMID: 27296292]
[49]
Kloner, R.A.; Brown, M.; Prisant, L.M.; Collins, M. Sildenafil Study Group. Effect of sildenafil in patients with erectile dysfunction taking antihypertensive therapy. Am. J. Hypertens., 2001, 14(1), 70-73.
[http://dx.doi.org/10.1016/S0895-7061(00)01177-8] [PMID: 11206684]
[50]
Zusman, R.M.; Prisant, L.M.; Brown, M.J. Sildenafil Study Group. Effect of sildenafil citrate on blood pressure and heart rate in men with erectile dysfunction taking concomitant antihypertensive medication. J. Hypertens., 2000, 18(12), 1865-1869.
[http://dx.doi.org/10.1097/00004872-200018120-00022] [PMID: 11132612]
[51]
Ghofrani, H.A.; Osterloh, I.H.; Grimminger, F. Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond. Nat. Rev. Drug Discov., 2006, 5(8), 689-702.
[http://dx.doi.org/10.1038/nrd2030] [PMID: 16883306]
[52]
Jayakanthan, M.; Chandrasekar, S.; Muthukumaran, J.; Mathur, P.P. Analysis of CYP3A4-HIV-1 protease drugs interactions by computational methods for Highly Active Antiretroviral Therapy in HIV/AIDS. J. Mol. Graph. Model., 2010, 28(5), 455-463.
[http://dx.doi.org/10.1016/j.jmgm.2009.10.005] [PMID: 19931478]
[53]
Aschmann, Y.Z.; Kummer, O.; Linka, A.; Wenk, M.; Azzola, A.; Bodmer, M.; Krähenbühl, S.; Haschke, M. Pharmacokinetics and pharmacodynamics of sildenafil in a patient treated with human immunodeficiency virus protease inhibitors. Ther. Drug Monit., 2008, 30(1), 130-134.
[http://dx.doi.org/10.1097/FTD.0b013e318165ba71] [PMID: 18223477]
[54]
Hedaya, M.A.; El-Afify, D.R.; El-Maghraby, G.M. The effect of ciprofloxacin and clarithromycin on sildenafil oral bioavailability in human volunteers. Biopharm. Drug Dispos., 2006, 27(2), 103-110.
[http://dx.doi.org/10.1002/bdd.488] [PMID: 16372380]
[55]
Merry, C.; Barry, M.G.; Ryan, M.; Tjia, J.F.; Hennessy, M.; Eagling, V.A.; Mulcahy, F.; Back, D.J. Interaction of sildenafil and indinavir when co-administered to HIV-positive patients. AIDS, 1999, 13(15), F101-F107.
[http://dx.doi.org/10.1097/00002030-199910220-00001] [PMID: 10546851]
[56]
Muirhead, G.J.; Wulff, M.B.; Fielding, A.; Kleinermans, D.; Buss, N. Pharmacokinetic interactions between sildenafil and saquinavir/ritonavir. Br. J. Clin. Pharmacol., 2000, 50(2), 99-107.
[http://dx.doi.org/10.1046/j.1365-2125.2000.00245.x] [PMID: 10930961]
[57]
Muirhead, G.J.; Faulkner, S.; Harness, J.A.; Taubel, J. The effects of steady-state erythromycin and azithromycin on the pharmacokinetics of sildenafil in healthy volunteers. Br. J. Clin. Pharmacol., 2002, 53(Suppl. 1), 37S-43S.
[http://dx.doi.org/10.1046/j.0306-5251.2001.00031.x] [PMID: 11879258]
[58]
Paul, G.A.; Gibbs, J.S.; Boobis, A.R.; Abbas, A.; Wilkins, M.R. Bosentan decreases the plasma concentration of sildenafil when coprescribed in pulmonary hypertension. Br. J. Clin. Pharmacol., 2005, 60(1), 107-112.
[http://dx.doi.org/10.1111/j.1365-2125.2005.02383.x] [PMID: 15963102]
[59]
Ji, H.; Shen, H.; Uhanova, J.; Zhang, M.; Minuk, G.Y.; Gong, Y. Effects of sildenafil citrate on hepatic function and regeneration in normal and alcohol-fed rats. Liver Int., 2005, 25(4), 913-919.
[http://dx.doi.org/10.1111/j.1478-3231.2005.01061.x] [PMID: 15998444]
[60]
Sekar, V.; Lefebvre, E.; De Marez, T.; De Pauw, M.; De Paepe, E.; Vangeneugden, T.; Hoetelmans, R.M. Effect of repeated doses of darunavir plus low-dose ritonavir on the pharmacokinetics of sildenafil in healthy male subjects: phase I randomized, open-label, two-way crossover study. Clin. Drug Investig., 2008, 28(8), 479-485.
[http://dx.doi.org/10.2165/00044011-200828080-00002] [PMID: 18598093]
[61]
Jetter, A.; Kinzig-Schippers, M.; Walchner-Bonjean, M.; Hering, U.; Bulitta, J.; Schreiner, P.; Sörgel, F.; Fuhr, U. Effects of grapefruit juice on the pharmacokinetics of sildenafil. Clin. Pharmacol. Ther., 2002, 71(1), 21-29.
[http://dx.doi.org/10.1067/mcp.2002.121236] [PMID: 11823754]
[62]
Lee, M.; Min, D.I. Determination of sildenafil citrate in plasma by high-performance liquid chromatography and a case for the potential interaction of grapefruit juice with sildenafil citrate. Ther. Drug Monit., 2001, 23(1), 21-26.
[http://dx.doi.org/10.1097/00007691-200102000-00005] [PMID: 11206038]
[63]
Frost, A.; Badesch, D.; Gibbs, J.S.R.; Gopalan, D.; Khanna, D.; Manes, A.; Oudiz, R.; Satoh, T.; Torres, F.; Torbicki, A. Diagnosis of pulmonary hypertension. Eur. Respir. J., 2019, 53(1), 1801904.
[http://dx.doi.org/10.1183/13993003.01904-2018] [PMID: 30545972]
[64]
Jing, Z.C.; Xu, X.Q.; Han, Z.Y.; Wu, Y.; Deng, K.W.; Wang, H.; Wang, Z.W.; Cheng, X.S.; Xu, B.; Hu, S.S.; Hui, R.T.; Yang, Y.J. Registry and survival study in Chinese patients with idiopathic and familial pulmonary arterial hypertension. Chest, 2007, 132(2), 373-379.
[http://dx.doi.org/10.1378/chest.06-2913] [PMID: 17400671]
[65]
Guignabert, C.; Tu, L.; Le Hiress, M.; Ricard, N.; Sattler, C.; Seferian, A.; Huertas, A.; Humbert, M.; Montani, D. Pathogenesis of pulmonary arterial hypertension: lessons from cancer. Eur. Respir. Rev., 2013, 22(130), 543-551.
[http://dx.doi.org/10.1183/09059180.00007513] [PMID: 24293470]
[66]
Humbert, M.; Sitbon, O.; Simonneau, G. Treatment of pulmonary arterial hypertension. N. Engl. J. Med., 2004, 351(14), 1425-1436.
[http://dx.doi.org/10.1056/NEJMra040291] [PMID: 15459304]
[67]
Black, S.M.; Kumar, S.; Wiseman, D.; Ravi, K.; Wedgwood, S.; Ryzhov, V.; Fineman, J.R. Pediatric pulmonary hypertension: Roles of endothelin-1 and nitric oxide. Clin. Hemorheol. Microcirc., 2007, 37(1-2), 111-120.
[PMID: 17641401]
[68]
Prins, K.W.; Thenappan, T. World Health Organization Group I Pulmonary Hypertension: Epidemiology and Pathophysiology. Cardiol. Clin., 2016, 34(3), 363-374.
[http://dx.doi.org/10.1016/j.ccl.2016.04.001] [PMID: 27443134]
[69]
Matsubara, H.; Ogawa, A. Treatment of idiopathic/hereditary pulmonary arterial hypertension. J. Cardiol., 2014, 64(4), 243-249.
[http://dx.doi.org/10.1016/j.jjcc.2014.06.009] [PMID: 25082294]
[70]
Stewart, D.J.; Levy, R.D.; Cernacek, P.; Langleben, D. Increased plasma endothelin-1 in pulmonary hypertension: marker or mediator of disease? Ann. Intern. Med., 1991, 114(6), 464-469.
[http://dx.doi.org/10.7326/0003-4819-114-6-464] [PMID: 1994793]
[71]
Miyauchi, T.; Yorikane, R.; Sakai, S.; Sakurai, T.; Okada, M.; Nishikibe, M.; Yano, M.; Yamaguchi, I.; Sugishita, Y.; Goto, K. Contribution of endogenous endothelin-1 to the progression of cardiopulmonary alterations in rats with monocrotaline-induced pulmonary hypertension. Circ. Res., 1993, 73(5), 887-897.
[http://dx.doi.org/10.1161/01.RES.73.5.887] [PMID: 8403258]
[72]
Giaid, A.; Yanagisawa, M.; Langleben, D.; Michel, R.P.; Levy, R.; Shennib, H.; Kimura, S.; Masaki, T.; Duguid, W.P.; Stewart, D.J. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N. Engl. J. Med., 1993, 328(24), 1732-1739.
[http://dx.doi.org/10.1056/NEJM199306173282402] [PMID: 8497283]
[73]
Miyamoto, S.; Nagaya, N.; Satoh, T.; Kyotani, S.; Sakamaki, F.; Fujita, M.; Nakanishi, N.; Miyatake, K. Clinical correlates and prognostic significance of six-minute walk test in patients with primary pulmonary hypertension. Comparison with cardiopulmonary exercise testing. Am. J. Respir. Crit. Care Med., 2000, 161(2 Pt 1), 487-492.
[http://dx.doi.org/10.1164/ajrccm.161.2.9906015] [PMID: 10673190]
[74]
Savarese, G.; Paolillo, S.; Costanzo, P.; D’Amore, C.; Cecere, M.; Losco, T.; Musella, F.; Gargiulo, P.; Marciano, C.; Perrone-Filardi, P. Do changes of 6-minute walk distance predict clinical events in patients with pulmonary arterial hypertension? A meta-analysis of 22 randomized trials. J. Am. Coll. Cardiol., 2012, 60(13), 1192-1201.
[http://dx.doi.org/10.1016/j.jacc.2012.01.083] [PMID: 22995024]
[75]
Gabler, N.B.; French, B.; Strom, B.L.; Palevsky, H.I.; Taichman, D.B.; Kawut, S.M.; Halpern, S.D. Validation of 6-minute walk distance as a surrogate end point in pulmonary arterial hypertension trials. Circulation, 2012, 126(3), 349-356.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.105890] [PMID: 22696079]
[76]
Hashimoto, H.; Negishi, M.; Ichikawa, A. Identification of a prostacyclin receptor coupled to the adenylate cyclase system via a stimulatory GTP-binding protein in mouse mastocytoma P-815 cells. Prostaglandins, 1990, 40(5), 491-505.
[http://dx.doi.org/10.1016/0090-6980(90)90111-8] [PMID: 1701557]
[77]
Loesberg, C.; van Wijk, R.; Zandbergen, J.; van Aken, W.G.; van Mourik, J.A.; de Groot, P.G. Cell cycle-dependent inhibition of human vascular smooth muscle cell proliferation by prostaglandin E1. Exp. Cell Res., 1985, 160(1), 117-125.
[http://dx.doi.org/10.1016/0014-4827(85)90241-1] [PMID: 2995091]
[78]
Parikh, V.; Bhardwaj, A.; Nair, A. Pharmacotherapy for pulmonary arterial hypertension. J. Thorac. Dis., 2019, 11(Suppl. 14), S1767-S1781.
[http://dx.doi.org/10.21037/jtd.2019.09.14] [PMID: 31632754]
[79]
Kitterman, N.; Poms, A.; Miller, D.P.; Lombardi, S.; Farber, H.W.; Barst, R.J. Bloodstream infections in patients with pulmonary arterial hypertension treated with intravenous prostanoids: insights from the REVEAL REGISTRY®. Mayo Clin. Proc., 2012, 87(9), 825-834.
[http://dx.doi.org/10.1016/j.mayocp.2012.05.014] [PMID: 22883740]
[80]
Del Pozo, R.; Hernandez Gonzalez, I.; Escribano-Subias, P. The prostacyclin pathway in pulmonary arterial hypertension: a clinical review. Expert Rev. Respir. Med., 2017, 11(6), 491-503.
[http://dx.doi.org/10.1080/17476348.2017.1317599] [PMID: 28399721]
[81]
Santos-Ribeiro, D.; Mendes-Ferreira, P.; Maia-Rocha, C.; Adão, R.; Leite-Moreira, A.F.; Brás-Silva, C. Pulmonary arterial hypertension: basic knowledge for clinicians. Arch. Cardiovasc. Dis., 2016, 109(10), 550-561.
[http://dx.doi.org/10.1016/j.acvd.2016.03.004] [PMID: 27595464]
[82]
Dwyer, N.; Kilpatrick, D. Bosentan for the treatment of adult pulmonary hypertension. Future Cardiol., 2011, 7(1), 19-37.
[http://dx.doi.org/10.2217/fca.10.114] [PMID: 21174507]
[83]
Pesto, S.; Begic, Z.; Prevljak, S.; Pecar, E.; Kukavica, N.; Begic, E. Pulmonary hypertension - new trends of diagnostic and therapy. Med. Arh., 2016, 70(4), 303-307.
[http://dx.doi.org/10.5455/medarh.2016.70.303-307] [PMID: 27703295]
[84]
Gatfield, J.; Mueller Grandjean, C.; Sasse, T.; Clozel, M.; Nayler, O. Slow receptor dissociation kinetics differentiate macitentan from other endothelin receptor antagonists in pulmonary arterial smooth muscle cells. PLoS One, 2012, 7(10), e47662.
[http://dx.doi.org/10.1371/journal.pone.0047662] [PMID: 23077657]
[85]
Patel, T.; McKeage, K. Macitentan: first global approval. Drugs, 2014, 74(1), 127-133.
[http://dx.doi.org/10.1007/s40265-013-0156-6] [PMID: 24297706]
[86]
Belge, C.; Delcroix, M. Treatment of pulmonary arterial hypertension with the dual endothelin receptor antagonist macitentan: clinical evidence and experience. Ther. Adv. Respir. Dis., 2019, 13, 1753466618823440.
[http://dx.doi.org/10.1177/1753466618823440] [PMID: 30736726]
[87]
Correale, M.; Ferraretti, A.; Monaco, I.; Grazioli, D.; Di Biase, M.; Brunetti, N.D. Endothelin-receptor antagonists in the management of pulmonary arterial hypertension: where do we stand? Vasc. Health Risk Manag., 2018, 14, 253-264.
[http://dx.doi.org/10.2147/VHRM.S133921] [PMID: 30323613]
[88]
Rivera-Lebron, B.N.; Risbano, M.G. Ambrisentan: a review of its use in pulmonary arterial hypertension. Ther. Adv. Respir. Dis., 2017, 11(6), 233-244.
[http://dx.doi.org/10.1177/1753465817696040] [PMID: 28425346]
[89]
Wharton, J.; Strange, J.W.; Møller, G.M.; Growcott, E.J.; Ren, X.; Franklyn, A.P.; Phillips, S.C.; Wilkins, M.R. Antiproliferative effects of phosphodiesterase type 5 inhibition in human pulmonary artery cells. Am. J. Respir. Crit. Care Med., 2005, 172(1), 105-113.
[http://dx.doi.org/10.1164/rccm.200411-1587OC] [PMID: 15817798]
[90]
Tantini, B.; Manes, A.; Fiumana, E.; Pignatti, C.; Guarnieri, C.; Zannoli, R.; Branzi, A.; Galié, N. Antiproliferative effect of sildenafil on human pulmonary artery smooth muscle cells. Basic Res. Cardiol., 2005, 100(2), 131-138.
[http://dx.doi.org/10.1007/s00395-004-0504-5] [PMID: 15739122]
[91]
Haynes, J., Jr; Kithas, P.A.; Taylor, A.E.; Strada, S.J. Selective inhibition of cGMP-inhibitable cAMP phosphodiesterase decreases pulmonary vasoreactivity. Am. J. Physiol., 1991, 261(2 Pt 2), H487-H492.
[http://dx.doi.org/10.1152/ajpheart.1991.261.2.h487] [PMID: 1652213]
[92]
Sebkhi, A.; Strange, J.W.; Phillips, S.C.; Wharton, J.; Wilkins, M.R. Phosphodiesterase type 5 as a target for the treatment of hypoxia-induced pulmonary hypertension. Circulation, 2003, 107(25), 3230-3235.
[http://dx.doi.org/10.1161/01.CIR.0000074226.20466.B1] [PMID: 12796132]
[93]
Schermuly, R.T.; Kreisselmeier, K.P.; Ghofrani, H.A.; Yilmaz, H.; Butrous, G.; Ermert, L.; Ermert, M.; Weissmann, N.; Rose, F.; Guenther, A.; Walmrath, D.; Seeger, W.; Grimminger, F. Chronic sildenafil treatment inhibits monocrotaline-induced pulmonary hypertension in rats. Am. J. Respir. Crit. Care Med., 2004, 169(1), 39-45.
[http://dx.doi.org/10.1164/rccm.200302-282OC] [PMID: 12958054]
[94]
Prasad, S.; Wilkinson, J.; Gatzoulis, M.A. Sildenafil in primary pulmonary hypertension. N. Engl. J. Med., 2000, 343(18), 1342.
[http://dx.doi.org/10.1056/NEJM200011023431814] [PMID: 11183578]
[95]
Michelakis, E.; Tymchak, W.; Lien, D.; Webster, L.; Hashimoto, K.; Archer, S. Oral sildenafil is an effective and specific pulmonary vasodilator in patients with pulmonary arterial hypertension: comparison with inhaled nitric oxide. Circulation, 2002, 105(20), 2398-2403.
[http://dx.doi.org/10.1161/01.CIR.0000016641.12984.DC] [PMID: 12021227]
[96]
Barnes, H.; Brown, Z.; Burns, A.; Williams, T. Phosphodiesterase 5 inhibitors for pulmonary hypertension. Cochrane Database Syst. Rev., 2019, 1(1), CD012621.
[http://dx.doi.org/10.1002/14651858.cd012621.pub2] [PMID: 30701543]
[97]
Galiè, N.; Ghofrani, H.A.; Torbicki, A.; Barst, R.J.; Rubin, L.J.; Badesch, D.; Fleming, T.; Parpia, T.; Burgess, G.; Branzi, A.; Grimminger, F.; Kurzyna, M.; Simonneau, G. Use in Pulmonary Arterial Hypertension (SUPER) Study Group. Sildenafil citrate therapy for pulmonary arterial hypertension. N. Engl. J. Med., 2005, 353(20), 2148-2157.
[http://dx.doi.org/10.1056/NEJMoa050010] [PMID: 16291984]
[98]
Rubin, L.J.; Badesch, D.B.; Fleming, T.R.; Galiè, N.; Simonneau, G.; Ghofrani, H.A.; Oakes, M.; Layton, G.; Serdarevic-Pehar, M.; McLaughlin, V.V.; Barst, R.J. SUPER-2 Study Group. Long-term treatment with sildenafil citrate in pulmonary arterial hypertension: the SUPER-2 study. Chest, 2011, 140(5), 1274-1283.
[http://dx.doi.org/10.1378/chest.10-0969] [PMID: 21546436]
[99]
Ghofrani, H.A.; Wiedemann, R.; Rose, F.; Olschewski, H.; Schermuly, R.T.; Weissmann, N.; Seeger, W.; Grimminger, F. Combination therapy with oral sildenafil and inhaled iloprost for severe pulmonary hypertension. Ann. Intern. Med., 2002, 136(7), 515-522.
[http://dx.doi.org/10.7326/0003-4819-136-7-200204020-00008] [PMID: 11926786]
[100]
Cavalla, D. Scientific commercial value of drug repurposing. In:Drug Repositioning- Approaches and Applications for Neurotherapeutics; Dudley, J.; Berliocchi, L.E., Eds.; Taylor & Francis Group: Abingdon, 2017, Vol. 1, pp. 3-22.
[http://dx.doi.org/10.4324/9781315373669-1]
[101]
Galiè, N.; Manes, A.; Negro, L.; Palazzini, M.; Bacchi-Reggiani, M.L.; Branzi, A. A meta-analysis of randomized controlled trials in pulmonary arterial hypertension. Eur. Heart J., 2009, 30(4), 394-403.
[http://dx.doi.org/10.1093/eurheartj/ehp022] [PMID: 19155250]
[102]
Sastry, B.K.; Raju, B.S.; Narasimhan, C.; Prakash, G.S.; Reddy, N.K.; Ananad, B. Sildenafil improves survival in idiopathic pulmonary arterial hypertension. Indian Heart J., 2007, 59(4), 336-341.
[PMID: 19126939]
[103]
Li, X.; Li, T. Combined methods (formal adjusted indirect comparison, meta-analysis and principal component analysis) comparisons of the safety and efficacy of ambrisentan, bosentan, and sildenafil in the patients with pulmonary arterial hypertension. Front. Pharmacol., 2020, 11, 400.
[http://dx.doi.org/10.3389/fphar.2020.00400] [PMID: 32308623]
[104]
Steinhorn, R.H.; Abman, S.H. Chapter 52 - persistent pulmonary hypertension. In: Avery’s Diseases of the Newborn; Gleason, C.A.; Devaskar, S.U., Ed Elsevier: Amsterdam. 2012, 732-740.
[http://dx.doi.org/10.1016/B978-1-4377-0134-0.10052-6]
[105]
Kinsella, J.P.; Abman, S.H. Recent developments in the pathophysiology and treatment of persistent pulmonary hypertension of the newborn. J. Pediatr., 1995, 126(6), 853-864.
[http://dx.doi.org/10.1016/S0022-3476(95)70197-4] [PMID: 7776084]
[106]
Storme, L.; Aubry, E.; Rakza, T.; Houeijeh, A.; Debarge, V.; Tourneux, P.; Deruelle, P.; Pennaforte, T. French Congenital Diaphragmatic Hernia Study Group. Pathophysiology of persistent pulmonary hypertension of the newborn: impact of the perinatal environment. Arch. Cardiovasc. Dis., 2013, 106(3), 169-177.
[http://dx.doi.org/10.1016/j.acvd.2012.12.005] [PMID: 23582679]
[107]
Ivy, D.D.; Kinsella, J.P.; Abman, S.H. Physiologic characterization of endothelin A and B receptor activity in the ovine fetal pulmonary circulation. J. Clin. Invest., 1994, 93(5), 2141-2148.
[http://dx.doi.org/10.1172/JCI117210] [PMID: 8182146]
[108]
Pedersen, J.; Hedegaard, E.R.; Simonsen, U.; Krüger, M.; Infanger, M.; Grimm, D. Current and future treatments for persistent pulmonary hypertension in the newborn. Basic Clin. Pharmacol. Toxicol., 2018, 123(4), 392-406.
[http://dx.doi.org/10.1111/bcpt.13051] [PMID: 29855164]
[109]
Chambers, C.D.; Hernandez-Diaz, S.; Van Marter, L.J.; Werler, M.M.; Louik, C.; Jones, K.L.; Mitchell, A.A. Selective serotonin-reuptake inhibitors and risk of persistent pulmonary hypertension of the newborn. N. Engl. J. Med., 2006, 354(6), 579-587.
[http://dx.doi.org/10.1056/NEJMoa052744] [PMID: 16467545]
[110]
Alano, M.A.; Ngougmna, E.; Ostrea, E.M. Jr.; Konduri, G.G. Analysis of nonsteroidal antiinflammatory drugs in meconium and its relation to persistent pulmonary hypertension of the newborn. Pediatrics, 2001, 107(3), 519-523.
[http://dx.doi.org/10.1542/peds.107.3.519] [PMID: 11230592]
[111]
Shu, L.P.; Zhang, R.H.; Cai, Y.H.; Zhou, J.B.; Yang, J.K.; Qi, L. Maternal diabetes mellitus and persistent pulmonary hypertension of the newborn: accumulated evidence from observational studies. Can. J. Diabetes, 2020, 44(4), 327-334.e3.
[http://dx.doi.org/10.1016/j.jcjd.2019.10.002]] [PMID: 31902718]
[112]
Mathew, B.; Lakshminrusimha, S. Persistent pulmonary hypertension in the newborn. Children (Basel), 2017, 4(8), 63.
[http://dx.doi.org/10.3390/children4080063] [PMID: 28788074]
[113]
Abman, S.H. New developments in the pathogenesis and treatment of neonatal pulmonary hypertension. Pediatr. Pulmonol. Suppl., 1999, 18, 201-204.
[http://dx.doi.org/10.1002/(SICI)1099-0496(1999)27: 18+<201:AID-PPUL65>3.0.CO;2-F] [PMID: 10093143]
[114]
Bendapudi, P.; Rao, G.G.; Greenough, A. Diagnosis and management of persistent pulmonary hypertension of the newborn. Paediatr. Respir. Rev., 2015, 16(3), 157-161.
[http://dx.doi.org/10.1016/j.prrv.2015.02.001]] [PMID: 25765845]
[115]
American Academy of Pediatrics. Committee on Fetus and Newborn. Use of inhaled nitric oxide. Pediatrics, 2000, 106(2 Pt 1), 344-345.
[PMID: 10920164]
[116]
Clark, R.H.; Yoder, B.A.; Sell, M.S. Prospective, randomized comparison of high-frequency oscillation and conventional ventilation in candidates for extracorporeal membrane oxygenation. J. Pediatr., 1994, 124(3), 447-454.
[http://dx.doi.org/10.1016/S0022-3476(94)70374-4] [PMID: 8120720]
[117]
Engle, W.A.; Yoder, M.C.; Andreoli, S.P.; Darragh, R.K.; Langefeld, C.D.; Hui, S.L. Controlled prospective randomized comparison of high-frequency jet ventilation and conventional ventilation in neonates with respiratory failure and persistent pulmonary hypertension. J. Perinatol., 1997, 17(1), 3-9.
[PMID: 9069056]
[118]
Walsh-Sukys, M.C.; Tyson, J.E.; Wright, L.L.; Bauer, C.R.; Korones, S.B.; Stevenson, D.K.; Verter, J.; Stoll, B.J.; Lemons, J.A.; Papile, L.A.; Shankaran, S.; Donovan, E.F.; Oh, W.; Ehrenkranz, R.A.; Fanaroff, A.A. Persistent pulmonary hypertension of the newborn in the era before nitric oxide: practice variation and outcomes. Pediatrics, 2000, 105(1 Pt 1), 14-20.
[http://dx.doi.org/10.1542/peds.105.1.14] [PMID: 10617698]
[119]
Mugford, M.; Elbourne, D.; Field, D. Extracorporeal membrane oxygenation for severe respiratory failure in newborn infants. Cochrane Database Syst. Rev., 2008, (3), CD001340.
[http://dx.doi.org/10.1002/14651858.CD001340.pub2] [PMID: 18646070]
[120]
Lazar, D.A.; Cass, D.L.; Olutoye, O.O.; Welty, S.E.; Fernandes, C.J.; Rycus, P.T.; Lee, T.C. The use of ECMO for persistent pulmonary hypertension of the newborn: a decade of experience. J. Surg. Res., 2012, 177(2), 263-267.
[http://dx.doi.org/10.1016/j.jss.2012.07.058] [PMID: 22901797]
[121]
Davis, P.J.; Firmin, R.K.; Manktelow, B.; Goldman, A.P.; Davis, C.F.; Smith, J.H.; Cassidy, J.V.; Shekerdemian, L.S. Long-term outcome following extracorporeal membrane oxygenation for congenital diaphragmatic hernia: the UK experience. J. Pediatr., 2004, 144(3), 309-315.
[http://dx.doi.org/10.1016/j.jpeds.2003.11.031] [PMID: 15001933]
[122]
Roberts, J.D., Jr; Fineman, J.R.; Morin, F.C., III; Shaul, P.W.; Rimar, S.; Schreiber, M.D.; Polin, R.A.; Zwass, M.S.; Zayek, M.M.; Gross, I.; Heymann, M.A.; Zapol, W.M. The Inhaled Nitric Oxide Study Group. Inhaled nitric oxide and persistent pulmonary hypertension of the newborn. N. Engl. J. Med., 1997, 336(9), 605-610.
[http://dx.doi.org/10.1056/NEJM199702273360902] [PMID: 9032045]
[123]
Kinsella, J.P.; Truog, W.E.; Walsh, W.F.; Goldberg, R.N.; Bancalari, E.; Mayock, D.E.; Redding, G.J.; deLemos, R.A.; Sardesai, S.; McCurnin, D.C.; Moreland, S.G.; Cutter, G.R.; Abman, S.H. Randomized, multicenter trial of inhaled nitric oxide and high-frequency oscillatory ventilation in severe, persistent pulmonary hypertension of the newborn. J. Pediatr., 1997, 131(1 Pt 1), 55-62.
[http://dx.doi.org/10.1016/S0022-3476(97)70124-0] [PMID: 9255192]
[124]
Kinsella, J.P.; McQueston, J.A.; Rosenberg, A.A.; Abman, S.H. Hemodynamic effects of exogenous nitric oxide in ovine transitional pulmonary circulation. Am. J. Physiol., 1992, 263(3 Pt 2), H875-H880.
[http://dx.doi.org/10.1152/ajpheart.1992.263.3.h875] [PMID: 1415614]
[125]
Fratacci, M.D.; Frostell, C.G.; Chen, T.Y.; Wain, J.C., Jr; Robinson, D.R.; Zapol, W.M. Inhaled nitric oxide. A selective pulmonary vasodilator of heparin-protamine vasoconstriction in sheep. Anesthesiology, 1991, 75(6), 990-999.
[http://dx.doi.org/10.1097/00000542-199112000-00011] [PMID: 1741521]
[126]
Cornfield, D.N.; Chatfield, B.A.; McQueston, J.A.; McMurtry, I.F.; Abman, S.H. Effects of birth-related stimuli on L-arginine-dependent pulmonary vasodilation in ovine fetus. Am. J. Physiol., 1992, 262(5 Pt 2), H1474-H1481.
[http://dx.doi.org/10.1152/ajpheart.1992.262.5.h1474] [PMID: 1590451]
[127]
Villamor, E.; Le Cras, T.D.; Horan, M.P.; Halbower, A.C.; Tuder, R.M.; Abman, S.H. Chronic intrauterine pulmonary hypertension impairs endothelial nitric oxide synthase in the ovine fetus. Am. J. Physiol., 1997, 272(5 Pt 1), L1013-L1020.
[http://dx.doi.org/10.1152/ajplung.1997.272.5.l1013] [PMID: 9176268]
[128]
Day, R.W.; Lynch, J.M.; White, K.S.; Ward, R.M. Acute response to inhaled nitric oxide in newborns with respiratory failure and pulmonary hypertension. Pediatrics, 1996, 98(4 Pt 1), 698-705.
[PMID: 8885949]
[129]
Barefield, E.S.; Karle, V.A.; Phillips, J.B., III; Carlo, W.A. Inhaled nitric oxide in term infants with hypoxemic respiratory failure. J. Pediatr., 1996, 129(2), 279-286.
[http://dx.doi.org/10.1016/S0022-3476(96)70255-X] [PMID: 8765628]
[130]
The Neonatal Inhaled Nitric Oxide Study Group. Inhaled nitric oxide in term and near-term infants: neurodevelopmental follow-up of the neonatal inhaled nitric oxide study group (NINOS) J. Pediatr., 2000, 136(5), 611-617.
[http://dx.doi.org/10.1067/mpd.2000.104826] [PMID: 10802492]
[131]
Clark, R.H.; Kueser, T.J.; Walker, M.W.; Southgate, W.M.; Huckaby, J.L.; Perez, J.A.; Roy, B.J.; Keszler, M.; Kinsella, J.P. Clinical Inhaled Nitric Oxide Research Group. Low-dose nitric oxide therapy for persistent pulmonary hypertension of the newborn. N. Engl. J. Med., 2000, 342(7), 469-474.
[http://dx.doi.org/10.1056/NEJM200002173420704] [PMID: 10675427]
[132]
The Franco-Belgium Collaborative NO Trial Group. Early compared with delayed inhaled nitric oxide in moderately hypoxaemic neonates with respiratory failure: a randomised controlled trial. Lancet, 1999, 354(9184), 1066-1071.
[http://dx.doi.org/10.1016/S0140-6736(99)03309-7] [PMID: 10509497]
[133]
Heal, C.A.; Spencer, S.A. Methaemoglobinaemia with high-dose nitric oxide administration. Acta Paediatr., 1995, 84(11), 1318-1319.
[http://dx.doi.org/10.1111/j.1651-2227.1995.tb13558.x] [PMID: 8580636]
[134]
Kinsella, J.P.; Steinhorn, R.H.; Krishnan, U.S.; Feinstein, J.A.; Adatia, I.; Austin, E.D.; Rosenzweig, E.B.; Everett, A.D.; Fineman, J.R.; Hanna, B.D.; Hopper, R.K.; Humpl, T.; Ivy, D.D.; Keller, R.L.; Mullen, M.P.; Raj, J.U.; Wessel, D.L.; Abman, S.H. Recommendations for the use of inhaled nitric oxide therapy in premature newborns with severe pulmonary hypertension. J. Pediatr., 2016, 170, 312-314.
[http://dx.doi.org/10.1016/j.jpeds.2015.11.050] [PMID: 26703869]
[135]
Davidson, D.; Barefield, E.S.; Kattwinkel, J.; Dudell, G.; Damask, M.; Straube, R.; Rhines, J.; Chang, C.T. The I-NO/PPHN Study Group. Inhaled nitric oxide for the early treatment of persistent pulmonary hypertension of the term newborn: a randomized, double-masked, placebo-controlled, dose-response, multicenter study. Pediatrics, 1998, 101(3 Pt 1), 325-334.
[http://dx.doi.org/10.1542/peds.101.3.325] [PMID: 9480993]
[136]
Lakshminrusimha, S.; Mathew, B.; Leach, C.L. Pharmacologic strategies in neonatal pulmonary hypertension other than nitric oxide. Semin. Perinatol., 2016, 40(3), 160-173.
[http://dx.doi.org/10.1053/j.semperi.2015.12.004] [PMID: 26778236]
[137]
Davidson, D.; Barefield, E.S.; Kattwinkel, J.; Dudell, G.; Damask, M.; Straube, R.; Rhines, J.; Chang, C.T.; Chang, C.T. Safety of withdrawing inhaled nitric oxide therapy in persistent pulmonary hypertension of the newborn. Pediatrics, 1999, 104(2 Pt 1), 231-236.
[http://dx.doi.org/10.1542/peds.104.2.231] [PMID: 10429000]
[138]
Shekerdemian, L.S.; Ravn, H.B.; Penny, D.J. Intravenous sildenafil lowers pulmonary vascular resistance in a model of neonatal pulmonary hypertension. Am. J. Respir. Crit. Care Med., 2002, 165(8), 1098-1102.
[http://dx.doi.org/10.1164/ajrccm.165.8.2107097] [PMID: 11956051]
[139]
Farrow, K.N.; Groh, B.S.; Schumacker, P.T.; Lakshminrusimha, S.; Czech, L.; Gugino, S.F.; Russell, J.A.; Steinhorn, R.H. Hyperoxia increases phosphodiesterase 5 expression and activity in ovine fetal pulmonary artery smooth muscle cells. Circ. Res., 2008, 102(2), 226-233.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.161463] [PMID: 17991881]
[140]
Farrow, K.N.; Lakshminrusimha, S.; Czech, L.; Groh, B.S.; Gugino, S.F.; Davis, J.M.; Russell, J.A.; Steinhorn, R.H. SOD and inhaled nitric oxide normalize phosphodiesterase 5 expression and activity in neonatal lambs with persistent pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol., 2010, 299(1), L109-L116.
[http://dx.doi.org/10.1152/ajplung.00309.2009] [PMID: 20400523]
[141]
Farrow, K.N.; Wedgwood, S.; Lee, K.J.; Czech, L.; Gugino, S.F.; Lakshminrusimha, S.; Schumacker, P.T.; Steinhorn, R.H. Mitochondrial oxidant stress increases PDE5 activity in persistent pulmonary hypertension of the newborn. Respir. Physiol. Neurobiol., 2010, 174(3), 272-281.
[http://dx.doi.org/10.1016/j.resp.2010.08.018] [PMID: 20804862]
[142]
Lee, K.J.; Berkelhamer, S.K.; Kim, G.A.; Taylor, J.M.; O’Shea, K.M.; Steinhorn, R.H.; Farrow, K.N. Disrupted pulmonary artery cyclic guanosine monophosphate signaling in mice with hyperoxia-induced pulmonary hypertension. Am. J. Respir. Cell Mol. Biol., 2014, 50(2), 369-378.
[http://dx.doi.org/10.1165/rcmb.2013-0118oc] [PMID: 24032519]
[143]
Perez, M.; Lee, K.J.; Cardona, H.J.; Taylor, J.M.; Robbins, M.E.; Waypa, G.B.; Berkelhamer, S.K.; Farrow, K.N. Aberrant cGMP signaling persists during recovery in mice with oxygen-induced pulmonary hypertension. PLoS One, 2017, 12(8), e0180957.
[http://dx.doi.org/10.1371/journal.pone.0180957] [PMID: 28792962]
[144]
Cruz-Blanquel, A.; Espinosa-Oropeza, A.; Romo-Hernández, G.; Carrillo-Alarcón, L.; Ponce-Monter, H.; Ortiz, M.I. Persistent pulmonary hypertension in the newborn: therapeutic effect of sildenafil. Proc. West. Pharmacol. Soc., 2008, 51, 73-77.
[PMID: 19544683]
[145]
Baquero, H.; Soliz, A.; Neira, F.; Venegas, M.E.; Sola, A. Oral sildenafil in infants with persistent pulmonary hypertension of the newborn: a pilot randomized blinded study. Pediatrics, 2006, 117(4), 1077-1083.
[http://dx.doi.org/10.1542/peds.2005-0523] [PMID: 16585301]
[146]
Vargas-Origel, A.; Gómez-Rodríguez, G.; Aldana-Valenzuela, C.; Vela-Huerta, M.M.; Alarcón-Santos, S.B.; Amador-Licona, N. The use of sildenafil in persistent pulmonary hypertension of the newborn. Am. J. Perinatol., 2010, 27(3), 225-230.
[http://dx.doi.org/10.1055/s-0029-1239496] [PMID: 19866403]
[147]
Sayed, A.; Bisheer, N. Outcome of oral sildenafil in neonatal persistent pulmonary hypertension of non-cardiac causes. J. Neonatal Perinatal Med., 2015, 8(3), 215-220.
[http://dx.doi.org/10.3233/NPM-15814137] [PMID: 26485555]
[148]
Hussain, A.S.; Ali, R.; Ahmed, S.; Naz, F.; Haroon, A. Oral sildenafil use in neonates with persistent pulmonary hypertension of newborn. J. Ayub Med. Coll. Abbottabad, 2017, 29(4), 677-680.
[PMID: 29331003]
[149]
Steinhorn, R.H.; Kinsella, J.P.; Pierce, C.; Butrous, G.; Dilleen, M.; Oakes, M.; Wessel, D.L. Intravenous sildenafil in the treatment of neonates with persistent pulmonary hypertension. J. Pediatr., 2009, 155(6), 841-847.e1.
[http://dx.doi.org/10.1016/j.jpeds.2009.06.012] [PMID: 19836028]
[150]
Stultz, J.S.; Puthoff, T.; Backes, C., Jr; Nahata, M.C. Intermittent intravenous sildenafil for pulmonary hypertension management in neonates and infants. Am. J. Health Syst. Pharm., 2013, 70(5), 407-413.
[http://dx.doi.org/10.2146/ajhp120364] [PMID: 23413163]
[151]
Nakwan, N.; Chaiwiriyawong, P. An international survey on persistent pulmonary hypertension of the newborn: a need for an evidence-based management. J. Neonatal Perinatal Med., 2016, 9(3), 243-250.
[http://dx.doi.org/10.3233/NPM-16915133] [PMID: 27589551]
[152]
Liu, G.; Wu, H-W.; Li, Z-G. Study on sildenafil combined with inhalational nitric oxide therapy on the curative effects and serum levels of HIF-1α, ET-1, and calcium in neonatal pulmonary hypertension. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(14), 4683-4690.
[http://dx.doi.org/10.26355/eurrev_201807_15529] [PMID: 30058708]
[153]
Mourani, P.M.; Sontag, M.K.; Ivy, D.D.; Abman, S.H. Effects of long-term sildenafil treatment for pulmonary hypertension in infants with chronic lung disease. J. Pediatr., 2009, 154(3), 379-384. 384.e1-384.e2.
[http://dx.doi.org/10.1016/j.jpeds.2008.09.021] [PMID: 18950791]
[154]
Noori, S.; Friedlich, P.; Wong, P.; Garingo, A.; Seri, I. Cardiovascular effects of sildenafil in neonates and infants with congenital diaphragmatic hernia and pulmonary hypertension. Neonatology, 2007, 91(2), 92-100.
[http://dx.doi.org/10.1159/000097125] [PMID: 17344658]
[155]
Bialkowski, A.; Moenkemeyer, F.; Patel, N. Intravenous sildenafil in the management of pulmonary hypertension associated with congenital diaphragmatic hernia. Eur. J. Pediatr. Surg., 2015, 25(2), 171-176.
[http://dx.doi.org/10.1055/s-0033-1357757] [PMID: 24163194]
[156]
Kipfmueller, F.; Schroeder, L.; Berg, C.; Heindel, K.; Bartmann, P.; Mueller, A. Continuous intravenous sildenafil as an early treatment in neonates with congenital diaphragmatic hernia. Pediatr. Pulmonol., 2018, 53(4), 452-460.
[http://dx.doi.org/10.1002/ppul.23935] [PMID: 29316358]
[157]
Russo, F.M.; De Bie, F.; Hodges, R.; Flake, A.; Deprest, J. Sildenafil for antenatal treatment of congenital diaphragmatic hernia: from bench to bedside. Curr. Pharm. Des., 2019, 25(5), 601-608.
[http://dx.doi.org/10.2174/1381612825666190320151856]] [PMID: 30894101]
[158]
Russo, F.M.; Benachi, A.; Van Mieghem, T.; De Hoon, J.; Van Calsteren, K.; Annaert, P.; Tréluyer, J.M.; Allegaert, K.; Deprest, J. Antenatal sildenafil administration to prevent pulmonary hypertension in congenital diaphragmatic hernia (SToP-PH): study protocol for a phase I/IIb placenta transfer and safety study. Trials, 2018, 19(1), 524.
[http://dx.doi.org/10.1186/s13063-018-2897-8] [PMID: 30261903]
[159]
Nyp, M.; Sandritter, T.; Poppinga, N.; Simon, C.; Truog, W.E. Sildenafil citrate, bronchopulmonary dysplasia and disordered pulmonary gas exchange: any benefits? J. Perinatol., 2012, 32(1), 64-69.
[http://dx.doi.org/10.1038/jp.2011.131 ] [PMID: 21941230]
[160]
Mukherjee, A.; Dombi, T.; Wittke, B.; Lalonde, R. Population pharmacokinetics of sildenafil in term neonates: evidence of rapid maturation of metabolic clearance in the early postnatal period. Clin. Pharmacol. Ther., 2009, 85(1), 56-63.
[http://dx.doi.org/10.1038/clpt.2008.177 ] [PMID: 18800037 ]
[161]
Gonzalez, D.; Laughon, M.M.; Smith, P.B.; Ge, S.; Ambalavanan, N.; Atz, A.; Sokol, G.M.; Hornik, C.D.; Stewart, D.; Mundakel, G.; Poindexter, B.B.; Gaedigk, R.; Mills, M.; Cohen-Wolkowiez, M.; Martz, K.; Hornik, C.P. Best Pharmaceuticals for Children Act - Pediatric Trials Network Steering Committee. Population pharmacokinetics of sildenafil in extremely premature infants. Br. J. Clin. Pharmacol., 2019, 85(12), 2824-2837.
[http://dx.doi.org/10.1111/bcp.14111 ] [PMID: 31475367. ]
[162]
Steiner, M.; Salzer, U.; Baumgartner, S.; Waldhoer, T.; Klebermass-Schrehof, K.; Wald, M.; Langgartner, M.; Berger, A. Intravenous sildenafil i.v. as rescue treatment for refractory pulmonary hypertension in extremely preterm infants. Klin. Padiatr., 2014, 226(4), 211-215.
[http://dx.doi.org/10.1055/s-0034-1375697] [PMID: 25010126]
[163]
Aboelroose, A.A.; Ibrahim, Z.M.; Madny, E.H.; Elmazzahy, A.M.; Taha, O.T. A randomized clinical trial of sildenafil plus clomiphene citrate to improve the success rate of ovulation induction in patients with unexplained infertility. Int. J. Gynaecol. Obstet., 2020, 150(1), 72-76.
[http://dx.doi.org/10.1002/ijgo.13159] [PMID: 32286686]
[164]
Nelson, K.J.; Antiquera, P.; Nelson, J.S.; Kelly, K.M.; Abi-Jaoudeh, N. Effect of long-term phosphodiesterase-5 inhibitor use on refractory lymphatic malformations in adult and teen patients. J. Vasc. Surg. Venous Lymphat. Disord., 2020, 9(1), 258-261.
[http://dx.doi.org/10.1016/j.jvsv.2020.04.001] [PMID: 32305583]
[165]
Leukes, V.; Walzl, G.; du Plessis, N. Myeloid-derived suppressor cells as target of phosphodiesterase-5 inhibitors in host-directed therapeutics for tuberculosis. Front. Immunol., 2020, 11, 451.
[http://dx.doi.org/10.3389/fimmu.2020.00451] [PMID: 32269568]
[166]
Keats, T.; Rosengren, R.J.; Ashton, J.C. the rationale for repurposing sildenafil for lung cancer treatment. Anticancer. Agents Med. Chem., 2018, 18(3), 367-374.
[http://dx.doi.org/10.2174/1871520617666171103100959] [PMID: 29110626]
[167]
Ribaudo, G.; Pagano, M.A.; Bova, S.; Zagotto, G. New therapeutic applications of phosphodiesterase 5 inhibitors (PDE5-Is). Curr. Med. Chem., 2016, 23(12), 1239-1249.
[http://dx.doi.org/10.2174/0929867323666160428110059] [PMID: 27121186]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy