Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Interaction of Human Alpha-2-Macroglobulin with Pesticide Aldicarb Using Spectroscopy and Molecular Docking

Author(s): Swati Dixit, Mohammad Khalid Zia, Tooba Siddiqui, Haseeb Ahsan and Fahim Halim Khan*

Volume 28, Issue 3, 2021

Published on: 21 September, 2020

Page: [315 - 322] Pages: 8

DOI: 10.2174/0929866527666200921165834

Price: $65

Abstract

Background: Aldicarb is a carbamate pesticide commercially used in potato crop production. Once it enters human body, it interacts with diverse proteins and other substances.

Objective: Aldicarb is toxic to human health and it is also a cholinesterase inhibitor, which prevents the breakdown of acetylcholine in synapse. Human alpha-2-macroglobulin (α2M), is a large tetrameric glycoprotein of 720 kDa with antiproteinase activity, found abundantly in plasma.

Methods: In the present study, the interaction of aldicarb with alpha-2-macroglobulin was explored utilizing various spectroscopic techniques and molecular docking studies.

Results: UV-vis and fluorescence spectroscopy suggests the formation of a complex between aldicarb and α2M apparent by increased absorbance and decreased fluorescence with static quenching mode. CD spectroscopy indicates a slight change in the structure of alpha-2-macroglobulin. Docking studies confirm the interaction of aldicarb with Pro- 1391, Leu-1392, Lys-1393, Val-1396, Lys- 1397, Thr-1408, Glu-1409, Val-1410, Asp-282 and Glu-281 in the receptor binding domain at the C-terminal of the alpha 2 macroglobulin.

Discussion: In this work, aldicarb is shown to bind with alpha 2-macroglobulin at receptor binding domain which is the binding site for various extracellular and intracellular ligand too. Also, affecting the functional activity of the protein may lead to further physiological consequences.

Conclusion: It is possible that aldicarb binds and compromises antiproteinase activity of α2M and binding properties by inducing changes in the secondary structure of the protein.

Keywords: Pesticides, aldicarb, alpha 2-macroglobulin, anti-proteinase, receptor binding domain, pesticide.

Graphical Abstract

[1]
Silberman, J.; Taylor, A. Carbamate Toxicity; Stat Pearls Treasure Island: FL, 2019.
[2]
Baron, R.L. A carbamate insecticide: a case study of aldicarb. Environ. Health Perspect., 1994, 102(Suppl. 11), 23-27.
[http://dx.doi.org/10.1289/ehp.94102s1123] [PMID: 7737038]
[3]
Ritter, W.F. Pesticide contamination of ground water in the United States--a review. J. Environ. Sci. Health B, 1990, 25(1), 1-29.
[http://dx.doi.org/10.1080/03601239009372674] [PMID: 2187918]
[4]
Nelmes, A. J. Behavioral Responses of Heterodera rostochiensis larvae to aldicarb and its sulfoxide and sulfone J. Nematol., 1970, 2(3), 223-227.
[5]
Ntalli, N.G.; Caboni, P. Botanical nematicides: a review. J. Agric. Food Chem., 2012, 60(40), 9929-9940.
[http://dx.doi.org/10.1021/jf303107j] [PMID: 22973877]
[6]
Aldicarb. The Extension Toxicology Network. 1996. Available from: extoxnet.orst.edu
[7]
Trehy, M.L.; Yost, R.A. Determination of Aldicarb, Aldicarb Oxime, and Aldicarb Nitrile in Water by Gas Chromatography /Mass Spectrometry. Anal. Cham., 1984, 56, 1281-1285.
[http://dx.doi.org/10.1021/ac00272a020]
[8]
Guerrera, A.A. Chemical contamination of aquifers on long island, New York. J. Am. Water Works Assoc., 1981, 73(4), 190-199.
[http://dx.doi.org/10.1002/j.1551-8833.1981.tb04679.x]
[9]
Zaki, M.H.; Moran, D.; Harris, D. Pesticides in groundwater: the aldicarb story in Suffolk County, NY. Am. J. Public Health, 1982, 72(12), 1391-1395.
[http://dx.doi.org/10.2105/AJPH.72.12.1391] [PMID: 7137437]
[10]
Bromilow, R.H.; Baker, R.J.; Martin, A.; Freeman, H.; Görög, K. The degradation of aldicarb and oxamyl in soil. Pest Manag. Sci., 1980, 11(4), 371-378.
[http://dx.doi.org/10.1002/ps.2780110402]
[11]
Vidair, C.A. Age dependence of organophosphate and carbamate neurotoxicity in the postnatal rat: extrapolation to the human. Toxicol. Appl. Pharmacol., 2004, 196(2), 287-302.
[http://dx.doi.org/10.1016/j.taap.2003.12.016] [PMID: 15081274]
[12]
Fan, A.M.; Jackson, R.J. Pesticides and food safety Regul. Toxicol. Pharmacol., 1989, 9(2), 158-174.
[13]
Ragoucy-Sengler, C.; Tracqui, A.; Chavonnet, A.; Daijardin, J.B.; Simonetti, M.; Kintz, P.; Pileire, B. Aldicarb poisoning. Hum. Exp. Toxicol., 2000, 19(12), 657-662.
[http://dx.doi.org/10.1191/096032700672133218] [PMID: 11291736]
[14]
Fiore, M.C.; Anderson, H.A.; Hong, R.; Golubjatnikov, R.; Seiser, J.E.; Nordstrom, D.; Hanrahan, L.; Belluck, D. Chronic exposure to aldicarb-contaminated groundwater and human immune function. Environ. Res., 1986, 41(2), 633-645.
[http://dx.doi.org/10.1016/S0013-9351(86)80157-8] [PMID: 3490967]
[15]
Buresova, V.; Hajdusek, O.; Franta, Z.; Sojka, D.; Kopacek, P. IrAM-An alpha2-macroglobulin from the hard tick Ixodes ricinus: characterization and function in phagocytosis of a potential pathogen Chryseobacterium indologenes. Dev. Comp. Immunol., 2009, 33(4), 489-498.
[http://dx.doi.org/10.1016/j.dci.2008.09.011] [PMID: 18948134]
[16]
Neves, D.; Estrozi, L.F.; Job, V.; Gabel, F.; Schoehn, G.; Dessen, A. Conformational states of a bacterial a2-Macroglobulin resemble those of human complement C3. PLoS One, 2012, 7, 35384.
[http://dx.doi.org/10.1371/journal.pone.0035384]
[17]
Jenner, L.; Husted, L.; Thirup, S.; Sottrup-Jensen, L.; Nyborg, J. Crystal structure of the receptor-binding domain of alpha 2-macroglobulin. Structure, 1998, 6(5), 595-604.
[http://dx.doi.org/10.1016/S0969-2126(98)00061-6] [PMID: 9634697]
[18]
Rehman, A.A.; Ahsan, H.; Khan, F.H. α-2-Macroglobulin: a physiological guardian. J. Cell. Physiol., 2013, 228(8), 1665-1675.
[http://dx.doi.org/10.1002/jcp.24266] [PMID: 23086799]
[19]
Tunç, S.; Duman, O.; Kanci Bozoğlan, B. Studies on the interactions of chloroquine diphosphate and phenelzine sulfate drugs with human serum albumin and human hemoglobin proteins by spectroscopic techniques. J. Lumin., 2013, 140, 87-94.
[http://dx.doi.org/10.1016/j.jlumin.2013.03.015]
[20]
Khan, F.H.; Mirza, M.; Saleemuddin, M. Caprine alpha-2-macroglobulin contains thiolesters of unequal reactivity. J. Biochem. Mol. Biol. Biophys., 1999, 3, 109-116.
[21]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[22]
Barrett, A.J. Alpha 2-macroglobulin. Methods Enzymol., 1981, 80(Pt C), 737-754.
[http://dx.doi.org/10.1016/S0076-6879(81)80056-0] [PMID: 6176834]
[23]
Ganrot, P.O. Determination of α-2-macroglobulin as trypsin-protein esterase. Clin. Chim. Acta, 1966, 14(4), 493-501.
[http://dx.doi.org/10.1016/0009-8981(66)90037-4] [PMID: 5971885]
[24]
Li, D.; Hong, D.; Guo, H.; Chen, J.; Ji, B. Probing the influences of urea on the interaction of sinomenine with human serum albumin by steady-state fluorescence. J. Photochem. Photobiol. B, 2012, 117, 126-131.
[http://dx.doi.org/10.1016/j.jphotobiol.2012.09.007] [PMID: 23110856]
[25]
Dewey, T.G. Biophysical and Biochemical Aspects of Fluorescence Spectroscopy; Plenum Press, New York, 1991, pp. 1-41.
[26]
Vekshin, I.L. Separation of the tyrosine and tryptophan components of fluorescence using synchronous scanning method. Biofizika, 1996, 41(6), 1176-1179.
[PMID: 9044614]
[27]
Connors, K. Binding Constants: the Measurement of Molecular Complex Stability; John Wiley & Sons: New York, 1987.
[28]
Kandagal, P.B.; Shaikh, S.M.T.; Manjunatha, D.H.; Seetharamappa, J.; Nagaralli, B.S. Spectroscopic studies on the binding of bioactive phenothiazine compounds to human serum albumin. J. Photochem. Photobiol. Chem., 2007, 189(1), 121-127.
[http://dx.doi.org/10.1016/j.jphotochem.2007.01.021]
[29]
Rehman, A.A.; Sarwar, T.; Arif, H.; Ali, S.S.; Ahsan, H.; Tabish, M.; Khan, F.H. Spectroscopic and thermodynamic studies on ferulic acid-alpha-2-macroglobulin interaction. J. Mol. Struct., 2017, 1144, 254-259.
[http://dx.doi.org/10.1016/j.molstruc.2017.05.034]
[30]
Aktar, M.W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip. Toxicol., 2009, 2(1), 1-12.
[http://dx.doi.org/10.2478/v10102-009-0001-7] [PMID: 21217838]
[31]
Employment Information: Indian Labour Statistics. 1994.
[32]
Ross, G. Risks and benefits of DDT. Lancet, 2005, 366(9499), 1771-1772.
[http://dx.doi.org/10.1016/S0140-6736(05)67722-7] [PMID: 16298212]
[33]
Killer environment. Environ. Health Perspect., 1999, 107, A62.
[34]
Burgess, J.L.; Bernstein, J.N.; Hurlbut, K. Aldicarb poisoning. A case report with prolonged cholinesterase inhibition and improvement after pralidoxime therapy. Arch. Intern. Med., 1994, 154(2), 221-224.
[http://dx.doi.org/10.1001/archinte.1994.00420020143015] [PMID: 8285817]
[35]
Weichenthal, S.; Moase, C.; Chan, P. A review of pesticide exposure and cancer incidence in the Agricultural Health Study cohort. Environ. Health Perspect., 2010, 118(8), 1117-1125.
[http://dx.doi.org/10.1289/ehp.0901731] [PMID: 20444670]
[36]
Baron, R.L.; Merriam, T.L. Toxicology of Aldicarb. In: Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, Ware G.W.; eds, Springer: New York, NY, 1988; vol. 105.
[http://dx.doi.org/978-1-4612-3876-8_1]
[37]
Tamura, A.; Sugimoto, K.; Sato, T.; Fujii, T. The effects of haematocrit, plasma protein concentration and temperature of drug-containing blood in-vitro on the concentrations of the drug in the plasma. J. Pharm. Pharmacol., 1990, 42(8), 577-580.
[http://dx.doi.org/10.1111/j.2042-7158.1990.tb07062.x] [PMID: 1981587]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy