Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

The Use of Molecular Docking and Spectroscopic Methods for Investigation of The Interaction Between Regorafenib with Human Serum Albumin (HSA) and Calf Thymus DNA (Ct-DNA) In The Presence Of Different Site Markers

Author(s): Hamid Tanzadehpanah, Hanie Mahaki, Mohammadreza Moradi, Saeid Afshar, Neda Hosseinpour Moghadam, Sadegh Salehzadeh, Rezvan Najafi, Razieh Amini and Massoud Saidijam*

Volume 28, Issue 3, 2021

Published on: 21 September, 2020

Page: [290 - 303] Pages: 14

DOI: 10.2174/0929866527666200921164536

Price: $65

Abstract

Background: Interactions of drugs with DNA and proteins may modify their biological activities and conformations, which effect transport and biological metabolism of drugs.

Objective: In this study the interaction of anticancer drug regorafenib (REG) with calf thymus-DNA (ct-DNA) and human serum albumin (HSA) has been investigated

Methods: Hence, for the first time, it was discovered interaction between REG with DNA and HSA using multi-spectroscopic, zeta potential measurements and molecular docking method.

Results and Discussion: DNA displacement studies showed that REG does not have any effect on acridine orange and methylene blue bound DNA, though it was substantiated by displacement studies with Hoechst (as groove binder). Furthermore, the different concentrations of REG induce slight changes in the viscosity of ct-DNA. Zeta potential parameters indicated that hydrophobic interaction plays a major role in the DNA-REG complex. Results obtained from molecular docking demonstrate that the REG prefers to bind on the minor groove of DNAs than that of the major groove. Binding properties of HSA reveal that intrinsic fluorescence of HSA could be quenched by REG in a static mode. The competitive experiments in the presence of warfarin and ibuprofen (as site markers) suggested that the binding site of REG to HSA was most probably located in the subdomain IIA. Measurements of the zeta potential indicated that REG bound to HSA mainly by both electrostatic and hydrophobic interactions. It was found on docking procedures that REG could fit well into HSA subdomain IIA, which confirmed the experimental results.

Conclusion: In conclusion, REG can be delivered by HSA in a circulatory system and affect DNA as potential target.

Keywords: Fluorescence spectroscopy, molecular modeling, warfarin, acridine orange, hoechst, regorafenib.

Graphical Abstract

[1]
Crona, D.J.; Keisler, M.D.; Walko, C.M. Regorafenib: a novel multitargeted tyrosine kinase inhibitor for colorectal cancer and gastrointestinal stromal tumors. Ann. Pharmacother., 2013, 47(12), 1685-1696.
[http://dx.doi.org/10.1177/1060028013509792] [PMID: 24259629]
[2]
Hwang, S.H.; Wecksler, A.T.; Zhang, G.; Morisseau, C.; Nguyen, L.V.; Fu, S.H.; Hammock, B.D. Synthesis and biological evaluation of sorafenib- and regorafenib-like sEH inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(13), 3732-3737.
[http://dx.doi.org/10.1016/j.bmcl.2013.05.011] [PMID: 23726028]
[3]
Afshar, S.; Sedighi Pashaki, A.; Naiaii, R.; Nikzad, S.; Amini, R.; Shabab, N. Cross-resistance of acquired radioresistant colorectal cancer cell line to Gefitinib and Regorafenib. Iran J. Med. Sci., 2019. [Epub ahead of print]
[PMID: 32038059]
[4]
Camaj, P.; Primo, S.; Wang, Y.; Heinemann, V.; Zhao, Y.; Laubender, R.P.; Stintzing, S.; Giessen-Jung, C.; Jung, A.; Gamba, S.; Bruns, C.J.; Modest, D.P. KRAS exon 2 mutations influence activity of regorafenib in an SW48-based disease model of colorectal cancer. Future Oncol., 2015, 11(13), 1919-1929.
[http://dx.doi.org/10.2217/fon.15.97] [PMID: 26161928]
[5]
Bahmani, A.; Tanzadehpanah, H.; Hosseinpour Moghadam, N.; Saidijam, M. Introducing a pyrazolopyrimidine as a multi-tyrosine kinase inhibitor, using multi-QSAR and docking methods. Mol. Divers., 2020. [Epub ahead of print]
[http://dx.doi.org/10.1007/s11030-020-10080-8] [PMID: 32297121]
[6]
Shahabadi, N.; Pourfoulad, M.; Moghadam, N.H. Experimental and computational studies on the effects of valganciclovir as an antiviral drug on calf thymus DNA. Nucleosides Nucleotides Nucleic Acids, 2017, 36(1), 31-48.
[http://dx.doi.org/10.1080/15257770.2016.1218019] [PMID: 27759493]
[7]
Tanzadehpanah, H.; Mahaki, H.; Moghadam, N.H.; Salehzadeh, S.; Rajabi, O.; Najafi, R. Binding site identification of anticancer drug gefitinib to HSA and DNA in the presence of five different probes. J. Biomol. Struct. Dyn., 2019, 37(4), 823-836.
[PMID: 29447084]
[8]
Shi, J-H.; Chen, J.; Wang, J.; Zhu, Y-Y. Binding interaction between sorafenib and calf thymus DNA: spectroscopic methodology, viscosity measurement and molecular docking. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 136(Pt B), 443-450.
[http://dx.doi.org/10.1016/j.saa.2014.09.056] [PMID: 25311519]
[9]
Omidvar, Z.; Parivar, K.; Sanee, H.; Amiri-Tehranizadeh, Z.; Baratian, A.; Saberi, M.R.; Asoodeh, A.; Chamani, J. Investigations with spectroscopy, zeta potential and molecular modeling of the non-cooperative behaviour between cyclophosphamide hydrochloride and aspirin upon interaction with human serum albumin: binary and ternary systems from multi-drug therapy. J. Biomol. Struct. Dyn., 2011, 29(1), 181-206.
[http://dx.doi.org/10.1080/07391102.2011.10507382] [PMID: 21696233]
[10]
Li, Y.; Wang, Q.; He, J.; Yan, J.; Li, H. Fluorescence spectroscopy and docking study in two flavonoids, isolated tectoridin and its aglycone tectorigenin, interacting with human serum albumin: a comparison study. Luminescence, 2016, 31(1), 38-46.
[http://dx.doi.org/10.1002/bio.2918] [PMID: 25920391]
[11]
Tanzadehpanah, H.; Mahaki, H.; Moradi, M.; Afshar, S.; Rajabi, O.; Najafi, R. Human serum albumin binding and synergistic effects of gefitinib in combination with regorafenib on colorectal cancer cell lines. Colorectal Cancer, 2018, 7(2), CRC03.
[http://dx.doi.org/10.2217/crc-2017-0018]
[12]
Moghadam, N.H.; Salehzadeh, S.; Tanzadehpanah, H.; Saidijam, M.; Karimi, J.; Khazalpour, S. In vitro cytotoxicity and DNA/HSA interaction study of triamterene using molecular modelling and multi-spectroscopic methods. J. Biomol. Struct. Dyn., 2018, 37(9), 2242-2253.
[PMID: 30043689]
[13]
Huang, J.; Wang, X. Spectroscopic investigations of interactions between Hematoxylin–Ag+ complex and Herring-sperm DNA with the aid of the acridine orange probe. J. Mol. Struct., 2012, 1010, 73-78.
[http://dx.doi.org/10.1016/j.molstruc.2011.11.031]
[14]
Wang, A.H-J.; Quigley, G.J.; Rich, A. Atomic resolution analysis of a 2:1 complex of CpG and acridine orange. Nucleic Acids Res., 1979, 6(12), 3879-3890.
[http://dx.doi.org/10.1093/nar/6.12.3879] [PMID: 493128]
[15]
Shahabadi, N.; Bagheri, S. Spectroscopic and molecular docking studies on the interaction of the drug olanzapine with calf thymus DNA. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 136(Pt C), 1454-1459.
[http://dx.doi.org/10.1016/j.saa.2014.10.036] [PMID: 25459706]
[16]
Moghadam, N.H.; Salehzadeh, S.; Shahabadi, N. Spectroscopic and molecular docking studies on the interaction of antiviral drug nevirapine with calf thymus DNA. Nucleosides Nucleotides Nucleic Acids, 2017, 36(9), 553-570.
[http://dx.doi.org/10.1080/15257770.2017.1346800] [PMID: 28786740]
[17]
Shi, J-H.; Liu, T-T.; Jiang, M.; Chen, J.; Wang, Q. Characterization of interaction of calf thymus DNA with gefitinib: spectroscopic methods and molecular docking. J. Photochem. Photobiol. B, 2015, 147, 47-55.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.03.005] [PMID: 25839749]
[18]
Vahidzadeh, M.; Gharanfoli, M.; Bakaeean, B.; Chamani, J.; Colchicine binding site determination in human serum albumin in the presence of aspirin using multi-spectroscopic and zeta-potential techniques. Rom. J. Biochem., 2012, 49(1), 49-102.
[19]
Sattar, Z.; Iranfar, H.; Asoodeh, A.; Saberi, M.R.; Mazhari, M.; Chamani, J. Interaction between holo transferrin and HSA-PPIX complex in the presence of lomefloxacin: an evaluation of PPIX aggregation in protein-protein interactions. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 97, 1089-1100.
[http://dx.doi.org/10.1016/j.saa.2012.07.034] [PMID: 22925987]
[20]
Tanzadehpanah, H.; Asoodeh, A.; Saidijam, M.; Chamani, J.; Mahaki, H. Improving efficiency of an angiotensin converting enzyme inhibitory peptide as multifunctional peptides. J. Biomol. Struct. Dyn., 2018, 36(14), 3803-3818.
[http://dx.doi.org/10.1080/07391102.2017.1401001] [PMID: 29173094]
[21]
Tanzadehpanah, H; Bahmani, A; Hosseinpour Moghadam, N; Gholami, H; Mahaki, H; Farmany, A. Synthesis , anticancer activity and β-lactoglobulin binding interactions of multi-targeted kinase inhibitor sorafenib tosylate (SORt) by spectroscopic and molecular modeling approaches. Luminescence, 2021, 36, 117-128.
[22]
Tanzadehpanah, H.; Asoodeh, A.; Mahaki, H.; Mostajabodave, Z.; Chamani, J.; Mojallal-Tabatabaei, Z. Bioactive and ACE binding properties of three synthetic peptides assessed by various spectroscopy techniques. Process Biochem., 2016, 51(12), 2067-2075.
[http://dx.doi.org/10.1016/j.procbio.2016.09.017]
[23]
Tanzadehpanah, H.; Asoodeh, A.; Saberi, M.R.; Chamani, J. Identification of a novel angiotensin-I converting enzyme inhibitory peptide from ostrich egg white and studying its interactions with the enzyme. Innov. Food Sci. Emerg. Technol., 2013, 18, 212-219.
[http://dx.doi.org/10.1016/j.ifset.2013.02.002]
[24]
Tanzadehpanah, H.; Asoodeh, A.; Saidijam, M.; Chamani, J.; Mahaki, H. Improving efficiency of an angiotensin converting enzyme inhibitory peptide as multifunctional peptides. J. Biomol. Struct. Dyn., 2018, 36(14), 3803-3818.
[PMID: 29173094]
[25]
Mahaki, H.; Tanzadehpanah, H.; Abou-Zied, O.K.; Moghadam, N.H.; Bahmani, A.; Salehzadeh, S. Cytotoxicity and antioxidant activity of Kamolonol acetate from Ferula pseudalliacea, and studying its interactions with calf thymus DNA (ct-DNA) and human serum albumin (HSA) by spectroscopic and molecular docking techniques. Process Biochem., 2019, 79, 203-213.
[26]
Han, X-L.; Tian, F-F.; Ge, Y-S.; Jiang, F-L.; Lai, L.; Li, D-W.; Yu, Q.L.; Wang, J.; Lin, C.; Liu, Y. Spectroscopic, structural and thermodynamic properties of chlorpyrifos bound to serum albumin: a comparative study between BSA and HSA. J. Photochem. Photobiol. B, 2012, 109, 1-11.
[http://dx.doi.org/10.1016/j.jphotobiol.2011.12.010] [PMID: 22316628]
[27]
Tanzadehpanah, H.; Mahaki, H.; Samadi, P.; Karimi, J.; Moghadam, N.H.; Salehzadeh, S. Anticancer activity, calf thymus DNA and human serum albumin binding properties of Farnesiferol C from Ferula pseudalliacea. J. Biomol. Struct. Dyn., 2019, 37(11), 2789-2800.
[PMID: 30052136]
[28]
Samari, F.; Shamsipur, M.; Hemmateenejad, B.; Khayamian, T.; Gharaghani, S. Investigation of the interaction between amodiaquine and human serum albumin by fluorescence spectroscopy and molecular modeling. Eur. J. Med. Chem., 2012, 54, 255-263.
[http://dx.doi.org/10.1016/j.ejmech.2012.05.007] [PMID: 22658498]
[29]
Fang, F.; Pan, D.Q.; Qiu, M.J.; Liu, T.T.; Jiang, M.; Wang, Q.; Shi, J.H. Probing into the binding interaction between medroxyprogesterone acetate and bovine serum albumin (BSA): spectroscopic and molecular docking methods. Luminescence, 2016, 31(6), 1242-1250.
[http://dx.doi.org/10.1002/bio.3097] [PMID: 26818697]
[30]
Memarpoor-Yazdi, M.; Mahaki, H. Probing the interaction of human serum albumin with vitamin B2 (riboflavin) and L-Arginine (L-Arg) using multi-spectroscopic, molecular modeling and zeta potential techniques. J. Lumin., 2013, 136, 150-159.
[http://dx.doi.org/10.1016/j.jlumin.2012.11.016]
[31]
Tu, B.; Wang, Y.; Mi, R.; Ouyang, Y.; Hu, Y-J. Evaluation of the interaction between naringenin and human serum albumin: Insights from fluorescence spectroscopy, electrochemical measurement and molecular docking. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 149, 536-543.
[http://dx.doi.org/10.1016/j.saa.2015.04.087] [PMID: 25978022]
[32]
Mahaki, H.; Memarpoor-Yazdi, M.; Chamani, J.; Saberi, M.R. Interaction between ropinirole hydrochloride and aspirin with human serum albumin as binary and ternary systems by multi-spectroscopic, molecular modeling and zeta potential. J. Lumin., 2013, 134, 758-771.
[http://dx.doi.org/10.1016/j.jlumin.2012.06.051]
[33]
Yuan, X.; Gu, W.; Xiao, M.; Xie, W.; Wei, S.; Zhou, L.; Zhou, J.; Shen, J. Interactions of CT DNA with hexagonal NaYF4 co-doped with Yb(3+)/Tm(3+) upconversion particles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 137, 995-1003.
[http://dx.doi.org/10.1016/j.saa.2014.08.087] [PMID: 25305602]
[34]
Derakhshankhah, H.; Saboury, A.; Bazl, R.; Tajmir-Riahi, H.; Falahati, M.; Ajloo, D. Synthesis, cytotoxicity and spectroscopy studies of a new copper (II) complex: calf thymus DNA and T47D as targets. J. Indian Chem. Soc., 2012, 9(5), 737-746.
[http://dx.doi.org/10.1007/s13738-012-0086-3]
[35]
Zhang, Y-Z.; Zhou, B.; Zhang, X-P.; Huang, P.; Li, C-H.; Liu, Y. Interaction of malachite green with bovine serum albumin: determination of the binding mechanism and binding site by spectroscopic methods. J. Hazard. Mater., 2009, 163(2-3), 1345-1352.
[http://dx.doi.org/10.1016/j.jhazmat.2008.07.132] [PMID: 18786760]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy