Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Exploring the Role of Aggregated Proteomes in the Pathogenesis of Alzheimer’s Disease

Author(s): Siju Ellickal Narayanan*, Nikhila Sekhar, Rajalakshmi Ganesan Rajamma, Akash Marathakam, Abdullah Al Mamun, Md. Sahab Uddin and Bijo Mathew*

Volume 21, Issue 12, 2020

Page: [1164 - 1173] Pages: 10

DOI: 10.2174/1389203721666200921152246

Price: $65

Abstract

Alzheimer’s disease (AD) is a progressive brain disorder and one of the most common causes of dementia and death. AD can be of two types; early-onset and late-onset, where late-onset AD occurs sporadically while early-onset AD results from a mutation in any of the three genes that include amyloid precursor protein (APP), presenilin 1 (PSEN 1) and presenilin 2 (PSEN 2). Biologically, AD is defined by the presence of the distinct neuropathological profile that consists of the extracellular β-amyloid (Aβ) deposition in the form of diffuse neuritic plaques, intraneuronal neurofibrillary tangles (NFTs) and neuropil threads; in dystrophic neuritis, consisting of aggregated hyperphosphorylated tau protein. Elevated levels of (Aβ), total tau (t-tau) and phosphorylated tau (ptau) in cerebrospinal fluid (CSF) have become an important biomarker for the identification of this neurodegenerative disease. The aggregation of Aβ peptide derived from amyloid precursor protein initiates a series of events that involve inflammation, tau hyperphosphorylation and its deposition, in addition to synaptic dysfunction and neurodegeneration, ultimately resulting in dementia. The current review focuses on the role of proteomes in the pathogenesis of AD.

Keywords: Dementia, , tau, proteomes, Alzheimer’s disease, brain disorder.

Graphical Abstract

[1]
Uddin, M.S.; Mamun, A.A.; Takeda, S.; Sarwar, M.S.; Begum, M.M. Analyzing the chance of developing dementia among geriatric people: a cross-sectional pilot study in Bangladesh. Psychogeriatrics, 2019, 19(2), 87-94.
[http://dx.doi.org/10.1111/psyg.12368] [PMID: 30221441]
[2]
Uddin, M.S.; Al Mamun, A.; Kabir, M.T.; Jakaria, M.; Mathew, B.; Barreto, G.E.; Ashraf, G.M. Nootropic and Anti-Alzheimer’s Actions of Medicinal Plants: Molecular Insight into Therapeutic Potential to Alleviate Alzheimer’s Neuropathology. Mol. Neurobiol., 2019, 56(7), 4925-4944.
[http://dx.doi.org/10.1007/s12035-018-1420-2] [PMID: 30414087]
[3]
Katzman, R. Editorial: The prevalence and malignancy of Alzheimer disease. A major killer. Arch. Neurol., 1976, 33(4), 217-218.
[http://dx.doi.org/10.1001/archneur.1976.00500040001001] [PMID: 1259639]
[4]
Kabir, M.T.; Sufian, M.A.; Uddin, M.S.; Begum, M.M.; Akhter, S.; Islam, A.; Mathew, B.; Islam, M.S.; Amran, M.S.; Md Ashraf, G. NMDA Receptor Antagonists: Repositioning of Memantine as a Multitargeting Agent for Alzheimer’s Therapy. Curr. Pharm. Des., 2019, 25(33), 3506-3518.
[http://dx.doi.org/10.2174/1381612825666191011102444] [PMID: 31604413]
[5]
Al Mamun, A.; Uddin, M.S. KDS2010: A Potent Highly Selective and Reversible MAO-B Inhibitor to Abate Alzheimer’s Disease. Comb. Chem. High Throughput Screen., 2020, 23, 836-841.
[http://dx.doi.org/10.2174/1386207323666200117103144] [PMID: 31957612]
[6]
Uddin, M.S.; Kabir, M.T.; Al Mamun, A.; Abdel-Daim, M.M.; Barreto, G.E.; Ashraf, G.M. APOE and Alzheimer’s Disease: Evidence Mounts that Targeting APOE4 may Combat Alzheimer’s Pathogenesis. Mol. Neurobiol., 2019, 56(4), 2450-2465.
[http://dx.doi.org/10.1007/s12035-018-1237-z] [PMID: 30032423]
[7]
Bateman, R.J.; Aisen, P.S.; De Strooper, B.; Fox, N.C.; Lemere, C.A.; Ringman, J.M.; Salloway, S.; Sperling, R.A.; Windisch, M.; Xiong, C. Autosomal-dominant Alzheimer’s disease: a review and proposal for the prevention of Alzheimer’s disease. Alzheimers Res. Ther., 2011, 3(1), 1.
[http://dx.doi.org/10.1186/alzrt59] [PMID: 21211070]
[8]
Sahab Uddin, Md. Aman B. Upaganlawar. Oxidative Stress and Antioxidant Defense Biomedical Value in Health and Diseases. Nova Science Publishers: USA; , 2019.
[9]
Uddin, M.S.; Kabir, M.T.; Tewari, D.; Mathew, B.; Aleya, L. Emerging signal regulating potential of small molecule biflavonoids to combat neuropathological insults of Alzheimer’s disease. Sci. Total Environ., 2020, 700, 134836.
[http://dx.doi.org/10.1016/j.scitotenv.2019.134836] [PMID: 31704512]
[10]
Karch, C.M.; Goate, A.M. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol. Psychiatry, 2015, 77(1), 43-51.
[http://dx.doi.org/10.1016/j.biopsych.2014.05.006] [PMID: 24951455]
[11]
Mathew, B.; Parambi, D.G.T.; Mathew, G.E.; Uddin, M.S.; Inasu, S.T.; Kim, H.; Marathakam, A.; Unnikrishnan, M.K.; Carradori, S. Emerging therapeutic potentials of dual-acting MAO and AChE inhibitors in Alzheimer’s and Parkinson’s diseases. Arch. Pharm. (Weinheim), 2019, 352(11), e1900177.
[http://dx.doi.org/10.1002/ardp.201900177] [PMID: 31478569]
[12]
Harilal, S.; Jose, J.; Parambi, D.G.T.; Kumar, R.; Mathew, G.E.; Uddin, M.S.; Kim, H.; Mathew, B. Advancements in nanotherapeutics for Alzheimer’s disease: current perspectives. J. Pharm. Pharmacol., 2019, 71(9), 1370-1383.
[http://dx.doi.org/10.1111/jphp.13132] [PMID: 31304982]
[13]
Josephs, K.A.; Whitwell, J.L.; Ahmed, Z.; Shiung, M.M.; Weigand, S.D.; Knopman, D.S.; Boeve, B.F.; Parisi, J.E.; Petersen, R.C.; Dickson, D.W.; Jack, C.R., Jr Beta-amyloid burden is not associated with rates of brain atrophy. Ann. Neurol., 2008, 63(2), 204-212.
[http://dx.doi.org/10.1002/ana.21223] [PMID: 17894374]
[14]
McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 1984, 34(7), 939-944.
[http://dx.doi.org/10.1212/WNL.34.7.939] [PMID: 6610841]
[15]
Tapiola, T.; Alafuzoff, I.; Herukka, S.K.; Parkkinen, L.; Hartikainen, P.; Soininen, H.; Pirttilä, T. Cerebrospinal fluid beta-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch. Neurol., 2009, 66(3), 382-389.
[http://dx.doi.org/10.1001/archneurol.2008.596] [PMID: 19273758]
[16]
Shaw, L.M.; Vanderstichele, H.; Knapik-Czajka, M.; Clark, C.M.; Aisen, P.S.; Petersen, R.C.; Blennow, K.; Soares, H.; Simon, A.; Lewczuk, P.; Dean, R.; Siemers, E.; Potter, W.; Lee, V.M.; Trojanowski, J.Q. Alzheimer’s Disease Neuroimaging Initiative. Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann. Neurol., 2009, 65(4), 403-413.
[http://dx.doi.org/10.1002/ana.21610] [PMID: 19296504]
[17]
Mattsson, N.; Zetterberg, H.; Hansson, O.; Andreasen, N.; Parnetti, L.; Jonsson, M.; Herukka, S.K.; van der Flier, W.M.; Blankenstein, M.A.; Ewers, M.; Rich, K.; Kaiser, E.; Verbeek, M.; Tsolaki, M.; Mulugeta, E.; Rosén, E.; Aarsland, D.; Visser, P.J.; Schröder, J.; Marcusson, J.; de Leon, M.; Hampel, H.; Scheltens, P.; Pirttilä, T.; Wallin, A.; Jönhagen, M.E.; Minthon, L.; Winblad, B.; Blennow, K. CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA, 2009, 302(4), 385-393.
[http://dx.doi.org/10.1001/jama.2009.1064] [PMID: 19622817]
[18]
Bridel, C.; van Wieringen, W.N.; Zetterberg, H.; Tijms, B.M.; Teunissen, C.E.; Alvarez-Cermeño, J.C.; Andreasson, U.; Axelsson, M.; Bäckström, D.C.; Bartos, A.; Bjerke, M.; Blennow, K.; Boxer, A.; Brundin, L.; Burman, J.; Christensen, T.; Fialová, L.; Forsgren, L.; Frederiksen, J.L.; Gisslén, M.; Gray, E.; Gunnarsson, M.; Hall, S.; Hansson, O.; Herbert, M.K.; Jakobsson, J.; Jessen-Krut, J.; Janelidze, S.; Johannsson, G.; Jonsson, M.; Kappos, L.; Khademi, M.; Khalil, M.; Kuhle, J.; Landén, M.; Leinonen, V.; Logroscino, G.; Lu, C.H.; Lycke, J.; Magdalinou, N.K.; Malaspina, A.; Mattsson, N.; Meeter, L.H.; Mehta, S.R.; Modvig, S.; Olsson, T.; Paterson, R.W.; Pérez-Santiago, J.; Piehl, F.; Pijnenburg, Y.A.L.; Pyykkö, O.T.; Ragnarsson, O.; Rojas, J.C.; Romme Christensen, J.; Sandberg, L.; Scherling, C.S.; Schott, J.M.; Sellebjerg, F.T.; Simone, I.L.; Skillbäck, T.; Stilund, M.; Sundström, P.; Svenningsson, A.; Tortelli, R.; Tortorella, C.; Trentini, A.; Troiano, M.; Turner, M.R.; van Swieten, J.C.; Vågberg, M.; Verbeek, M.M.; Villar, L.M.; Visser, P.J.; Wallin, A.; Weiss, A.; Wikkelsø, C.; Wild, E.J. and the NFL Group. Diagnostic Value of Cerebrospinal Fluid Neurofilament Light Protein in Neurology: A Systematic Review and Meta-analysis. JAMA Neurol., 2019, 76(9), 1035-1048.
[http://dx.doi.org/10.1001/jamaneurol.2019.1534] [PMID: 31206160]
[19]
Mielke, M.M.; Syrjanen, J.A.; Blennow, K.; Zetterberg, H.; Vemuri, P.; Skoog, I.; Machulda, M.M.; Kremers, W.K.; Knopman, D.S.; Jack, C., Jr; Petersen, R.C.; Kern, S. Plasma and CSF neurofilament light: Relation to longitudinal neuroimaging and cognitive measures. Neurology, 2019, 93(3), e252-e260.
[http://dx.doi.org/10.1212/WNL.0000000000007767] [PMID: 31182505]
[20]
Mattsson, N.; Cullen, N.C.; Andreasson, U.; Zetterberg, H.; Blennow, K. Association Between Longitudinal Plasma Neurofilament Light and Neurodegeneration in Patients With Alzheimer Disease. JAMA Neurol., 2019, 76(7), 791-799.
[http://dx.doi.org/10.1001/jamaneurol.2019.0765] [PMID: 31009028]
[21]
Preische, O.; Schultz, S.A.; Apel, A.; Kuhle, J.; Kaeser, S.A.; Barro, C.; Gräber, S.; Kuder-Buletta, E.; LaFougere, C.; Laske, C.; Vöglein, J.; Levin, J.; Masters, C.L.; Martins, R.; Schofield, P.R.; Rossor, M.N.; Graff-Radford, N.R.; Salloway, S.; Ghetti, B.; Ringman, J.M.; Noble, J.M.; Chhatwal, J.; Goate, A.M.; Benzinger, T.L.S.; Morris, J.C.; Bateman, R.J.; Wang, G.; Fagan, A.M.; McDade, E.M.; Gordon, B.A.; Jucker, M. Dominantly Inherited Alzheimer Network. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease. Nat. Med., 2019, 25(2), 277-283.
[http://dx.doi.org/10.1038/s41591-018-0304-3] [PMID: 30664784]
[22]
Selkoe, D.J. Folding proteins in fatal ways. Nature, 2003, 426(6968), 900-904.
[http://dx.doi.org/10.1038/nature02264] [PMID: 14685251]
[23]
Uddin, M.S.; Ashraf, G.M. Quality Control of Cellular Protein in Neurodegenerative Disorders. IGI Global: Hershey; , 2020.
[http://dx.doi.org/10.4018/978-1-7998-1317-0]
[24]
Dobson, C.M. Protein misfolding, evolution and disease. Trends Biochem. Sci., 1999, 24(9), 329-332.
[http://dx.doi.org/10.1016/S0968-0004(99)01445-0] [PMID: 10470028]
[25]
Ashe, K.H.; Zahs, K.R. Probing the biology of Alzheimer’s disease in mice. Neuron, 2010, 66(5), 631-645.
[http://dx.doi.org/10.1016/j.neuron.2010.04.031] [PMID: 20547123]
[26]
Hardy, J.A.; Higgins, G.A. Alzheimer’s disease: the amyloid cascade hypothesis. Science, 1992, 256(5054), 184-185.
[http://dx.doi.org/10.1126/science.1566067] [PMID: 1566067]
[27]
Kabir, M.T.; Uddin, M.S.; Begum, M.M.; Thangapandiyan, S.; Rahman, M.S.; Aleya, L.; Mathew, B.; Ahmed, M.; Barreto, G.E.; Ashraf, G.M. Cholinesterase Inhibitors for Alzheimer’s Disease: Multitargeting Strategy Based on Anti-Alzheimer’s Drugs Repositioning. Curr. Pharm. Des., 2019, 25(33), 3519-3535.
[http://dx.doi.org/10.2174/1381612825666191008103141] [PMID: 31593530]
[28]
Glenner, G.G.; Wong, C.W. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun., 1984, 120(3), 885-890.
[http://dx.doi.org/10.1016/S0006-291X(84)80190-4] [PMID: 6375662]
[29]
Rahman, M.A.; Rahman, M.R.; Zaman, T.; Uddin, M.S.; Islam, R.; Abdel-Daim, M.M.; Rhim, H. Emerging Potential of Naturally Occurring Autophagy Modulators Against Neurodegeneration. Curr. Pharm. Des., 2020, 26(7), 772-779.
[http://dx.doi.org/10.2174/1381612826666200107142541] [PMID: 31914904]
[30]
Glenner, G.G.; Wong, C.W.; Quaranta, V.; Eanes, E.D. The amyloid deposits in Alzheimer’s disease: their nature and pathogenesis. Appl. Pathol., 1984, 2(6), 357-369.
[PMID: 6242724]
[31]
Uddin, M.S.; Kabir, M.T. Emerging Signal Regulating Potential of Genistein Against Alzheimer’s Disease: A Promising Molecule of Interest. Front. Cell Dev. Biol., 2019, 7, 197.
[http://dx.doi.org/10.3389/fcell.2019.00197] [PMID: 31620438]
[32]
Haass, C.; Kaether, C.; Thinakaran, G.; Sisodia, S. Trafficking and proteolytic processing of APP. Cold Spring Harb. Perspect. Med., 2012, 2(5), a006270.
[http://dx.doi.org/10.1101/cshperspect.a006270] [PMID: 22553493]
[33]
Hossain, M.F.; Uddin, M.S.; Uddin, G.M.S.; Sumsuzzman, D.M.; Islam, M.S.; Barreto, G.E.; Mathew, B.; Ashraf, G.M. Melatonin in Alzheimer’s Disease: A Latent Endogenous Regulator of Neurogenesis to Mitigate Alzheimer’s Neuropathology. Mol. Neurobiol., 2019, 56(12), 8255-8276.
[http://dx.doi.org/10.1007/s12035-019-01660-3] [PMID: 31209782]
[34]
Cole, S.L.; Vassar, R. The Alzheimer’s disease beta-secretase enzyme, BACE1. Mol. Neurodegener., 2007, 2, 22.
[http://dx.doi.org/10.1186/1750-1326-2-22] [PMID: 18005427]
[35]
Harkany, T.; Abrahám, I.; Timmerman, W.; Laskay, G.; Tóth, B.; Sasvári, M.; Kónya, C.; Sebens, J.B.; Korf, J.; Nyakas, C.; Zarándi, M.; Soós, K.; Penke, B.; Luiten, P.G. beta-amyloid neurotoxicity is mediated by a glutamate-triggered excitotoxic cascade in rat nucleus basalis. Eur. J. Neurosci., 2000, 12(8), 2735-2745.
[http://dx.doi.org/10.1046/j.1460-9568.2000.00164.x] [PMID: 10971616]
[36]
Zaplatic, E.; Bule, M.; Shah, S.Z.A.; Uddin, M.S.; Niaz, K. Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer’s disease. Life Sci., 2019, 224, 109-119.
[http://dx.doi.org/10.1016/j.lfs.2019.03.055] [PMID: 30914316]
[37]
Cheng, Y.; Judd, T.C.; Bartberger, M.D.; Brown, J.; Chen, K.; Fremeau, R.T., Jr; Hickman, D.; Hitchcock, S.A.; Jordan, B.; Li, V.; Lopez, P.; Louie, S.W.; Luo, Y.; Michelsen, K.; Nixey, T.; Powers, T.S.; Rattan, C.; Sickmier, E.A.; St Jean, D.J., Jr; Wahl, R.C.; Wen, P.H.; Wood, S. From fragment screening to in vivo efficacy: optimization of a series of 2-aminoquinolines as potent inhibitors of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1). J. Med. Chem., 2011, 54(16), 5836-5857.
[http://dx.doi.org/10.1021/jm200544q] [PMID: 21707077]
[38]
Yang, G.; Zhou, R.; Zhou, Q.; Guo, X.; Yan, C.; Ke, M.; Lei, J.; Shi, Y. Structural basis of Notch recognition by human γ-secretase. Nature, 2019, 565(7738), 192-197.
[http://dx.doi.org/10.1038/s41586-018-0813-8] [PMID: 30598546]
[39]
Zhou, R.; Yang, G.; Guo, X.; Zhou, Q.; Lei, J.; Shi, Y. Recognition of the amyloid precursor protein by human γ-secretase. Science, 2019, 363(6428), eaaw0930.
[http://dx.doi.org/10.1126/science.aaw0930] [PMID: 30630874]
[40]
Voytyuk, I.; De Strooper, B.; Chávez-Gutiérrez, L. Modulation of γ- and β-Secretases as Early Prevention against Alzheimer’s Disease. Biol. Psychiatry, 2018, 83(4), 320-327.
[http://dx.doi.org/10.1016/j.biopsych.2017.08.001] [PMID: 28918941]
[41]
Xia, W. γ-Secretase and its modulators: Twenty years and beyond. Neurosci. Lett., 2019, 701, 162-169.
[http://dx.doi.org/10.1016/j.neulet.2019.02.011] [PMID: 30763650]
[42]
Ridge, P.G.; Ebbert, M.T.; Kauwe, J.S. Genetics of Alzheimer’s disease. BioMed Res. Int., 2013, 2013, 254954.
[http://dx.doi.org/10.1155/2013/254954] [PMID: 23984328]
[43]
Long, J.M.; Holtzman, D.M. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell, 2019, 179(2), 312-339.
[http://dx.doi.org/10.1016/j.cell.2019.09.001] [PMID: 31564456]
[44]
Eikelenboom, P.; Zhan, S.S.; van Gool, W.A.; Allsop, D. Inflammatory mechanisms in Alzheimer’s disease. Trends Pharmacol. Sci., 1994, 15(12), 447-450.
[http://dx.doi.org/10.1016/0165-6147(94)90057-4] [PMID: 7886816]
[45]
McGeer, P.L.; McGeer, E.G. The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res. Brain Res. Rev., 1995, 21(2), 195-218.
[http://dx.doi.org/10.1016/0165-0173(95)00011-9] [PMID: 8866675]
[46]
Uddin, M.S.; Kabir, M.T. Oxidative Stress in Alzheimer’s Disease: Molecular Hallmarks of Underlying VulnerabilityBiological, Diagnostic and Therapeutic Advances in Alzheimer’s Disease Springer Singapore: Singapore; , 2019, pp. pp. 91-115.
[47]
Weingarten, M.D.; Lockwood, A.H.; Hwo, S.Y.; Kirschner, M.W. A protein factor essential for microtubule assembly. Proc. Natl. Acad. Sci. USA, 1975, 72(5), 1858-1862.
[http://dx.doi.org/10.1073/pnas.72.5.1858] [PMID: 1057175]
[48]
Kosik, K.S.; Joachim, C.L.; Selkoe, D.J. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl. Acad. Sci. USA, 1986, 83(11), 4044-4048.
[http://dx.doi.org/10.1073/pnas.83.11.4044] [PMID: 2424016]
[49]
Uddin, M.S.; Mamun, A.A.; Labu, Z.K.; Hidalgo-Lanussa, O.; Barreto, G.E.; Ashraf, G.M. Autophagic dysfunction in Alzheimer’s disease: Cellular and molecular mechanistic approaches to halt Alzheimer’s pathogenesis. J. Cell. Physiol., 2019, 234(6), 8094-8112.
[http://dx.doi.org/10.1002/jcp.27588] [PMID: 30362531]
[50]
Uddin, M.S.; Al Mamun, A.; Asaduzzaman, M.; Hosn, F.; Abu Sufian, M.; Takeda, S.; Herrera-Calderon, O.; Abdel-Daim, M.M.; Uddin, G.M.S.; Noor, M.A.A.; Begum, M.M.; Kabir, M.T.; Zaman, S.; Sarwar, M.S.; Rahman, M.M.; Rafe, M.R.; Hossain, M.F.; Hossain, M.S.; Ashraful Iqbal, M.; Sujan, M.A.R. Spectrum of Disease and Prescription Pattern for Outpatients with Neurological Disorders: An Empirical Pilot Study in Bangladesh. Ann. Neurosci., 2018, 25(1), 25-37.
[http://dx.doi.org/10.1159/000481812] [PMID: 29887680]
[51]
Guo, T.; Noble, W.; Hanger, D.P. Roles of tau protein in health and disease. Acta Neuropathol., 2017, 133(5), 665-704.
[http://dx.doi.org/10.1007/s00401-017-1707-9] [PMID: 28386764]
[52]
Goedert, M.; Spillantini, M.G.; Potier, M.C.; Ulrich, J.; Crowther, R.A. Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J., 1989, 8(2), 393-399.
[http://dx.doi.org/10.1002/j.1460-2075.1989.tb03390.x] [PMID: 2498079]
[53]
Marcelli, S.; Corbo, M.; Iannuzzi, F.; Negri, L.; Blandini, F.; Nistico, R.; Feligioni, M. The Involvement of Post-Translational Modifications in Alzheimer’s Disease. Curr. Alzheimer Res., 2018, 15(4), 313-335.
[http://dx.doi.org/10.2174/1567205014666170505095109] [PMID: 28474569]
[54]
Gao, Y.L.; Wang, N.; Sun, F.R.; Cao, X.P.; Zhang, W.; Yu, J.T. Tau in neurodegenerative disease. Ann. Transl. Med., 2018, 6(10), 175.
[http://dx.doi.org/10.21037/atm.2018.04.23] [PMID: 29951497]
[55]
Hanger, D.P.; Anderton, B.H.; Noble, W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol. Med., 2009, 15(3), 112-119.
[http://dx.doi.org/10.1016/j.molmed.2009.01.003] [PMID: 19246243]
[56]
Hoover, B.R.; Reed, M.N.; Su, J.; Penrod, R.D.; Kotilinek, L.A.; Grant, M.K.; Pitstick, R.; Carlson, G.A.; Lanier, L.M.; Yuan, L.L.; Ashe, K.H.; Liao, D. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron, 2010, 68(6), 1067-1081.
[http://dx.doi.org/10.1016/j.neuron.2010.11.030] [PMID: 21172610]
[57]
Thies, E.; Mandelkow, E.M. Missorting of tau in neurons causes degeneration of synapses that can be rescued by the kinase MARK2/Par-1. J. Neurosci., 2007, 27(11), 2896-2907.
[http://dx.doi.org/10.1523/JNEUROSCI.4674-06.2007] [PMID: 17360912]
[58]
Zempel, H.; Thies, E.; Mandelkow, E.; Mandelkow, E.M. Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J. Neurosci., 2010, 30(36), 11938-11950.
[http://dx.doi.org/10.1523/JNEUROSCI.2357-10.2010] [PMID: 20826658]
[59]
Guillozet-Bongaarts, A.L.; Cahill, M.E.; Cryns, V.L.; Reynolds, M.R.; Berry, R.W.; Binder, L.I. Pseudophosphorylation of tau at serine 422 inhibits caspase cleavage: in vitro evidence and implications for tangle formation in vivo. J. Neurochem., 2006, 97(4), 1005-1014.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03784.x] [PMID: 16606369]
[60]
Dickey, C.A.; Kamal, A.; Lundgren, K.; Klosak, N.; Bailey, R.M.; Dunmore, J.; Ash, P.; Shoraka, S.; Zlatkovic, J.; Eckman, C.B.; Patterson, C.; Dickson, D.W.; Nahman, N.S., Jr; Hutton, M.; Burrows, F.; Petrucelli, L. The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J. Clin. Invest., 2007, 117(3), 648-658.
[http://dx.doi.org/10.1172/JCI29715] [PMID: 17304350]
[61]
Ittner, L.M.; Ke, Y.D.; Götz, J. Phosphorylated Tau interacts with c-Jun N-terminal kinase-interacting protein 1 (JIP1) in Alzheimer disease. J. Biol. Chem., 2009, 284(31), 20909-20916.
[http://dx.doi.org/10.1074/jbc.M109.014472] [PMID: 19491104]
[62]
Crowther, R.A.; Wischik, C.M. Image reconstruction of the Alzheimer paired helical filament. EMBO J., 1985, 4(13B), 3661-3665.
[http://dx.doi.org/10.1002/j.1460-2075.1985.tb04132.x] [PMID: 2419127]
[63]
Kidd, M. Paired helical filaments in electron microscopy of Alzheimer’s disease. Nature, 1963, 197, 192-193.
[http://dx.doi.org/10.1038/197192b0] [PMID: 14032480]
[64]
Mandelkow, E.; von Bergen, M.; Biernat, J.; Mandelkow, E.M. Structural principles of tau and the paired helical filaments of Alzheimer’s disease. Brain Pathol., 2007, 17(1), 83-90.
[http://dx.doi.org/10.1111/j.1750-3639.2007.00053.x] [PMID: 17493042]
[65]
Yuzwa, S.A.; Cheung, A.H.; Okon, M.; McIntosh, L.P.; Vocadlo, D.J. O-GlcNAc modification of tau directly inhibits its aggregation without perturbing the conformational properties of tau monomers. J. Mol. Biol., 2014, 426(8), 1736-1752.
[http://dx.doi.org/10.1016/j.jmb.2014.01.004] [PMID: 24444746]
[66]
Sadigh-Eteghad, S.; Talebi, M.; Farhoudi, M.; Golzari, S.E.J.; Sabermarouf, B.; Mahmoudi, J. β-Amyloid exhibits antagonistic effects on alpha 7 nicotinic acetylcholine receptors in orchestrated manner. J. Med. Hypotheses Ideas, 2014, 8, 49-52.
[http://dx.doi.org/10.1016/j.jmhi.2014.01.001]
[67]
Kontush, A.; Berndt, C.; Weber, W.; Akopyan, V.; Arlt, S.; Schippling, S.; Beisiegel, U. Amyloid-β is an antioxidant for lipoproteins in cerebrospinal fluid and plasma. Free Radic. Biol. Med., 2001, 30(1), 119-128.
[http://dx.doi.org/10.1016/S0891-5849(00)00458-5] [PMID: 11134902]
[68]
Nunomura, A.; Castellani, R.J. Neuropathology in Alzheimer’s disease: awaking from a hundred-year-old dreamSci Aging Knowledge Environ; , 2006.
[69]
Attems, J.; Yamaguchi, H.; Saido, T.C.; Thal, D.R. Capillary CAA and perivascular Aβ-deposition: two distinct features of Alzheimer’s disease pathology. J. Neurol. Sci., 2010, 299(1-2), 155-162.
[http://dx.doi.org/10.1016/j.jns.2010.08.030] [PMID: 20850138]
[70]
Sadigh-Eteghad, S.; Sabermarouf, B.; Majdi, A.; Talebi, M.; Farhoudi, M.; Mahmoudi, J. Amyloid-beta: a crucial factor in Alzheimer’s disease. Med. Princ. Pract., 2015, 24(1), 1-10.
[http://dx.doi.org/10.1159/000369101] [PMID: 25471398]
[71]
Moreira, P.I.; Carvalho, C.; Zhu, X.; Smith, M.A.; Perry, G. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim. Biophys. Acta, 2010, 1802(1), 2-10.
[http://dx.doi.org/10.1016/j.bbadis.2009.10.006] [PMID: 19853658]
[72]
Shankar, G.M.; Walsh, D.M. Alzheimer’s disease: synaptic dysfunction and Abeta. Mol. Neurodegener., 2009, 4, 48-61.
[http://dx.doi.org/10.1186/1750-1326-4-48] [PMID: 19930651]
[73]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science, 2002, 297(5580), 353-356.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[74]
Barry, A.E.; Klyubin, I.; Mc Donald, J.M.; Mably, A.J.; Farrell, M.A.; Scott, M.; Walsh, D.M.; Rowan, M.J. Alzheimer’s disease brain-derived amyloid-β-mediated inhibition of LTP in vivo is prevented by immunotargeting cellular prion protein. J. Neurosci., 2011, 31(20), 7259-7263.
[http://dx.doi.org/10.1523/JNEUROSCI.6500-10.2011] [PMID: 21593310]
[75]
Shankar, G.M.; Li, S.; Mehta, T.H.; Garcia-Munoz, A.; Shepardson, N.E.; Smith, I.; Brett, F.M.; Farrell, M.A.; Rowan, M.J.; Lemere, C.A.; Regan, C.M.; Walsh, D.M.; Sabatini, B.L.; Selkoe, D.J. Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat. Med., 2008, 14(8), 837-842.
[http://dx.doi.org/10.1038/nm1782] [PMID: 18568035]
[76]
Balducci, C.; Beeg, M.; Stravalaci, M.; Bastone, A.; Sclip, A.; Biasini, E.; Tapella, L.; Colombo, L.; Manzoni, C.; Borsello, T.; Chiesa, R.; Gobbi, M.; Salmona, M.; Forloni, G. Synthetic amyloid-β oligomers impair long-term memory independently of cellular prion protein. Proc. Natl. Acad. Sci. USA, 2010, 107(5), 2295-2300.
[http://dx.doi.org/10.1073/pnas.0911829107] [PMID: 20133875]
[77]
Kihara, T.; Shimohama, S. Alzheimer’s disease and acetylcholine receptors. Acta Neurobiol. Exp. (Warsz.), 2004, 64(1), 99-105.
[PMID: 15190684]
[78]
Supnet, C.; Grant, J.; Kong, H.; Westaway, D.; Mayne, M. Amyloid-β-(1-42) increases ryanodine receptor-3 expression and function in neurons of TgCRND8 mice. J. Biol. Chem., 2006, 281(50), 38440-38447.
[http://dx.doi.org/10.1074/jbc.M606736200] [PMID: 17050533]
[79]
Danysz, W.; Parsons, C.G. Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors and memantine-searching for the connections. Br. J. Pharmacol., 2012, 167(2), 324-352.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02057.x] [PMID: 22646481]
[80]
Park, L.; Zhou, J.; Zhou, P.; Pistick, R.; El Jamal, S.; Younkin, L.; Pierce, J.; Arreguin, A.; Anrather, J.; Younkin, S.G.; Carlson, G.A.; McEwen, B.S.; Iadecola, C. Innate immunity receptor CD36 promotes cerebral amyloid angiopathy. Proc. Natl. Acad. Sci. USA, 2013, 110(8), 3089-3094.
[http://dx.doi.org/10.1073/pnas.1300021110] [PMID: 23382216]
[81]
Perez, S.E.; He, B.; Muhammad, N.; Oh, K.J.; Fahnestock, M.; Ikonomovic, M.D.; Mufson, E.J. Cholinotrophic basal forebrain system alterations in 3xTg-AD transgenic mice. Neurobiol. Dis., 2011, 41(2), 338-352.
[http://dx.doi.org/10.1016/j.nbd.2010.10.002] [PMID: 20937383]
[82]
Bulbarelli, A.; Lonati, E.; Cazzaniga, E.; Re, F.; Sesana, S.; Barisani, D.; Sancini, G.; Mutoh, T.; Masserini, M. TrkA pathway activation induced by amyloid-beta (Abeta). Mol. Cell. Neurosci., 2009, 40(3), 365-373.
[http://dx.doi.org/10.1016/j.mcn.2008.12.006] [PMID: 19162192]
[83]
Ridolfi, E.; Barone, C.; Scarpini, E.; Galimberti, D. The role of the innate immune system in Alzheimer’s disease and frontotemporal lobar degeneration: an eye on microglia. Clin. Dev. Immunol., 2013, 2013, 939786.
[http://dx.doi.org/10.1155/2013/939786] [PMID: 23970926]
[84]
Watanabe, A.; Hong, W.K.; Dohmae, N.; Takio, K.; Morishima-Kawashima, M.; Ihara, Y. Molecular aging of tau: disulfide-independent aggregation and non-enzymatic degradation in vitro and in vivo. J. Neurochem., 2004, 90(6), 1302-1311.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02611.x] [PMID: 15341514]
[85]
Funk, K.E.; Thomas, S.N.; Schafer, K.N.; Cooper, G.L.; Liao, Z.; Clark, D.J.; Yang, A.J.; Kuret, J. Lysine methylation is an endogenous post-translational modification of tau protein in human brain and a modulator of aggregation propensity. Biochem. J., 2014, 462(1), 77-88.
[http://dx.doi.org/10.1042/BJ20140372] [PMID: 24869773]
[86]
Dixit, R.; Ross, J.L.; Goldman, Y.E.; Holzbaur, E.L. Differential regulation of dynein and kinesin motor proteins by tau. Science, 2008, 319(5866), 1086-1089.
[http://dx.doi.org/10.1126/science.1152993] [PMID: 18202255]
[87]
Mamun, A.A.; Uddin, M.S.; Mathew, B.; Ashraf, G.M. Toxic tau: structural origins of tau aggregation in Alzheimer’s disease. Neural Regen. Res., 2020, 15(8), 1417-1420.
[http://dx.doi.org/10.4103/1673-5374.274329] [PMID: 31997800]
[88]
Lewis, T.L., Jr; Courchet, J.; Polleux, F. Cell biology in neuroscience: Cellular and molecular mechanisms underlying axon formation, growth, and branching. J. Cell Biol., 2013, 202(6), 837-848.
[http://dx.doi.org/10.1083/jcb.201305098] [PMID: 24043699]
[89]
Violet, M.; Delattre, L.; Tardivel, M.; Sultan, A.; Chauderlier, A.; Caillierez, R.; Talahari, S.; Nesslany, F.; Lefebvre, B.; Bonnefoy, E.; Buée, L.; Galas, M.C. A major role for Tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions. Front. Cell. Neurosci., 2014, 8, 84.
[http://dx.doi.org/10.3389/fncel.2014.00084] [PMID: 24672431]
[90]
Sultan, A.; Nesslany, F.; Violet, M.; Bégard, S.; Loyens, A.; Talahari, S.; Mansuroglu, Z.; Marzin, D.; Sergeant, N.; Humez, S.; Colin, M.; Bonnefoy, E.; Buée, L.; Galas, M.C. Nuclear tau, a key player in neuronal DNA protection. J. Biol. Chem., 2011, 286(6), 4566-4575.
[http://dx.doi.org/10.1074/jbc.M110.199976] [PMID: 21131359]
[91]
Gheyara, A.L.; Ponnusamy, R.; Djukic, B.; Craft, R.J.; Ho, K.; Guo, W.; Finucane, M.M.; Sanchez, P.E.; Mucke, L. Tau reduction prevents disease in a mouse model of Dravet syndrome. Ann. Neurol., 2014, 76(3), 443-456.
[http://dx.doi.org/10.1002/ana.24230] [PMID: 25042160]
[92]
Holth, J.K.; Bomben, V.C.; Reed, J.G.; Inoue, T.; Younkin, L.; Younkin, S.G.; Pautler, R.G.; Botas, J.; Noebels, J.L. Tau loss attenuates neuronal network hyperexcitability in mouse and Drosophila genetic models of epilepsy. J. Neurosci., 2013, 33(4), 1651-1659.
[http://dx.doi.org/10.1523/JNEUROSCI.3191-12.2013] [PMID: 23345237]
[93]
Leroy, K.; Ando, K.; Laporte, V.; Dedecker, R.; Suain, V.; Authelet, M.; Héraud, C.; Pierrot, N.; Yilmaz, Z.; Octave, J.N.; Brion, J.P. Lack of tau proteins rescues neuronal cell death and decreases amyloidogenic processing of APP in APP/PS1 mice. Am. J. Pathol., 2012, 181(6), 1928-1940.
[http://dx.doi.org/10.1016/j.ajpath.2012.08.012] [PMID: 23026200]
[94]
DeVos, S.L.; Goncharoff, D.K.; Chen, G.; Kebodeaux, C.S.; Yamada, K.; Stewart, F.R.; Schuler, D.R.; Maloney, S.E.; Wozniak, D.F.; Rigo, F.; Bennett, C.F.; Cirrito, J.R.; Holtzman, D.M.; Miller, T.M. Antisense reduction of tau in adult mice protects against seizures. J. Neurosci., 2013, 33(31), 12887-12897.
[http://dx.doi.org/10.1523/JNEUROSCI.2107-13.2013] [PMID: 23904623]
[95]
Hong, X.P.; Peng, C.X.; Wei, W.; Tian, Q.; Liu, Y.H.; Yao, X.Q.; Zhang, Y.; Cao, F.Y.; Wang, Q.; Wang, J.Z. Essential role of tau phosphorylation in adult hippocampal neurogenesis. Hippocampus, 2010, 20(12), 1339-1349.
[http://dx.doi.org/10.1002/hipo.20712] [PMID: 19816983]
[96]
Fuster-Matanzo, A.; de Barreda, E.G.; Dawson, H.N.; Vitek, M.P.; Avila, J.; Hernández, F. Function of tau protein in adult newborn neurons. FEBS Lett., 2009, 583(18), 3063-3068.
[http://dx.doi.org/10.1016/j.febslet.2009.08.017] [PMID: 19695252]
[97]
Lei, P.; Ayton, S.; Finkelstein, D.I.; Spoerri, L.; Ciccotosto, G.D.; Wright, D.K.; Wong, B.X.; Adlard, P.A.; Cherny, R.A.; Lam, L.Q.; Roberts, B.R.; Volitakis, I.; Egan, G.F.; McLean, C.A.; Cappai, R.; Duce, J.A.; Bush, A.I. Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat. Med., 2012, 18(2), 291-295.
[http://dx.doi.org/10.1038/nm.2613] [PMID: 22286308]
[98]
Kimura, T.; Whitcomb, D.J.; Jo, J.; Regan, P.; Piers, T.; Heo, S.; Brown, C.; Hashikawa, T.; Murayama, M.; Seok, H.; Sotiropoulos, I.; Kim, E.; Collingridge, G.L.; Takashima, A.; Cho, K.; Cho, K. Microtubule-associated protein tau is essential for long-term depression in the hippocampus. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2013, 369(1633), 20130144.
[http://dx.doi.org/10.1098/rstb.2013.0144] [PMID: 24298146]
[99]
Ahmed, T.; Van der Jeugd, A.; Blum, D.; Galas, M.C.; D’Hooge, R.; Buee, L.; Balschun, D. Cognition and hippocampal synaptic plasticity in mice with a homozygous tau deletion. Neurobiol. Aging, 2014, 35(11), 2474-2478.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.05.005] [PMID: 24913895]
[100]
Ittner, L.M.; Ke, Y.D.; Delerue, F.; Bi, M.; Gladbach, A.; van Eersel, J.; Wölfing, H.; Chieng, B.C.; Christie, M.J.; Napier, I.A.; Eckert, A.; Staufenbiel, M.; Hardeman, E.; Götz, J. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell, 2010, 142(3), 387-397.
[http://dx.doi.org/10.1016/j.cell.2010.06.036] [PMID: 20655099]
[101]
Biernat, J.; Wu, Y.Z.; Timm, T.; Zheng-Fischhöfer, Q.; Mandelkow, E.; Meijer, L.; Mandelkow, E.M. Protein kinase MARK/PAR-1 is required for neurite outgrowth and establishment of neuronal polarity. Mol. Biol. Cell, 2002, 13(11), 4013-4028.
[http://dx.doi.org/10.1091/mbc.02-03-0046] [PMID: 12429843]
[102]
Whiteman, I.T.; Gervasio, O.L.; Cullen, K.M.; Guillemin, G.J.; Jeong, E.V.; Witting, P.K.; Antao, S.T.; Minamide, L.S.; Bamburg, J.R.; Goldsbury, C. Activated actin-depolymerizing factor/cofilin sequesters phosphorylated microtubule-associated protein during the assembly of alzheimer-like neuritic cytoskeletal striations. J. Neurosci., 2009, 29(41), 12994-13005.
[http://dx.doi.org/10.1523/JNEUROSCI.3531-09.2009] [PMID: 19828813]
[103]
Janson, J.; Laedtke, T.; Parisi, J.E.; O’Brien, P.; Petersen, R.C.; Butler, P.C. Increased risk of type 2 diabetes in Alzheimer disease. Diabetes, 2004, 53(2), 474-481.
[http://dx.doi.org/10.2337/diabetes.53.2.474] [PMID: 14747300]
[104]
Marciniak, E.; Leboucher, A.; Caron, E.; Ahmed, T.; Tailleux, A.; Dumont, J.; Issad, T.; Gerhardt, E.; Pagesy, P.; Vileno, M.; Bournonville, C.; Hamdane, M.; Bantubungi, K.; Lancel, S.; Demeyer, D.; Eddarkaoui, S.; Vallez, E.; Vieau, D.; Humez, S.; Faivre, E.; Grenier-Boley, B.; Outeiro, T.F.; Staels, B.; Amouyel, P.; Balschun, D.; Buee, L.; Blum, D. Tau deletion promotes brain insulin resistance. J. Exp. Med., 2017, 214(8), 2257-2269.
[http://dx.doi.org/10.1084/jem.20161731] [PMID: 28652303]
[105]
Wang, Y.; Mandelkow, E. Tau in physiology and pathology. Nat. Rev. Neurosci., 2016, 17(1), 5-21.
[http://dx.doi.org/10.1038/nrn.2015.1] [PMID: 26631930]
[106]
Braak, H.; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol., 1991, 82(4), 239-259.
[http://dx.doi.org/10.1007/BF00308809] [PMID: 1759558]
[107]
Nussbaum, J.M.; Schilling, S.; Cynis, H.; Silva, A.; Swanson, E.; Wangsanut, T.; Tayler, K.; Wiltgen, B.; Hatami, A.; Rönicke, R.; Reymann, K.; Hutter-Paier, B.; Alexandru, A.; Jagla, W.; Graubner, S.; Glabe, C.G.; Demuth, H.U.; Bloom, G.S. Prion-like behaviour and tau-dependent cytotoxicity of pyroglutamylated amyloid-β. Nature, 2012, 485(7400), 651-655.
[http://dx.doi.org/10.1038/nature11060] [PMID: 22660329]
[108]
Frost, B.; Jacks, R.L.; Diamond, M.I. Propagation of tau misfolding from the outside to the inside of a cell. J. Biol. Chem., 2009, 284(19), 12845-12852.
[http://dx.doi.org/10.1074/jbc.M808759200] [PMID: 19282288]
[109]
Kayed, R.; Canto, I.; Breydo, L.; Rasool, S.; Lukacsovich, T.; Wu, J.; Albay, R., III; Pensalfini, A.; Yeung, S.; Head, E.; Marsh, J.L.; Glabe, C. Conformation dependent monoclonal antibodies distinguish different replicating strains or conformers of prefibrillar Aβ oligomers. Mol. Neurodegener., 2010, 5, 57.
[http://dx.doi.org/10.1186/1750-1326-5-57] [PMID: 21144050]
[110]
Kfoury, N.; Holmes, B.B.; Jiang, H.; Holtzman, D.M.; Diamond, M.I. Trans-cellular propagation of Tau aggregation by fibrillar species. J. Biol. Chem., 2012, 287(23), 19440-19451.
[http://dx.doi.org/10.1074/jbc.M112.346072] [PMID: 22461630]
[111]
Clavaguera, F.; Bolmont, T.; Crowther, R.A.; Abramowski, D.; Frank, S.; Probst, A.; Fraser, G.; Stalder, A.K.; Beibel, M.; Staufenbiel, M.; Jucker, M.; Goedert, M.; Tolnay, M. Transmission and spreading of tauopathy in transgenic mouse brain. Nat. Cell Biol., 2009, 11(7), 909-913.
[http://dx.doi.org/10.1038/ncb1901] [PMID: 19503072]
[112]
de Calignon, A.; Polydoro, M.; Suárez-Calvet, M.; William, C.; Adamowicz, D.H.; Kopeikina, K.J.; Pitstick, R.; Sahara, N.; Ashe, K.H.; Carlson, G.A.; Spires-Jones, T.L.; Hyman, B.T. Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron, 2012, 73(4), 685-697.
[http://dx.doi.org/10.1016/j.neuron.2011.11.033] [PMID: 22365544]
[113]
Liu, L.; Drouet, V.; Wu, J.W.; Witter, M.P.; Small, S.A.; Clelland, C.; Duff, K. Trans-synaptic spread of tau pathology in vivo. PLoS One, 2012, 7(2), e31302.
[http://dx.doi.org/10.1371/journal.pone.0031302] [PMID: 22312444]
[114]
Lu, J.X.; Qiang, W.; Yau, W.M.; Schwieters, C.D.; Meredith, S.C.; Tycko, R. Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue. Cell, 2013, 154(6), 1257-1268.
[http://dx.doi.org/10.1016/j.cell.2013.08.035] [PMID: 24034249]
[115]
Walker, L.C.; Callahan, M.J.; Bian, F.; Durham, R.A.; Roher, A.E.; Lipinski, W.J. Exogenous induction of cerebral beta-amyloidosis in betaAPP-transgenic mice. Peptides, 2002, 23(7), 1241-1247.
[http://dx.doi.org/10.1016/S0196-9781(02)00059-1] [PMID: 12128081]
[116]
Seward, M.E.; Swanson, E.; Norambuena, A.; Reimann, A.; Cochran, J.N.; Li, R.; Roberson, E.D.; Bloom, G.S. Amyloid-β signals through tau to drive ectopic neuronal cell cycle re-entry in Alzheimer’s disease. J. Cell Sci., 2013, 126(Pt 5), 1278-1286.
[http://dx.doi.org/10.1242/jcs.1125880] [PMID: 23345405]
[117]
Crimins, J.L.; Pooler, A.; Polydoro, M.; Luebke, J.I.; Spires-Jones, T.L. The intersection of amyloid β and tau in glutamatergic synaptic dysfunction and collapse in Alzheimer’s disease. Ageing Res. Rev., 2013, 12(3), 757-763.
[http://dx.doi.org/10.1016/j.arr.2013.03.002] [PMID: 23528367]
[118]
Uddin, M.S.; Stachowiak, A.; Mamun, A.A.; Tzvetkov, N.T.; Takeda, S.; Atanasov, A.G.; Bergantin, L.B.; Abdel-Daim, M.M.; Stankiewicz, A.M. Autophagy and Alzheimer’s Disease: From Molecular Mechanisms to Therapeutic Implications. Front. Aging Neurosci., 2018, 10, 04.
[http://dx.doi.org/10.3389/fnagi.2018.00004] [PMID: 29441009]
[119]
Roberson, E.D.; Scearce-Levie, K.; Palop, J.J.; Yan, F.; Cheng, I.H.; Wu, T.; Gerstein, H.; Yu, G.Q.; Mucke, L. Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science, 2007, 316(5825), 750-754.
[http://dx.doi.org/10.1126/science.1141736] [PMID: 17478722]
[120]
Uddin, M.S.; Kabir, M.T.; Niaz, K.; Jeandet, P.; Clément, C.; Mathew, B.; Rauf, A.; Rengasamy, K.R.R.; Sobarzo-Sánchez, E.; Ashraf, G.M.; Aleya, L. Molecular insights into the therapeutic promise of flavonoids against Alzheimer’s disease. Molecules, 2020, 25(6), 1267.
[http://dx.doi.org/10.3390/molecules25061267] [PMID: 32168835]
[121]
Roberson, E.D.; Halabisky, B.; Yoo, J.W.; Yao, J.; Chin, J.; Yan, F.; Wu, T.; Hamto, P.; Devidze, N.; Yu, G.Q.; Palop, J.J.; Noebels, J.L.; Mucke, L. Amyloid-β/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer’s disease. J. Neurosci., 2011, 31(2), 700-711.
[http://dx.doi.org/10.1523/JNEUROSCI.4152-10.2011] [PMID: 21228179]
[122]
Jin, M.; Shepardson, N.; Yang, T.; Chen, G.; Walsh, D.; Selkoe, D.J. Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc. Natl. Acad. Sci. USA, 2011, 108(14), 5819-5824.
[http://dx.doi.org/10.1073/pnas.1017033108] [PMID: 21421841]
[123]
Kuruva, C.S.; Reddy, P.H. Amyloid beta modulators and neuroprotection in Alzheimer’s disease: a critical appraisal. Drug Discov. Today, 2017, 22(2), 223-233.
[http://dx.doi.org/10.1016/j.drudis.2016.10.010] [PMID: 27794478]
[124]
Zempel, H.; Luedtke, J.; Kumar, Y.; Biernat, J.; Dawson, H.; Mandelkow, E.; Mandelkow, E.M. Amyloid-β oligomers induce synaptic damage via Tau-dependent microtubule severing by TTLL6 and spastin. EMBO J., 2013, 32(22), 2920-2937.
[http://dx.doi.org/10.1038/emboj.2013.207] [PMID: 24065130]
[125]
Kopeikina, K.J.; Wegmann, S.; Pitstick, R.; Carlson, G.A.; Bacskai, B.J.; Betensky, R.A.; Hyman, B.T.; Spires-Jones, T.L. Tau causes synapse loss without disrupting calcium homeostasis in the rTg4510 model of tauopathy. PLoS One, 2013, 8(11), e80834.
[http://dx.doi.org/10.1371/journal.pone.0080834] [PMID: 24278327]
[126]
Kuchibhotla, K.V.; Wegmann, S.; Kopeikina, K.J.; Hawkes, J.; Rudinskiy, N.; Andermann, M.L.; Spires-Jones, T.L.; Bacskai, B.J.; Hyman, B.T. Neurofibrillary tangle-bearing neurons are functionally integrated in cortical circuits in vivo. Proc. Natl. Acad. Sci. USA, 2014, 111(1), 510-514.
[http://dx.doi.org/10.1073/pnas.1318807111] [PMID: 24368848]
[127]
Oltersdorf, T.; Ward, P.J.; Henriksson, T.; Beattie, E.C.; Neve, R.; Lieberburg, I.; Fritz, L.C. The Alzheimer amyloid precursor protein. Identification of a stable intermediate in the biosynthetic/degradative pathway. J. Biol. Chem., 1990, 265(8), 4492-4497.
[PMID: 1968460]
[128]
Weidemann, A.; Eggert, S.; Reinhard, F.B.; Vogel, M.; Paliga, K.; Baier, G.; Masters, C.L.; Beyreuther, K.; Evin, G. A novel epsilon-cleavage within the transmembrane domain of the Alzheimer amyloid precursor protein demonstrates homology with Notch processing. Biochemistry, 2002, 41(8), 2825-2835.
[http://dx.doi.org/10.1021/bi015794o] [PMID: 11851430]
[129]
Rusu, P.; Jansen, A.; Soba, P.; Kirsch, J.; Löwer, A.; Merdes, G.; Kuan, Y.H.; Jung, A.; Beyreuther, K.; Kjaerulff, O.; Kins, S. Axonal accumulation of synaptic markers in APP transgenic Drosophila depends on the NPTY motif and is paralleled by defects in synaptic plasticity. Eur. J. Neurosci., 2007, 25(4), 1079-1086.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05341.x] [PMID: 17331204]
[130]
Rodrigues, E.M.; Weissmiller, A.M.; Goldstein, L.S. Enhanced β-secretase processing alters APP axonal transport and leads to axonal defects. Hum. Mol. Genet., 2012, 21(21), 4587-4601.
[http://dx.doi.org/10.1093/hmg/dds297] [PMID: 22843498]
[131]
Deyts, C.; Clutter, M.; Herrera, S.; Jovanovic, N.; Goddi, A.; Parent, A.T. Loss of presenilin function is associated with a selective gain of APP function. eLife, 2016, 5, e15645.
[http://dx.doi.org/10.7554/eLife.15645] [PMID: 27196744]
[132]
Xu, W.; Weissmiller, A.M.; White, J.A., II; Fang, F.; Wang, X.; Wu, Y.; Pearn, M.L.; Zhao, X.; Sawa, M.; Chen, S.; Gunawardena, S.; Ding, J.; Mobley, W.C.; Wu, C. Amyloid precursor protein-mediated endocytic pathway disruption induces axonal dysfunction and neurodegeneration. J. Clin. Invest., 2016, 126(5), 1815-1833.
[http://dx.doi.org/10.1172/JCI82409] [PMID: 27064279]
[133]
Blurton-Jones, M.; Laferla, F.M. Pathways by which Abeta facilitates tau pathology. Curr. Alzheimer Res., 2006, 3(5), 437-448.
[http://dx.doi.org/10.2174/156720506779025242] [PMID: 17168643]
[134]
Hochgräfe, K.; Sydow, A.; Mandelkow, E.M. Regulatable transgenic mouse models of Alzheimer disease: onset, reversibility and spreading of Tau pathology. FEBS J., 2013, 280(18), 4371-4381.
[http://dx.doi.org/10.1111/febs.12250] [PMID: 23517246]
[135]
Chaudhary, A.R.; Berger, F.; Berger, C.L.; Hendricks, A.G. Tau directs intracellular trafficking by regulating the forces exerted by kinesin and dynein teams. Traffic, 2017.
[PMID: 29077261]
[136]
He, Z.; Guo, J.L.; McBride, J.D.; Narasimhan, S.; Kim, H.; Changolkar, L.; Zhang, B.; Gathagan, R.J.; Yue, C.; Dengler, C.; Stieber, A.; Nitla, M.; Coulter, D.A.; Abel, T.; Brunden, K.R.; Trojanowski, J.Q.; Lee, V.M. Amyloid-β plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat. Med., 2018, 24(1), 29-38.
[http://dx.doi.org/10.1038/nm.4443] [PMID: 29200205]
[137]
Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol., 2018, 25(1), 59-70.
[http://dx.doi.org/10.1111/ene.13439] [PMID: 28872215]
[138]
Goldsbury, C.; Mocanu, M.M.; Thies, E.; Kaether, C.; Haass, C.; Keller, P.; Biernat, J.; Mandelkow, E.; Mandelkow, E.M. Inhibition of APP trafficking by tau protein does not increase the generation of amyloid-beta peptides. Traffic, 2006, 7(7), 873-888.
[http://dx.doi.org/10.1111/j.1600-0854.2006.00434.x] [PMID: 16734669]
[139]
Mamun, A.A.; Uddin, M.S.; Bashar, M.F.B.; Zaman, S.; Begum, Y.; Bulbul, I.J.; Sarwar, M.S.; Mathew, B.; Amran, M.S.; Ashraf, G.M.; Bin-Jumah, M.N.; Mousa, S.A.; Abdel-Daim, M.M. Molecular insight into the therapeutic promise of targeting APOE4 for alzheimer’s disease Oxidative Medicine and Cellular Longevity, 2020, Article ID 5086250.
[http://dx.doi.org/10.1155/2020/5086250]
[140]
Takahashi, M.; Miyata, H.; Kametani, F.; Nonaka, T.; Akiyama, H.; Hisanaga, S.; Hasegawa, M. Extracellular association of APP and tau fibrils induces intracellular aggregate formation of tau. Acta Neuropathol., 2015, 129(6), 895-907.
[http://dx.doi.org/10.1007/s00401-015-1415-2] [PMID: 25869641]
[141]
Leyns, C.E.G.; Holtzman, D.M. Glial contributions to neurodegeneration in tauopathies. Mol. Neurodegener., 2017, 12(1), 50.
[http://dx.doi.org/10.1186/s13024-017-0192-x] [PMID: 28662669]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy