Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Acute Inflammation and Oxidative Stress Induced by Lipopolysaccharide and the Ameliorative Effect of Stingless Bee Honey

Author(s): Yazan Ranneh*, Ayman M. Mahmoud*, Abdulmannan Fadel, Mohammed Albujja, Abdah Md Akim, Hasiah Ab. Hamid and Huzwah Khazaai

Volume 24, Issue 6, 2021

Published on: 18 September, 2020

Page: [744 - 757] Pages: 14

DOI: 10.2174/1386207323999200918152111

Price: $65

Abstract

Background: Systemic acute inflammation is the hallmark of sepsis and is associated with multiple organ dysfunction.

Objective: This study investigated the potential of Stingless Bee Honey (SBH) to suppress lipopolysaccharide (LPS)-induced systemic acute inflammation in rats and to reveal the probable mechanism of action.

Methods: Rats received 4.6 and 9.2 g/kg SBH for 7 days followed by a single injection of LPS after which blood samples were taken 6h later.

Results: LPS induced liver, kidney, heart, and lung injury, were manifested by increased serum transaminases, alkaline phosphatase, creatine kinase, creatinine, and urea, along with multiple histological alterations, particularly leukocyte infiltration. Pro-inflammatory cytokines were elevated in the serum, and NF-κB p65, p38 MAPK, and HMGB-1 were significantly increased in different tissues of LPS-challenged rats. SBH prevented tissue injury, ameliorated pro-inflammatory cytokines, and suppressed NF-κB p65, p38 MAPK, and HMGB-1 in rats that had received LPS. In addition, SBH diminished reactive oxygen species (ROS) production, lipid peroxidation, and oxidative DNA damage, and enhanced glutathione and Nrf2 in LPS-treated rats.

Conclusion: SBH prevents systemic acute inflammation by suppressing NF-κB, p38 MAPK, HMGB-1, oxidative stress, and tissue injury in rats. Thus, SBH may represent an effective anti-inflammatory nutraceutical, pending further mechanistic studies.

Keywords: Inflammation, Sepsis, ROS, HMGB-1, NF-κB, Nrf2, MAPK.

[1]
Kiers, D.; Koch, R.M.; Hamers, L.; Gerretsen, J.; Thijs, E.J.M.; Van Ede, L.; Riksen, N.P.; Kox, M.; Pickkers, P. Characterization of a model of systemic inflammation in humans in vivo elicited by continuous infusion of endotoxin. Sci. Rep., 2016, 2017(7), 1-10.
[PMID: 28054645]
[2]
Mayr, F. B.; Yende, S.; Angus, D. C. Epidemiology of severe sepsis., 2014.
[http://dx.doi.org/10.4161/viru.27372]
[3]
Angus, D.C.; van der Poll, T. Severe sepsis and septic shock. N. Engl. J. Med., 2013.
[http://dx.doi.org/10.1056/NEJMra1208623]
[4]
MacFie, J. Bacterial translocation, gut barrier function and nutritional support. Surgery, 2002, 20(7), i-ii.
[http://dx.doi.org/10.1383/surg.20.7.0.14398]
[5]
Anderberg, S.B.; Luther, T.; Frithiof, R. Physiological aspects of Toll-like receptor 4 activation in sepsis-induced acute kidney injury. Acta Physiol. (Oxf.), 2016, 1-16.
[PMID: 27602552]
[6]
Janardhan, K.S.; McIsaac, M.; Fowlie, J.; Shrivastav, A.; Caldwell, S.; Sharma, R.K.; Singh, B. Toll like receptor-4 expression in lipopolysaccharide induced lung inflammation. Histol. Histopathol., 2006, 21(7), 687-696.
[PMID: 16598667]
[7]
Soares, J.B.; Pimentel-Nunes, P.; Roncon-Albuquerque, R.; Leite-Moreira, A. The role of lipopolysaccharide/toll-like receptor 4 signaling in chronic liver diseases. Hepatol. Int., 2010, 4(4), 659-672.
[http://dx.doi.org/10.1007/s12072-010-9219-x] [PMID: 21286336]
[8]
Zeuke, S.; Ulmer, A.J.; Kusumoto, S.; Katus, H.A.; Heine, H. TLR4-mediated inflammatory activation of human coronary artery endothelial cells by LPS. Cardiovasc. Res., 2002, 56(1), 126-134.
[http://dx.doi.org/10.1016/S0008-6363(02)00512-6] [PMID: 12237173]
[9]
Morgan, M.J.; Liu, Z.G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res., 2011, 21(1), 103-115.
[http://dx.doi.org/10.1038/cr.2010.178] [PMID: 21187859]
[10]
Nijland, R.; Hofland, T.; van Strijp, J.A.G. Recognition of LPS by TLR4: potential for anti-inflammatory therapies. Mar. Drugs, 2014, 12(7), 4260-4273.
[http://dx.doi.org/10.3390/md12074260] [PMID: 25056632]
[11]
Guerrini, A.; Bruni, R.; Maietti, S.; Poli, F.; Rossi, D.; Paganetto, G.; Muzzoli, M.; Scalvenzi, L.; Sacchetti, G. Ecuadorian stingless bee (Meliponinae) honey: A chemical and functional profile of an ancient health product. FOCH Food Chemistry, 2009, 114(4), 1413-1420.
[http://dx.doi.org/10.1016/j.foodchem.2008.11.023]
[12]
Ghosh, S.; Playford, R.J. Bioactive natural compounds for the treatment of gastrointestinal disorders. Clin. Sci. (Lond.), 2003, 104(6), 547-556.
[http://dx.doi.org/10.1042/CS20030067] [PMID: 12641494]
[13]
Yaacob, M.; Rajab, N. F.; Shahar, S.; Sharif, R. Stingless bee honey and its potential value: a systematic review, 2018, 1,4 1, 1-10.
[14]
El Ouadi, Y.; Elmsellem, H.; Hammouti, B.; Bouyanzer, A.; Bendaif, H.; Mrabti, H.N.; Kadmi, Y.; Kadmi, Y.; Kadmi, Y.; Kadmi, Y.; Shariati, M.A.; Shariati, M.A.; Abdel-Rahman, I. Antioxidant activity of phenols and flavonoids contents of aqueous extract of Pelargonium graveolens orgin in the North-East Morocco. J. Microbiol. Biotechnol. Food Sci., 2017, 6(5), 1218-1220.
[http://dx.doi.org/10.15414/jmbfs.2017.6.5.1218-1220]
[15]
Althunibat, O.Y.; Al Hroob, A.M.; Abukhalil, M.H.; Germoush, M.O.; Bin-Jumah, M.; Mahmoud, A.M. Fisetin ameliorates oxidative stress, inflammation and apoptosis in diabetic cardiomyopathy. Life Sci., 2019, 221, 83-92.
[http://dx.doi.org/10.1016/j.lfs.2019.02.017] [PMID: 30742869]
[16]
Kamel, E. M.; Mahmoud, A. M.; Ahmed, S. A.; Lamsabhi, A. M. A phytochemical and computational study on flavonoids isolated from Trifolium resupinatum L. and their novel hepatoprotective activity.w Food Funct, 2016, 7(4), 2094-106.
[17]
Elsayed, R.H.; Kamel, E.M.; Mahmoud, A.M.; El-Bassuony, A.A.; Bin-Jumah, M.; Lamsabhi, A.M.; Ahmed, S.A. Rumex dentatus L. phenolics ameliorate hyperglycemia by modulating hepatic key enzymes of carbohydrate metabolism, oxidative stress and PPARγ in diabetic rats. Food Chem. Toxicol., 2020, 138111202
[http://dx.doi.org/10.1016/j.fct.2020.111202] [PMID: 32084495]
[18]
Mahmoud, A.M.; Hernández Bautista, R.J.; Sandhu, M.A.; Hussein, O.E. Beneficial effects of citrus flavonoids on cardiovascular and metabolic health. Oxid. Med. Cell. Longev., 2019, 20195484138
[http://dx.doi.org/10.1155/2019/5484138] [PMID: 30962863]
[19]
Bogdanov, S. Honey as nutrient and functional food: a review. Bee Product Science, 2015 April;, 1-47.
[20]
Kek, S.P.; Chin, N.L.; Yusof, Y.A.; Tan, S.W.; Chua, L.S. Total phenolic contents and colour intensity of malaysian honeys from the Apis spp. and Trigona spp. Bees. Agric. Agric. Sci. Procedia, 2014, 2(Suppl. C), 150-155.
[http://dx.doi.org/10.1016/j.aaspro.2014.11.022]
[21]
Rao, P.V.; Krishnan, K.T.; Salleh, N.; Gan, S.H. Biological and therapeutic effects of honey produced by honey bees and stingless bees: a comparative review. BJP Revista Brasileira de Farmacognosia, 2016, 26(5), 657-664.
[http://dx.doi.org/10.1016/j.bjp.2016.01.012]
[22]
Sousa, J.M.; de Souza, E.L.; Marques, G.; Meireles, B.; de Magalhães Cordeiro, Â.T.; Gullón, B.; Pintado, M.M.; Magnani, M. Polyphenolic profile and antioxidant and antibacterial activities of monofloral honeys produced by Meliponini in the Brazilian semiarid region. Food Res. Int., 2016, 84, 61-68.
[http://dx.doi.org/10.1016/j.foodres.2016.03.012]
[23]
Nishio, E.K.; Bodnar, G.C.; Perugini, M.R.E.; Andrei, C.C.; Proni, E.A.; Kobayashi, R.K.T.; Nakazato, G. Antibacterial activity of honey from stingless bees Scaptotrigona bipunctata Lepeletier, 1836 and S. postica Latreille, 1807 (Hymenoptera: Apidae: Meliponinae) against methicillin-resistant Staphylococcus aureus (MRSA). J. Apic. Res., 2015, 54(5), 452-460.
[http://dx.doi.org/10.1080/00218839.2016.1162985]
[24]
Kustiawan, P.M.; Puthong, S.; Arung, E.T.; Chanchao, C. In vitro cytotoxicity of Indonesian stingless bee products against human cancer cell lines. Asian Pac. J. Trop. Biomed., 2014, 4(7), 549-556.
[http://dx.doi.org/10.12980/APJTB.4.2014APJTB-2013-0039] [PMID: 25183275]
[25]
Borsato, D.M.; Prudente, A.S.; Döll-Boscardin, P.M.; Borsato, A.V.; Luz, C.F.P.; Maia, B.H.L.N.S.; Cabrini, D.A.; Otuki, M.F.; Miguel, M.D.; Farago, P.V.; Miguel, O.G. Topical anti-inflammatory activity of a monofloral honey of Mimosa scabrella provided by Melipona marginata during winter in southern Brazil. J. Med. Food, 2014, 17(7), 817-825.
[http://dx.doi.org/10.1089/jmf.2013.0024] [PMID: 24650139]
[26]
Ranneh, Y.; Akim, A.M.; Hamid, H.A.; Khazaai, H.; Fadel, A.; Mahmoud, A.M. Stingless bee honey protects against lipopolysaccharide induced-chronic subclinical systemic inflammation and oxidative stress by modulating Nrf2, NF-κB and p38 MAPK. Nutr. Metab. (Lond.), 2019, 16(1), 15.
[http://dx.doi.org/10.1186/s12986-019-0341-z] [PMID: 30858869]
[27]
Hong, J.W.; Yang, G.E.; Kim, Y.B.; Eom, S.H.; Lew, J.H.; Kang, H. Anti-inflammatory activity of cinnamon water extract in vivo and in vitro LPS-induced models. BMC Complement. Altern. Med., 2012, 12(1), 237.
[http://dx.doi.org/10.1186/1472-6882-12-237] [PMID: 23190501]
[28]
Ranneh, Y.; Ali, F.; Zarei, M.; Akim, A.M.; Hamid, H.A.; Khazaai, H. Malaysian stingless bee and Tualang honeys: A comparative characterization of total antioxidant capacity and phenolic profile using liquid chromatography-mass spectrometry. LWT, 2018, 89, 1-9.
[http://dx.doi.org/10.1016/j.lwt.2017.10.020]
[29]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[PMID: 14907713]
[30]
Yücel, G.; Zhao, Z.; El-Battrawy, I.; Lan, H.; Lang, S.; Li, X.; Buljubasic, F.; Zimmermann, W.H.; Cyganek, L.; Utikal, J.; Ravens, U.; Wieland, T.; Borggrefe, M.; Zhou, X.B.; Akin, I. Lipopolysaccharides induced inflammatory responses and electrophysiological dysfunctions in human-induced pluripotent stem cell derived cardiomyocytes. Sci. Rep., 2017, 7(1), 2935.
[http://dx.doi.org/10.1038/s41598-017-03147-4] [PMID: 28592841]
[31]
Hoogland, I.C.M.; Houbolt, C.; van Westerloo, D.J.; van Gool, W.A.; van de Beek, D. Systemic inflammation and microglial activation: systematic review of animal experiments. J. Neuroinflammation, 2015, 12(1), 114-114.
[http://dx.doi.org/10.1186/s12974-015-0332-6] [PMID: 26048578]
[32]
Schulte, W.; Bernhagen, J.; Bucala, R. Cytokines in Sepsis : Potent Immunoregulators and Potential Therapeutic Targets — An Updated View., 2013.
[33]
Kassim, M.; Yusoff, K.M.; Ong, G.; Sekaran, S.; Yusof, M.Y.B.M.; Mansor, M. Gelam honey inhibits lipopolysaccharide-induced endotoxemia in rats through the induction of heme oxygenase-1 and the inhibition of cytokines, nitric oxide, and high-mobility group protein B1. Fitoterapia, 2012, 83(6), 1054-1059.
[http://dx.doi.org/10.1016/j.fitote.2012.05.008] [PMID: 22626749]
[34]
Hussein, S.Z.; Mohd Yusoff, K.; Makpol, S.; Mohd Yusof, Y.A. Gelam honey attenuates carrageenan-induced rat paw inflammation via NF-κB pathway. PLoS One, 2013, 8(8)e72365
[http://dx.doi.org/10.1371/journal.pone.0072365] [PMID: 24015236]
[35]
Owoyele, B. V.; Adenekan, O. T.; Soladoye, A. O. Effects of honey on inflammation and nitric oxide production in Wistar rats. Chin. J. Integr. Med., 2011, 9, 447-452.
[http://dx.doi.org/10.3736/jcim20110415]
[36]
Candiracci, M.; Piatti, E.; Morgado, B.; Ruano, D.; Gutie, J. F.; Parrado, J. Anti-inflammatory activity of a honey flavonoid extract on lipopolysaccharide-activated N13 microglial cells. J. Agric. Food Chem., 2012, 60, 50, 12304-12311.
[37]
Arthur, J.S.; Ley, S.C. Mitogen-activated protein kinases in innate immunity. Nat. Rev. Immunol., 2013, 13(9), 679-692.
[http://dx.doi.org/10.1038/nri3495] [PMID: 23954936]
[38]
Stevens, N.E.; Chapman, M.J.; Fraser, C.K.; Kuchel, T.R.; Hayball, J.D.; Diener, K.R. Therapeutic targeting of HMGB1 during experimental sepsis modulates the inflammatory cytokine profile to one associated with improved clinical outcomes. Sci. Rep., 2017, 7(1), 5850.
[http://dx.doi.org/10.1038/s41598-017-06205-z] [PMID: 28724977]
[39]
Tang, D.; Kang, R.; Zeh, H.J.; Lotze, M.T. High-Mobility Group Box 1, Oxidative Stress, and Disease; Antioxidants & Redox Signaling, 2011.
[http://dx.doi.org/10.1089/ars.2010.3356]
[40]
Yang, H.; Tracey, K. J. Targeting HMGB1 in inflammation. Biochim. Biophys. Acta Gene Regul. Mech. Bba-Gene Regul. Mech., 2010, 1799(1-2), 149-156.
[http://dx.doi.org/10.1016/j.bbagrm.2009.11.019]
[41]
Angus, D.C.; Yang, L.; Kong, L.; Kellum, J.A.; Delude, R.L.; Tracey, K.J.; Weissfeld, L. GenIMS Investigators. Circulating high-mobility group box 1 (HMGB1) concentrations are elevated in both uncomplicated pneumonia and pneumonia with severe sepsis. Crit. Care Med., 2007, 35(4), 1061-1067.
[http://dx.doi.org/10.1097/01.CCM.0000259534.68873.2A] [PMID: 17334246]
[42]
Li, W.; Ashok, M.; Li, J.; Yang, H.; Sama, A.E.; Wang, H. A major ingredient of green tea rescues mice from lethal sepsis partly by inhibiting HMGB1. PLoS One, 2007, 2(11)e1153
[http://dx.doi.org/10.1371/journal.pone.0001153] [PMID: 17987129]
[43]
Wang, F.; Meng, Y.; Zhang, Y.; Zhao, G.; Zheng, X.; Xiao, Q.; Yu, Y. Ketamine reduces lipopolysaccharide-induced high-mobility group box-1 through heme oxygenase-1 and nuclear factor erythroid 2-related factor 2/ p38 mitogen-activated protein kinase. J. Surg. Res., 2015, 194(2), 599-613.
[http://dx.doi.org/10.1016/j.jss.2014.11.031] [PMID: 25614361]
[44]
Yoh, K.; Itoh, K.; Enomoto, A.; Hirayama, A.; Yamaguchi, N.; Kobayashi, M.; Morito, N.; Koyama, A.; Yamamoto, M.; Takahashi, S. Nrf2-deficient female mice develop lupus-like autoimmune nephritis. Kidney Int., 2001, 60(4), 1343-1353.
[http://dx.doi.org/10.1046/j.1523-1755.2001.00939.x] [PMID: 11576348]
[45]
Satta, S.; Mahmoud, A.M.; Wilkinson, F.L.; Yvonne Alexander, M.; White, S.J. The role of Nrf2 in cardiovascular function and disease. Oxid. Med. Cell. Longev., 2017, 20179237263
[http://dx.doi.org/10.1155/2017/9237263] [PMID: 29104732]
[46]
Pandurangan, A.K.; Saadatdoust, Z.; Esa, N.M.; Hamzah, H.; Ismail, A. Dietary cocoa protects against colitis-associated cancer by activating the Nrf2/Keap1 pathway. Biofactors, 2015, 41(1), 1-14.
[http://dx.doi.org/10.1002/biof.1195] [PMID: 25545372]
[47]
Zhong, W.; Qian, K.; Xiong, J.; Ma, K.; Wang, A.; Zou, Y. Curcumin alleviates lipopolysaccharide induced sepsis and liver failure by suppression of oxidative stress-related inflammation via PI3K/AKT and NF-κB related signaling. Biomed. Pharmacother., 2016, 83, 302-313.
[http://dx.doi.org/10.1016/j.biopha.2016.06.036] [PMID: 27393927]
[48]
Aladaileh, S.H.; Abukhalil, M.H.; Saghir, S.A.M.; Hanieh, H.; Alfwuaires, M.A.; Almaiman, A.A.; Bin-Jumah, M.; Mahmoud, A.M. Galangin activates Nrf2 signaling and attenuates oxidative damage, inflammation, and apoptosis in a rat model of cyclophosphamide-induced hepatotoxicity. Biomolecules, 2019, 9(8), 346.
[http://dx.doi.org/10.3390/biom9080346] [PMID: 31387329]
[49]
Alvarez-Suarez, J.M.; Giampieri, F.; Cordero, M.; Gasparrini, M.; Forbes-Hernández, T.Y.; Mazzoni, L.; Afrin, S.; Beltrán-Ayala, P.; González-Paramás, A.M.; Santos-Buelga, C.; Varela-Lopez, A.; Quiles, J.L.; Battino, M. Activation of AMPK / Nrf2 signalling by Manuka honey protects human dermal fibroblasts against oxidative damage by improving antioxidant response and mitochondrial. J. Funct. Foods, 2016, 25(May), 38-49.
[http://dx.doi.org/10.1016/j.jff.2016.05.008]
[50]
Fang, Y-Z.; Yang, S.; Wu, G. Free radicals, antioxidants, and nutrition. Nutrition, 2002, 18(10), 872-879.
[http://dx.doi.org/10.1016/S0899-9007(02)00916-4] [PMID: 12361782]
[51]
Ranneh, Y.; Ali, F.; Akim, A.M.; Hamid, H.A.; Khazaai, H.; Fadel, A. Crosstalk between reactive oxygen species and pro-inflammatory markers in developing various chronic diseases: a review. Applied Biological Chem., 2017, 60(3), 327-338.
[http://dx.doi.org/10.1007/s13765-017-0285-9]
[52]
Uthurry, C.A.; Hevia, D.; Gomez-cordoves, C. Role of honey polyphenols in health. J. Api Product Api Med. Sci., 2011, 3(4), 141-159.
[http://dx.doi.org/10.3896/IBRA.4.03.4.01]
[53]
Eraslan, G.; Kanbur, M.; Silici, S.; Karabacak, M. Beneficial effect of pine honey on trichlorfon induced some biochemical alterations in mice. Ecotoxicol. Environ. Saf., 2010, 73(5), 1084-1091.
[http://dx.doi.org/10.1016/j.ecoenv.2010.02.017] [PMID: 20303175]
[54]
Schramm, D.D.; Karim, M.; Schrader, H.R.; Holt, R.R.; Cardetti, M.; Keen, C.L.; Holt, R.R.; Holt, R.R.; Cardetti, M.; Cardetti, M.; Keen, C.L.; Keen, C.L. Honey with high levels of antioxidants can provide protection to healthy human subjects. J. Agric. Food Chem., 2003, 51(6), 1732-1735.
[http://dx.doi.org/10.1021/jf025928k] [PMID: 12617614]
[55]
Erejuwa, O.O.; Sulaiman, S.A.; Wahab, M.S.A.; Sirajudeen, K.N.S.; Salleh, M.S.M.; Gurtu, S. Differential responses to blood pressure and oxidative stress in streptozotocin-induced diabetic Wistar-Kyoto rats and spontaneously hypertensive rats: effects of antioxidant (honey) treatment. Int. J. Mol. Sci., 2011, 12(3), 1888-1907.
[http://dx.doi.org/10.3390/ijms12031888] [PMID: 21673929]
[56]
Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci., 2016, 8, 33-42.
[http://dx.doi.org/10.1016/j.cofs.2016.02.002]
[57]
Fawley, J.; Gourlay, D.M. Intestinal alkaline phosphatase: a summary of its role in clinical disease. J. Surg. Res., 2016, 202(1), 225-234.
[http://dx.doi.org/10.1016/j.jss.2015.12.008] [PMID: 27083970]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy