Abstract
Objective: Application of diffusion tensor imaging (DTI) to explore the changes of FA value in patients with Parkinson's disease (PD) with mild cognitive impairment.
Methods: 27 patients with PD were divided into PD with mild cognitive impairment (PD-MCI) group (n = 7) and PD group (n = 20). The original images were processed using voxel-based analysis (VBA) and tract-based spatial statistics (TBSS).
Results: The average age of pd-mci group was longer than that of PD group, and the course of disease was longer than that of PD group. Compared with PD group, the voxel based analysis-fractional anisotropy (VBA-FA) values of PD-MCI group decreased in the following areas: bilateral frontal lobe, bilateral temporal lobe, bilateral parietal lobe, bilateral subthalamic nucleus, corpus callosum, and gyrus cingula. Tract-based spatial statistics-fractional anisotropy (TBSS-FA) values in PD-MCI group decreased in bilateral corticospinal tract, anterior cingulum, posterior cingulum, fornix tract, bilateral superior thalamic radiation, corpus callosum(genu, body and splenium), bilateral uncinate fasciculus, bilateral inferior longitudinal fasciculus, bilateral superior longitudinal fasciculus, bilateral superior fronto-occipital fasciculus, bilateral inferior fronto-occipital fasciculus, and bilateral parietal-occipital tracts. The mean age of onset in the PD-MCI group was greater than that in the PD group, and the disease course was longer than that in the PD group.
Conclusion: DTI-based VBA and TBSS post-processing methods can detect abnormalities in multiple brain areas and white matter fiber tracts in PD-MCI patients. Impairment of multiple cerebral cortex and white matter fiber pathways may be an important causes of cognitive dysfunction in PD-MCI.
Keywords: Parkinson's disease (PD), parkinson's disease with mild cognitive impairment (PD-MCI), diffusion tensor imaging (DTI), tract-based spatial statistics (TBSS), voxel based analysis (VBA).
[http://dx.doi.org/10.3988/jcn.2018.14.1.16] [PMID: 29141280]
[http://dx.doi.org/10.3389/fnins.2018.00360] [PMID: 29896085]
[http://dx.doi.org/10.1002/mds.24893] [PMID: 22275317]
[http://dx.doi.org/10.1002/mds.26424] [PMID: 26474316]
[http://dx.doi.org/10.3389/fnagi.2019.00021] [PMID: 30800065]
[http://dx.doi.org/10.3390/s19030737] [PMID: 30759789]
[http://dx.doi.org/10.1109/EMBC.2017.8037617]
[http://dx.doi.org/10.1038/s41598-017-02420-w] [PMID: 28539629]
[http://dx.doi.org/10.1073/pnas.1707050114]
[http://dx.doi.org/10.1016/j.jocn.2017.05.032] [PMID: 28601572]
[http://dx.doi.org/10.1073/pnas.1708963114] [PMID: 28739918]
[http://dx.doi.org/10.1007/978-3-7091-6842-4_3] [PMID: 9120420]
[http://dx.doi.org/10.1016/S0028-3908(01)00047-8] [PMID: 11445183]
[http://dx.doi.org/10.1016/j.mehy.2008.07.065] [PMID: 19157719]
[http://dx.doi.org/10.7554/eLife.36607] [PMID: 30149836]
[http://dx.doi.org/10.1016/j.neuroimage.2018.08.039] [PMID: 30130648]
[http://dx.doi.org/10.1002/brb3.848] [PMID: 29201549]
[http://dx.doi.org/10.1093/brain/awv104] [PMID: 25888551]
[http://dx.doi.org/10.1007/s10072-017-3029-z] [PMID: 28642996]
[http://dx.doi.org/10.21037/qims.2018.10.17] [PMID: 30598877]
[http://dx.doi.org/10.21037/qims.2018.11.04] [PMID: 30598879]
[http://dx.doi.org/10.1016/j.neuron.2016.04.018] [PMID: 27196973]
[http://dx.doi.org/10.1152/jn.00338.2011] [PMID: 21653723]
[http://dx.doi.org/10.3390/brainsci7070084] [PMID: 28714891]
[http://dx.doi.org/10.1186/s12868-017-0367-y] [PMID: 28595572]
[http://dx.doi.org/10.1016/j.parkreldis.2008.05.006] [PMID: 18595765]