Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Anti-Cancer Activity of Curcumin on Multiple Myeloma

Author(s): Hamed Mirzaei, Hossein Bagheri, Faezeh Ghasemi, Jaber M. Khoi, Mohammad H. Pourhanifeh, Yvan V. Heyden, Erfan Mortezapour, Ali Nikdasti, Philippe Jeandet, Haroon Khan and Amirhossein Sahebkar*

Volume 21, Issue 5, 2021

Published on: 18 September, 2020

Page: [575 - 586] Pages: 12

DOI: 10.2174/1871520620666200918113625

Price: $65

Abstract

Multiple Myeloma (MM) is the third most common and deadly hematological malignancy, which is characterized by a progressive monoclonal proliferation within the bone marrow. MM is cytogenetically heterogeneous with numerous genetic and epigenetic alterations, which lead to a wide spectrum of signaling pathways and cell cycle checkpoint aberrations. MM symptoms can be attributed to CRAB features (hyperCalcemia, Renal failure, Anemia, and Bone lesion), which profoundly affect both the Health-Related Quality of Life (HRQoL) and the life expectancy of patients. Despite all enhancement and improvement in therapeutic strategies, MM is almost incurable, and patients suffering from this disease eventually relapse. Curcumin is an active and non-toxic phenolic compound, isolated from the rhizome of Curcuma longa L. It has been widely studied and has a confirmed broad range of therapeutic properties, especially anti-cancer activity, and others, including anti-proliferation, anti-angiogenesis, antioxidant and anti-mutation activities. Curcumin induces apoptosis in cancerous cells and prevents Multidrug Resistance (MDR). Growing evidence concerning the therapeutic properties of curcumin caused a pharmacological impact on MM. It is confirmed that curcumin interferes with various signaling pathways and cell cycle checkpoints, and with oncogenes. In this paper, we summarized the anti- MM effects of curcumin.

Keywords: Curcumin, multiple myeloma, therapy, multidrug resistance, HRQoL, CRAB features.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Sergentanis, T.N. Risk factors for multiple myeloma: A systematic review of meta-analyses. Clin. Lymphoma Myeloma Leuk., 2015, 15(10), 563-577.
[http://dx.doi.org/10.1016/j.clml.2015.06.003]
[3]
Korde, N.; Maric, I. Myelomagenesis: Capturing early microenvironment changes. Semin. Hematol., 2011, 48(1), 13-21.
[http://dx.doi.org/10.1053/j.seminhematol.2010.11.004] [PMID: 21232654]
[4]
Kumar, S.K.; Rajkumar, V.; Kyle, R.A.; van Duin, M.; Sonneveld, P.; Mateos, M.V.; Gay, F.; Anderson, K.C. Multiple myeloma. Nat. Rev. Dis. Primers, 2017, 3(1), 17046.
[http://dx.doi.org/10.1038/nrdp.2017.46] [PMID: 28726797]
[5]
Pawlyn, C.; Morgan, G.J. Evolutionary biology of high-risk multiple myeloma. Nat. Rev. Cancer, 2017, 17(9), 543-556.
[http://dx.doi.org/10.1038/nrc.2017.63] [PMID: 28835722]
[6]
VanValkenburg, M.E.; Pruitt, G.I.; Brill, I.K.; Costa, L.; Ehtsham, M.; Justement, I.T.; Innis-Shelton, R.D.; Salzman, D.; Reddy, E.S.; Godby, K.N.; Mikhail, F.M.; Carroll, A.J.; Reddy, V.B.; Sanderson, R.D.; Justement, L.B.; Sanders, P.W.; Brown, E.E. Family history of hematologic malignancies and risk of multiple myeloma: Differences by race and clinical features. Cancer Causes Control, 2016, 27(1), 81-91.
[http://dx.doi.org/10.1007/s10552-015-0685-2] [PMID: 26596855]
[7]
Waxman, A.J.; Mink, P.J.; Devesa, S.S.; Anderson, W.F.; Weiss, B.M.; Kristinsson, S.Y.; McGlynn, K.A.; Landgren, O. Racial disparities in incidence and outcome in multiple myeloma: A population-based study. Blood, 2010, 116(25), 5501-5506.
[http://dx.doi.org/10.1182/blood-2010-07-298760] [PMID: 20823456]
[8]
Landgren, O.; Kyle, R.A.; Pfeiffer, R.M.; Katzmann, J.A.; Caporaso, N.E.; Hayes, R.B.; Dispenzieri, A.; Kumar, S.; Clark, R.J.; Baris, D.; Hoover, R.; Rajkumar, S.V. Monoclonal Gammopathy of Undetermined Significance (MGUS) consistently precedes multiple myeloma: A prospective study. Blood, 2009, 113(22), 5412-5417.
[http://dx.doi.org/10.1182/blood-2008-12-194241] [PMID: 19179464]
[9]
Kyle, R.A.; Remstein, E.D.; Therneau, T.M.; Dispenzieri, A.; Kurtin, P.J.; Hodnefield, J.M.; Larson, D.R.; Plevak, M.F.; Jelinek, D.F.; Fonseca, R.; Melton, L.J., III; Rajkumar, S.V. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N. Engl. J. Med., 2007, 356(25), 2582-2590.
[http://dx.doi.org/10.1056/NEJMoa070389] [PMID: 17582068]
[10]
Touzeau, C.; Moreau, P. How I treat extramedullary myeloma. Blood, 2016, 127(8), 971-976.
[http://dx.doi.org/10.1182/blood-2015-07-635383] [PMID: 26679866]
[11]
Fernández de Larrea, C.; Kyle, R.A.; Durie, B.G.; Ludwig, H.; Usmani, S.; Vesole, D.H.; Hajek, R.; San Miguel, J.F.; Sezer, O.; Sonneveld, P.; Kumar, S.K.; Mahindra, A.; Comenzo, R.; Palumbo, A.; Mazumber, A.; Anderson, K.C.; Richardson, P.G.; Badros, A.Z.; Caers, J.; Cavo, M.; LeLeu, X.; Dimopoulos, M.A.; Chim, C.S.; Schots, R.; Noeul, A.; Fantl, D.; Mellqvist, U.H.; Landgren, O.; Chanan-Khan, A.; Moreau, P.; Fonseca, R.; Merlini, G.; Lahuerta, J.J.; Bladé, J.; Orlowski, R.Z.; Shah, J.J. International Myeloma Working Group. Plasma cell leukemia: Consensus statement on diagnostic requirements, response criteria and treatment recommendations by the International Myeloma Working Group. Leukemia, 2013, 27(4), 780-791.
[http://dx.doi.org/10.1038/leu.2012.336] [PMID: 23288300]
[12]
Drayson, M.; Tang, L.X.; Drew, R.; Mead, G.P.; Carr-Smith, H.; Bradwell, A.R. Serum free light-chain measurements for identifying and monitoring patients with nonsecretory multiple myeloma. Blood, 2001, 97(9), 2900-2902.
[http://dx.doi.org/10.1182/blood.V97.9.2900] [PMID: 11313287]
[13]
Kyle, R.A.; Gertz, M.A.; Witzig, T.E.; Lust, J.A.; Lacy, M.Q.; Dispenzieri, A.; Fonseca, R.; Rajkumar, S.V.; Offord, J.R.; Larson, D.R.; Plevak, M.E.; Therneau, T.M.; Greipp, P.R. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin. Proc., 2003, 78(1), 21-33.
[http://dx.doi.org/10.4065/78.1.21] [PMID: 12528874]
[14]
van Beurden-Tan, C.H.Y.; Franken, M.G.; Blommestein, H.M.; Uyl-de Groot, C.A.; Sonneveld, P. Systematic literature review and network meta-analysis of treatment outcomes in relapsed and/or refractory multiple myeloma. J. Clin. Oncol., 2017, 35(12), 1312-1319.
[http://dx.doi.org/10.1200/JCO.2016.71.1663] [PMID: 28240968]
[15]
Hesari, A.; Ghasemi, F.; Salarinia, R.; Biglari, H.; Tabar Molla Hassan, A.; Abdoli, V.; Mirzaei, H. Effects of curcumin on NF-κB, AP-1, and Wnt/β-catenin signaling pathway in hepatitis B virus infection. J. Cell. Biochem., 2018, 119(10), 7898-7904.
[http://dx.doi.org/10.1002/jcb.26829] [PMID: 29923222]
[16]
Priyadarsini, K.I. The chemistry of curcumin: From extraction to therapeutic agent. Molecules, 2014, 19(12), 20091-20112.
[http://dx.doi.org/10.3390/molecules191220091] [PMID: 25470276]
[17]
Momtazi-Borojeni, A.A.; Ghasemi, F.; Hesari, A.; Majeed, M.; Caraglia, M.; Sahebkar, A. Anti-cancer and radio-sensitizing effects of curcumin in nasopharyngeal carcinoma. Curr. Pharm. Des., 2018, 24(19), 2121-2128.
[http://dx.doi.org/10.2174/1381612824666180522105202] [PMID: 29788875]
[18]
Hosseini, S.; Chamani, J.; Rahimi, H.; Azmoodeh, N.; Ghasemi, F.; Abadi, P.H. An in vitro study on curcumin delivery by nano-micelles for esophageal squamous cell carcinoma (KYSE-30). Rep. Biochem. Mol. Biol., 2018, 6(2), 137-143.
[PMID: 29765996]
[19]
Lestari, M.L.; Indrayanto, G. Curcumin. Profiles Drug Subst. Excip. Relat. Methodol., 2014, 39, 113-204.
[http://dx.doi.org/10.1016/B978-0-12-800173-8.00003-9] [PMID: 24794906]
[20]
Ashraf, K.; Mujeeb, M.; Ahmad, A.; Ahmad, N.; Amir, M. Determination of curcuminoids in Curcuma longa Linn. by UPLC/Q-TOF-MS: An application in turmeric cultivation. J. Chromatogr. Sci., 2015, 53(8), 1346-1352.
[http://dx.doi.org/10.1093/chromsci/bmv023] [PMID: 25838167]
[21]
Gupta, S.C.; Kismali, G.; Aggarwal, B.B. Curcumin, a component of turmeric: From farm to pharmacy. Biofactors, 2013, 39(1), 2-13.
[http://dx.doi.org/10.1002/biof.1079] [PMID: 23339055]
[22]
Miłobȩdzka, J.; Kostanecki, S.V.; Lampe, V. To know the curcumins. Ber. Dtsch. Chem. Ges., 1910, 43(2), 2163-2170.
[http://dx.doi.org/10.1002/cber.191004302168]
[23]
Grynkiewicz, G.; Ślifirski, P. Curcumin and curcuminoids in quest for medicinal status. Acta Biochim. Pol., 2012, 59(2), 201-212.
[http://dx.doi.org/10.18388/abp.2012_2139] [PMID: 22590694]
[24]
Loganes, C.; Lega, S.; Bramuzzo, M.; Vecchi Brumatti, L.; Piscianz, E.; Valencic, E.; Tommasini, A.; Marcuzzi, A. Curcumin anti-apoptotic action in a model of intestinal epithelial inflammatory damage. Nutrients, 2017, 9(6), 578.
[http://dx.doi.org/10.3390/nu9060578] [PMID: 28587282]
[25]
Reuter, S.; Eifes, S.; Dicato, M.; Aggarwal, B.B.; Diederich, M. Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochem. Pharmacol., 2008, 76(11), 1340-1351.
[http://dx.doi.org/10.1016/j.bcp.2008.07.031] [PMID: 18755156]
[26]
Karunagaran, D.; Rashmi, R.; Kumar, T.R. Induction of apoptosis by curcumin and its implications for cancer therapy. Curr. Cancer Drug Targets, 2005, 5(2), 117-129.
[http://dx.doi.org/10.2174/1568009053202081] [PMID: 15810876]
[27]
Shi, M.; Cai, Q.; Yao, L.; Mao, Y.; Ming, Y.; Ouyang, G. Antiproliferation and apoptosis induced by curcumin in human ovarian cancer cells. Cell Biol. Int., 2006, 30(3), 221-226.
[http://dx.doi.org/10.1016/j.cellbi.2005.10.024] [PMID: 16376585]
[28]
Curic, S.; Wu, Y.; Shan, B.; Schaaf, C.; Utpadel, D.; Lange, M.; Kuhlen, D.; Perone, M.J.; Arzt, E.; Stalla, G.K.; Renner, U. Curcumin acts anti-proliferative and pro-apoptotic in human meningiomas. J. Neurooncol., 2013, 113(3), 385-396.
[http://dx.doi.org/10.1007/s11060-013-1148-9] [PMID: 23666203]
[29]
Ragunathan, I.; Panneerselvam, N. Antimutagenic potential of curcumin on chromosomal aberrations in Allium cepa. J. Zhejiang Univ. Sci. B, 2007, 8(7), 470-475.
[http://dx.doi.org/10.1631/jzus.2007.B0470] [PMID: 17610326]
[30]
Jurenka, J.S. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research. Altern. Med. Rev., 2009, 14(2), 141-153.
[PMID: 19594223]
[31]
Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. InThe Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease; Springer: Germany, 2007, pp. 105-125.
[http://dx.doi.org/10.1007/978-0-387-46401-5_3]
[32]
Zorofchian Moghadamtousi, S. A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Res. Int., 2014, 2014Article ID 186864
[http://dx.doi.org/10.1155/2014/186864]
[33]
Shehzad, A.; Wahid, F.; Lee, Y.S. Curcumin in cancer chemoprevention: Molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch. Pharm. (Weinheim), 2010, 343(9), 489-499.
[http://dx.doi.org/10.1002/ardp.200900319] [PMID: 20726007]
[34]
Hesari, A.; Azizian, M.; Sheikhi, A.; Nesaei, A.; Sanaei, S.; Mahinparvar, N.; Derakhshani, M.; Hedayt, P.; Ghasemi, F.; Mirzaei, H. Chemopreventive and therapeutic potential of curcumin in esophageal cancer: Current and future status. Int. J. Cancer, 2019, 144(6), 1215-1226.
[http://dx.doi.org/10.1002/ijc.31947] [PMID: 30362511]
[35]
Bharti, A.C.; Donato, N.; Singh, S.; Aggarwal, B.B. Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-κB and IkappaBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood, 2003, 101(3), 1053-1062.
[http://dx.doi.org/10.1182/blood-2002-05-1320] [PMID: 12393461]
[36]
Bharti, A.C.; Donato, N.; Aggarwal, B.B. Curcumin (diferuloylmethane) inhibits constitutive and IL-6-inducible STAT3 phosphorylation in human multiple myeloma cells. J. Immunol., 2003, 171(7), 3863-3871.
[http://dx.doi.org/10.4049/jimmunol.171.7.3863] [PMID: 14500688]
[37]
Ghasemi, F.; Shafiee, M.; Banikazemi, Z.; Pourhanifeh, M.H.; Khanbabaei, H.; Shamshirian, A.; Amiri Moghadam, S. ArefNezhad, R.; Sahebkar, A.; Avan, A.; Mirzaei, H. Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathol. Res. Pract., 2019, 215(10)152556
[http://dx.doi.org/10.1016/j.prp.2019.152556] [PMID: 31358480]
[38]
Shafabakhsh, R.; Pourhanifeh, M.H.; Mirzaei, H.R.; Sahebkar, A.; Asemi, Z.; Mirzaei, H. Targeting regulatory T cells by curcumin: A potential for cancer immunotherapy. Pharmacol. Res., 2019, 147104353
[http://dx.doi.org/10.1016/j.phrs.2019.104353] [PMID: 31306775]
[39]
Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J., 2013, 15(1), 195-218.
[http://dx.doi.org/10.1208/s12248-012-9432-8] [PMID: 23143785]
[40]
Bora, K. Distribution of multiple myeloma in India: Heterogeneity in incidence across age, sex and geography. Cancer Epidemiol., 2019, 59, 215-220.
[http://dx.doi.org/10.1016/j.canep.2019.02.010] [PMID: 30831554]
[41]
Hakim, O.; Resch, W.; Yamane, A.; Klein, I.; Kieffer-Kwon, K.R.; Jankovic, M.; Oliveira, T.; Bothmer, A.; Voss, T.C.; Ansarah-Sobrinho, C.; Mathe, E.; Liang, G.; Cobell, J.; Nakahashi, H.; Robbiani, D.F.; Nussenzweig, A.; Hager, G.L.; Nussenzweig, M.C.; Casellas, R. DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes. Nature, 2012, 484(7392), 69-74.
[http://dx.doi.org/10.1038/nature10909] [PMID: 22314321]
[42]
Bianchi, G.; Munshi, N.C. Pathogenesis beyond the cancer clone(s) in multiple myeloma. Blood, 2015, 125(20), 3049-3058.
[http://dx.doi.org/10.1182/blood-2014-11-568881] [PMID: 25838343]
[43]
Walker, B.A.; Boyle, E.M.; Wardell, C.P.; Murison, A.; Begum, D.B.; Dahir, N.M.; Proszek, P.Z.; Johnson, D.C.; Kaiser, M.F.; Melchor, L.; Aronson, L.I.; Scales, M.; Pawlyn, C.; Mirabella, F.; Jones, J.R.; Brioli, A.; Mikulasova, A.; Cairns, D.A.; Gregory, W.M.; Quartilho, A.; Drayson, M.T.; Russell, N.; Cook, G.; Jackson, G.H.; Leleu, X.; Davies, F.E.; Morgan, G.J. Mutational spectrum, copy number changes, and outcome: Results of a sequencing study of patients with newly diagnosed myeloma. J. Clin. Oncol., 2015, 33(33), 3911-3920.
[http://dx.doi.org/10.1200/JCO.2014.59.1503] [PMID: 26282654]
[44]
Paull, T.T. Mechanisms of ATM Activation. Annu. Rev. Biochem., 2015, 84, 711-738.
[http://dx.doi.org/10.1146/annurev-biochem-060614-034335] [PMID: 25580527]
[45]
Kemp, M.G.; Sancar, A. ATR kinase inhibition protects non-cycling cells from the lethal effects of DNA damage and transcription stress. J. Biol. Chem., 2016, 291(17), 9330-9342.
[http://dx.doi.org/10.1074/jbc.M116.719740] [PMID: 26940878]
[46]
Pettersson, M. Expression of the bcl-2 gene in human multiple myeloma cell lines and normal plasma cells. Blood, 1992, 79(2), 495-502.
[47]
Catlett-Falcone, R.; Landowski, T.H.; Oshiro, M.M.; Turkson, J.; Levitzki, A.; Savino, R.; Ciliberto, G.; Moscinski, L.; Fernández-Luna, J.L.; Nuñez, G.; Dalton, W.S.; Jove, R. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity, 1999, 10(1), 105-115.
[http://dx.doi.org/10.1016/S1074-7613(00)80011-4] [PMID: 10023775]
[48]
Hideshima, T.; Mitsiades, C.; Ikeda, H.; Chauhan, D.; Raje, N.; Gorgun, G.; Hideshima, H.; Munshi, N.C.; Richardson, P.G.; Carrasco, D.R.; Anderson, K.C. A proto-oncogene BCL6 is up-regulated in the bone marrow microenvironment in multiple myeloma cells. Blood, 2010, 115(18), 3772-3775.
[http://dx.doi.org/10.1182/blood-2010-02-270082] [PMID: 20228272]
[49]
Chng, W.J.; Huang, G.F.; Chung, T.H.; Ng, S.B.; Gonzalez-Paz, N.; Troska-Price, T.; Mulligan, G.; Chesi, M.; Bergsagel, P.L.; Fonseca, R. Clinical and biological implications of MYC activation: a common difference between MGUS and newly diagnosed multiple myeloma. Leukemia, 2011, 25(6), 1026-1035.
[http://dx.doi.org/10.1038/leu.2011.53] [PMID: 21468039]
[50]
Rasmussen, T.; Kuehl, M.; Lodahl, M.; Johnsen, H.E.; Dahl, I.M. Possible roles for activating RAS mutations in the MGUS to MM transition and in the intramedullary to extramedullary transition in some plasma cell tumors. Blood, 2005, 105(1), 317-323.
[http://dx.doi.org/10.1182/blood-2004-03-0833] [PMID: 15339850]
[51]
Chng, W.J.; Gonzalez-Paz, N.; Price-Troska, T.; Jacobus, S.; Rajkumar, S.V.; Oken, M.M.; Kyle, R.A.; Henderson, K.J.; Van Wier, S.; Greipp, P.; Van Ness, B.; Fonseca, R. Clinical and biological significance of RAS mutations in multiple myeloma. Leukemia, 2008, 22(12), 2280-2284.
[http://dx.doi.org/10.1038/leu.2008.142] [PMID: 18528420]
[52]
Chretien, M-L.; Corre, J.; Lauwers-Cances, V.; Magrangeas, F.; Cleynen, A.; Yon, E.; Hulin, C.; Leleu, X.; Orsini-Piocelle, F.; Blade, J.S.; Sohn, C.; Karlin, L.; Delbrel, X.; Hebraud, B.; Roussel, M.; Marit, G.; Garderet, L.; Mohty, M.; Rodon, P.; Voillat, L.; Royer, B.; Jaccard, A.; Belhadj, K.; Fontan, J.; Caillot, D.; Stoppa, A.M.; Attal, M.; Facon, T.; Moreau, P.; Minvielle, S.; Avet-Loiseau, H. Understanding the role of hyperdiploidy in myeloma prognosis: Which trisomies really matter? Blood, 2015, 126(25), 2713-2719.
[http://dx.doi.org/10.1182/blood-2015-06-650242] [PMID: 26516228]
[53]
Dimopoulos, K.; Gimsing, P.; Grønbæk, K. The role of epigenetics in the biology of multiple myeloma. Blood Cancer J., 2014, 4(5), e207-e207.
[http://dx.doi.org/10.1038/bcj.2014.29] [PMID: 24786391]
[54]
Galm, O.; Yoshikawa, H.; Esteller, M.; Osieka, R.; Herman, J.G. SOCS-1, a negative regulator of cytokine signaling, is frequently silenced by methylation in multiple myeloma. Blood, 2003, 101(7), 2784-2788.
[http://dx.doi.org/10.1182/blood-2002-06-1735] [PMID: 12456503]
[55]
Zhao, J-J.; Lin, J.; Zhu, D.; Wang, X.; Brooks, D.; Chen, M.; Chu, Z.B.; Takada, K.; Ciccarelli, B.; Admin, S.; Tao, J.; Tai, Y.T.; Treon, S.; Pinkus, G.; Kuo, W.P.; Hideshima, T.; Bouxsein, M.; Munshi, N.; Anderson, K.; Carrasco, R. miR-30-5p functions as a tumor suppressor and novel therapeutic tool by targeting the oncogenic Wnt/β-catenin/BCL9 pathway. Cancer Res., 2014, 74(6), 1801-1813.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3311-T] [PMID: 24599134]
[56]
Cormier, F.; Monjanel, H.; Fabre, C.; Billot, K.; Sapharikas, E.; Chereau, F.; Bordereaux, D.; Molina, T.J.; Avet-Loiseau, H.; Baud, V. Frequent engagement of RelB activation is critical for cell survival in multiple myeloma. PLoS One, 2013, 8(3)e59127
[http://dx.doi.org/10.1371/journal.pone.0059127] [PMID: 23555623]
[57]
Nefedova, Y.; Cheng, P.; Alsina, M.; Dalton, W.S.; Gabrilovich, D.I. Involvement of Notch-1 signaling in bone marrow stroma-mediated de novo drug resistance of myeloma and other malignant lymphoid cell lines. Blood, 2004, 103(9), 3503-3510.
[http://dx.doi.org/10.1182/blood-2003-07-2340] [PMID: 14670925]
[58]
Ramakrishnan, V.; Kumar, S. PI3K/AKT/mTOR pathway in multiple myeloma: From basic biology to clinical promise. Leuk. Lymphoma, 2018, 59(11), 2524-2534.
[http://dx.doi.org/10.1080/10428194.2017.1421760] [PMID: 29322846]
[59]
Castillo, J.J. Plasma cell disorders. Prim. Care, 2016, 43(4), 677-691.
[http://dx.doi.org/10.1016/j.pop.2016.07.002] [PMID: 27866585]
[60]
Golombick, T.; Diamond, T.H.; Badmaev, V.; Manoharan, A.; Ramakrishna, R. The potential role of curcumin in patients with monoclonal gammopathy of undefined significance--its effect on paraproteinemia and the urinary N-telopeptide of type I collagen bone turnover marker. Clin. Cancer Res., 2009, 15(18), 5917-5922.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2217] [PMID: 19737963]
[61]
Hoffman, W.; Lakkis, F.G.; Chalasani, G. B cells, antibodies, and more. Clin. J. Am. Soc. Nephrol., 2016, 11(1), 137-154.
[http://dx.doi.org/10.2215/CJN.09430915] [PMID: 26700440]
[62]
Morgan, G.J.; Walker, B.A.; Davies, F.E. The genetic architecture of multiple myeloma. Nat. Rev. Cancer, 2012, 12(5), 335-348.
[http://dx.doi.org/10.1038/nrc3257] [PMID: 22495321]
[63]
Tagde, A.; Rajabi, H.; Bouillez, A.; Alam, M.; Gali, R.; Bailey, S.; Tai, Y.T.; Hideshima, T.; Anderson, K.; Avigan, D.; Kufe, D. MUC1-C drives MYC in multiple myeloma. Blood, 2016, 127(21), 2587-2597.
[http://dx.doi.org/10.1182/blood-2015-07-659151] [PMID: 26907633]
[64]
Sakaguchi, M.; Oka, M.; Iwasaki, T.; Fukami, Y.; Nishigori, C. Role and regulation of STAT3 phosphorylation at Ser727 in melanocytes and melanoma cells. J. Invest. Dermatol., 2012, 132(7), 1877-1885.
[http://dx.doi.org/10.1038/jid.2012.45] [PMID: 22418867]
[65]
Lin, L.; Deangelis, S.; Foust, E.; Fuchs, J.; Li, C.; Li, P.K.; Schwartz, E.B.; Lesinski, G.B.; Benson, D.; Lü, J.; Hoyt, D.; Lin, J. A novel small molecule inhibits STAT3 phosphorylation and DNA binding activity and exhibits potent growth suppressive activity in human cancer cells. Mol. Cancer, 2010, 9(1), 217.
[http://dx.doi.org/10.1186/1476-4598-9-217] [PMID: 20712901]
[66]
Hu, J.; Hu, W-X. Targeting signaling pathways in multiple myeloma: Pathogenesis and implication for treatments. Cancer Lett., 2018, 414, 214-221.
[http://dx.doi.org/10.1016/j.canlet.2017.11.020] [PMID: 29174802]
[67]
Rébé, C.; Végran, F.; Berger, H.; Ghiringhelli, F. STAT3 activation: A key factor in tumor immunoescape. JAK-STAT, 2013, 2(1)e23010
[http://dx.doi.org/10.4161/jkst.23010] [PMID: 24058791]
[68]
Porta, C.; Paglino, C.; Mosca, A. Targeting PI3K/Akt/mTOR signaling in cancer. Front. Oncol., 2014, 4, 64.
[http://dx.doi.org/10.3389/fonc.2014.00064] [PMID: 24782981]
[69]
Hay, N.; Sonenberg, N. Upstream and downstream of mTOR. Genes Dev., 2004, 18(16), 1926-1945.
[http://dx.doi.org/10.1101/gad.1212704] [PMID: 15314020]
[70]
Yu, S.; Shen, G.; Khor, T.O.; Kim, J.H.; Kong, A.N. Curcumin inhibits Akt/mammalian target of rapamycin signaling through protein phosphatase-dependent mechanism. Mol. Cancer Ther., 2008, 7(9), 2609-2620.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2400] [PMID: 18790744]
[71]
Kunnumakkara, A.B.; Bordoloi, D.; Harsha, C.; Banik, K.; Gupta, S.C.; Aggarwal, B.B. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways. Clin. Sci. (Lond.), 2017, 131(15), 1781-1799.
[http://dx.doi.org/10.1042/CS20160935] [PMID: 28679846]
[72]
McCubrey, J.A.; Abrams, S.L.; Fitzgerald, T.L.; Cocco, L.; Martelli, A.M.; Montalto, G.; Cervello, M.; Scalisi, A.; Candido, S.; Libra, M.; Steelman, L.S. Roles of signaling pathways in drug resistance, cancer initiating cells and cancer progression and metastasis. Adv. Biol. Regul., 2015, 57, 75-101.
[http://dx.doi.org/10.1016/j.jbior.2014.09.016] [PMID: 25453219]
[73]
Chesi, M.; Brents, L.A.; Ely, S.A.; Bais, C.; Robbiani, D.F.; Mesri, E.A.; Kuehl, W.M.; Bergsagel, P.L. Activated fibroblast growth factor receptor 3 is an oncogene that contributes to tumor progression in multiple myeloma. Blood, 2001, 97(3), 729-736.
[http://dx.doi.org/10.1182/blood.V97.3.729] [PMID: 11157491]
[74]
Ogata, A.; Chauhan, D.; Teoh, G.; Treon, S.P.; Urashima, M.; Schlossman, R.L.; Anderson, K.C. IL-6 triggers cell growth via the Ras-dependent mitogen-activated protein kinase cascade. J. Immunol., 1997, 159(5), 2212-2221.
[PMID: 9278309]
[75]
Bai, Q-X.; Zhang, X-Y. Curcumin enhances cytotoxic effects of bortezomib in human multiple myeloma H929 cells: Potential roles of NF-κB/JNK. Int. J. Mol. Sci., 2012, 13(4), 4831-4838.
[http://dx.doi.org/10.3390/ijms13044831] [PMID: 22606012]
[76]
Ang, E.; Pavlos, N.J.; Rea, S.L.; Qi, M.; Chai, T.; Walsh, J.P.; Ratajczak, T.; Zheng, M.H.; Xu, J. Proteasome inhibitors impair RANKL-induced NF-kappaB activity in osteoclast-like cells via disruption of p62, TRAF6, CYLD, and IkappaBalpha signaling cascades. J. Cell. Physiol., 2009, 220(2), 450-459.
[http://dx.doi.org/10.1002/jcp.21787] [PMID: 19365810]
[77]
Hongming, H.; Jian, H. Bortezomib inhibits maturation and function of osteoclasts from PBMCs of patients with multiple myeloma by downregulating TRAF6. Leuk. Res., 2009, 33(1), 115-122.
[http://dx.doi.org/10.1016/j.leukres.2008.07.028] [PMID: 18778854]
[78]
Punnoose, E.A.; Leverson, J.D.; Peale, F.; Boghaert, E.R.; Belmont, L.D.; Tan, N.; Young, A.; Mitten, M.; Ingalla, E.; Darbonne, W.C.; Oleksijew, A.; Tapang, P.; Yue, P.; Oeh, J.; Lee, L.; Maiga, S.; Fairbrother, W.J.; Amiot, M.; Souers, A.J.; Sampath, D. Expression profile of BCL-2, BCL-XL, and MCL-1 predicts pharmacological response to the BCL-2 selective antagonist venetoclax in multiple myeloma models. Mol. Cancer Ther., 2016, 15(5), 1132-1144.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0730] [PMID: 26939706]
[79]
Allegra, A.; Speciale, A.; Molonia, M.S.; Guglielmo, L.; Musolino, C.; Ferlazzo, G.; Costa, G.; Saija, A.; Cimino, F. Curcumin ameliorates the in vitro efficacy of carfilzomib in human multiple myeloma U266 cells targeting p53 and NF-κB pathways. Toxicol. In Vitro, 2018, 47, 186-194.
[http://dx.doi.org/10.1016/j.tiv.2017.12.001] [PMID: 29223572]
[80]
Derksen, P.W.; Tjin, E.; Meijer, H.P.; Klok, M.D.; MacGillavry, H.D.; van Oers, M.H.; Lokhorst, H.M.; Bloem, A.C.; Clevers, H.; Nusse, R.; van der Neut, R.; Spaargaren, M.; Pals, S.T. Illegitimate WNT signaling promotes proliferation of multiple myeloma cells. Proc. Natl. Acad. Sci. USA, 2004, 101(16), 6122-6127.
[http://dx.doi.org/10.1073/pnas.0305855101] [PMID: 15067127]
[81]
Tian, E.; Zhan, F.; Walker, R.; Rasmussen, E.; Ma, Y.; Barlogie, B.; Shaughnessy, J.D., Jr The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N. Engl. J. Med., 2003, 349(26), 2483-2494.
[http://dx.doi.org/10.1056/NEJMoa030847] [PMID: 14695408]
[82]
Prasad, C.P.; Rath, G.; Mathur, S.; Bhatnagar, D.; Ralhan, R. Potent growth suppressive activity of curcumin in human breast cancer cells: Modulation of Wnt/β-catenin signaling. Chem. Biol. Interact., 2009, 181(2), 263-271.
[http://dx.doi.org/10.1016/j.cbi.2009.06.012] [PMID: 19573523]
[83]
Mimeault, M.; Batra, S.K. Potential applications of curcumin and its novel synthetic analogs and nanotechnology-based formulations in cancer prevention and therapy. Chin. Med., 2011, 6(1), 31.
[http://dx.doi.org/10.1186/1749-8546-6-31] [PMID: 21859497]
[84]
Kudo, C.; Yamakoshi, H.; Sato, A.; Ohori, H.; Ishioka, C.; Iwabuchi, Y.; Shibata, H. Novel curcumin analogs, GO-Y030 and GO-Y078, are multi-targeted agents with enhanced abilities for multiple myeloma. Anticancer Res., 2011, 31(11), 3719-3726.
[PMID: 22110192]
[85]
Saberi-Karimian, M.; Katsiki, N.; Caraglia, M.; Boccellino, M.; Majeed, M.; Sahebkar, A. Vascular endothelial growth factor: An important molecular target of curcumin. Crit. Rev. Food Sci. Nutr., 2019, 59(2), 299-312.
[http://dx.doi.org/10.1080/10408398.2017.1366892] [PMID: 28853916]
[86]
Fu, Z.; Chen, X.; Guan, S.; Yan, Y.; Lin, H.; Hua, Z.C. Curcumin inhibits angiogenesis and improves defective hematopoiesis induced by tumor-derived VEGF in tumor model through modulating VEGF-VEGFR2 signaling pathway. Oncotarget, 2015, 6(23), 19469-19482.
[http://dx.doi.org/10.18632/oncotarget.3625] [PMID: 26254223]
[87]
Sung, B.; Kunnumakkara, A.B.; Sethi, G.; Anand, P.; Guha, S.; Aggarwal, B.B. Curcumin circumvents chemoresistance in vitro and potentiates the effect of thalidomide and bortezomib against human multiple myeloma in nude mice model. Mol. Cancer Ther., 2009, 8(4), 959-970.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0905] [PMID: 19372569]
[88]
Gomez-Bougie, P.; Halliez, M.; Maïga, S.; Godon, C.; Kervoëlen, C.; Pellat-Deceunynck, C.; Moreau, P.; Amiot, M. Curcumin induces cell death of the main molecular myeloma subtypes, particularly the poor prognosis subgroups. Cancer Biol. Ther., 2015, 16(1), 60-65.
[http://dx.doi.org/10.4161/15384047.2014.986997] [PMID: 25517601]
[89]
Wu, C.; Ruan, T.; Liu, W.; Zhu, X.; Pan, J.; Lu, W.; Yan, C.; Tao, K.; Zhang, W.; Zhang, C. Effect and mechanism of curcumin on EZH2-miR-101 regulatory feedback loop in multiple myeloma. Curr. Pharm. Des., 2018, 24(5), 564-575.
[http://dx.doi.org/10.2174/1381612823666170317164639] [PMID: 28322158]
[90]
Kauffmann, A.; Rosselli, F.; Lazar, V.; Winnepenninckx, V.; Mansuet-Lupo, A.; Dessen, P.; van den Oord, J.J.; Spatz, A.; Sarasin, A. High expression of DNA repair pathways is associated with metastasis in melanoma patients. Oncogene, 2008, 27(5), 565-573.
[http://dx.doi.org/10.1038/sj.onc.1210700] [PMID: 17891185]
[91]
Balacescu, O.; Balacescu, L.; Tudoran, O.; Todor, N.; Rus, M.; Buiga, R.; Susman, S.; Fetica, B.; Pop, L.; Maja, L.; Visan, S.; Ordeanu, C.; Berindan-Neagoe, I.; Nagy, V. Gene expression profiling reveals activation of the FA/BRCA pathway in advanced squamous cervical cancer with intrinsic resistance and therapy failure. BMC Cancer, 2014, 14(1), 246.
[http://dx.doi.org/10.1186/1471-2407-14-246] [PMID: 24708616]
[92]
Kim, H.; D’Andrea, A.D. Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev., 2012, 26(13), 1393-1408.
[http://dx.doi.org/10.1101/gad.195248.112] [PMID: 22751496]
[93]
Wang, W. Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat. Rev. Genet., 2007, 8(10), 735-748.
[http://dx.doi.org/10.1038/nrg2159] [PMID: 17768402]
[94]
Xiao, H.; Zhang, K.J.; Zuo, X.L. Reversal of multidrug resistance of the drug resistant human multiple myeloma cell line MOLP-2/R by curcumin and its relation with FA/BRCA pathway. Zhonghua Xue Ye Xue Za Zhi, 2009, 30(1), 33-37.
[PMID: 19563033]
[95]
Wildes, T.M.; Rosko, A.; Tuchman, S.A. Multiple myeloma in the older adult: Better prospects, more challenges. J. Clin. Oncol., 2014, 32(24), 2531-2540.
[http://dx.doi.org/10.1200/JCO.2014.55.1028] [PMID: 25071143]
[96]
Corre, J.; Munshi, N.; Avet-Loiseau, H. Genetics of multiple myeloma: Another heterogeneity level? Blood, 2015, 125(12), 1870-1876.
[http://dx.doi.org/10.1182/blood-2014-10-567370] [PMID: 25628468]
[97]
Xiao, H.; Xiao, Q.; Zhang, K.; Zuo, X.; Shrestha, U.K. Reversal of multidrug resistance by curcumin through FA/BRCA pathway in multiple myeloma cell line MOLP-2/R. Ann. Hematol., 2010, 89(4), 399-404.
[http://dx.doi.org/10.1007/s00277-009-0831-6] [PMID: 19756599]
[98]
Park, J.; Ayyappan, V.; Bae, E.K.; Lee, C.; Kim, B.S.; Kim, B.K.; Lee, Y.Y.; Ahn, K.S.; Yoon, S.S. Curcumin in combination with bortezomib synergistically induced apoptosis in human multiple myeloma U266 cells. Mol. Oncol., 2008, 2(4), 317-326.
[http://dx.doi.org/10.1016/j.molonc.2008.09.006] [PMID: 19383353]
[99]
Liu, K.; Zhang, D.; Chojnacki, J.; Du, Y.; Fu, H.; Grant, S.; Zhang, S. Design and biological characterization of hybrid compounds of curcumin and thalidomide for multiple myeloma. Org. Biomol. Chem., 2013, 11(29), 4757-4763.
[http://dx.doi.org/10.1039/c3ob40595h] [PMID: 23784627]
[100]
Mujtaba, T.; Kanwar, J.; Wan, S.B.; Chan, T.H.; Dou, Q.P. Sensitizing human multiple myeloma cells to the proteasome inhibitor bortezomib by novel curcumin analogs. Int. J. Mol. Med., 2012, 29(1), 102-106.
[PMID: 22012631]
[101]
Ghoneum, M.; Gollapudi, S. Synergistic apoptotic effect of arabinoxylan rice bran (MGN-3/Biobran) and curcumin (turmeric) on human multiple myeloma cell line U266 in vitro. Neoplasma, 2011, 58(2), 118-123.
[http://dx.doi.org/10.4149/neo_2011_02_118] [PMID: 21275460]
[102]
Gupta, S.C.; Kim, J.H.; Prasad, S.; Aggarwal, B.B. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev., 2010, 29(3), 405-434.
[http://dx.doi.org/10.1007/s10555-010-9235-2] [PMID: 20737283]
[103]
Kuttan, R.; Sudheeran, P.C.; Josph, C.D. Turmeric and curcumin as topical agents in cancer therapy. Tumori, 1987, 73(1), 29-31.
[http://dx.doi.org/10.1177/030089168707300105] [PMID: 2435036]
[104]
Sharma, R.A.; McLelland, H.R.; Hill, K.A.; Ireson, C.R.; Euden, S.A.; Manson, M.M.; Pirmohamed, M.; Marnett, L.J.; Gescher, A.J.; Steward, W.P. Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin. Cancer Res., 2001, 7(7), 1894-1900.
[PMID: 11448902]
[105]
Dhillon, N.; Aggarwal, B.B.; Newman, R.A.; Wolff, R.A.; Kunnumakkara, A.B.; Abbruzzese, J.L.; Ng, C.S.; Badmaev, V.; Kurzrock, R. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin. Cancer Res., 2008, 14(14), 4491-4499.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0024] [PMID: 18628464]
[106]
Zaidi, A.; Lai, M.; Cavenagh, J. Long-term stabilisation of myeloma with curcumin. BMJ Case Rep., 2017, 2017bcr2016218148
[http://dx.doi.org/10.1136/bcr-2016-218148] [PMID: 28413157]
[107]
Golombick, T.; Diamond, T.H.; Manoharan, A.; Ramakrishna, R. Monoclonal gammopathy of undetermined significance, smoldering multiple myeloma, and curcumin: A randomized, double-blind placebo-controlled cross-over 4g study and an open-label 8g extension study. Am. J. Hematol., 2012, 87(5), 455-460.
[http://dx.doi.org/10.1002/ajh.23159] [PMID: 22473809]
[108]
Golombick, T. Long-term follow-up of curcumin treated MGUS/SMM patients–an updated single centre experienceJ. Hematol. Oncol., 2013, 3(1), 18-32.
[PMID: 22278757]
[109]
Vadhan-Raj, S. Curcumin downregulates NF-kB and related genes in patients with multiple myeloma: Results of a Phase I/II study. 2007. Blood, 2007, 110(11), 1177.
[http://dx.doi.org/10.1182/blood.V110.11.1177.1177]
[110]
Voutsadakis, I.A. Proteasome expression and activity in cancer and cancer stem cells. Tumour Biol., 2017, 39(3)1010428317692248
[http://dx.doi.org/10.1177/1010428317692248] [PMID: 28345458]
[111]
Roccaro, A.M.; Vacca, A.; Ribatti, D. Bortezomib in the treatment of cancer. Recent Patents Anticancer Drug Discov., 2006, 1(3), 397-403.
[http://dx.doi.org/10.2174/157489206778776925]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy