Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Edible Mushrooms: Novel Medicinal Agents to Combat Metabolic Syndrome and Associated Diseases

Author(s): Yu-Tang Tung , Chun-Hsu Pan, Yi-Wen Chien and Hui-Yu Huang*

Volume 26, Issue 39, 2020

Page: [4970 - 4981] Pages: 12

DOI: 10.2174/1381612826666200831151316

Price: $65

Abstract

Metabolic syndrome is an aggregation of conditions and associated with an increased risk of developing diabetes, obesity and cardiovascular diseases (CVD). Edible mushrooms are widely consumed in many countries and are valuable components of the diet because of their attractive taste, aroma, and nutritional value. Medicinal mushrooms are higher fungi with additional nutraceutical attributes having low-fat content and a transisomer of unsaturated fatty acids along with high fiber content, biologically active compounds such as polysaccharides or polysaccharide β-glucans, alkaloids, steroids, polyphenols and terpenoids. In vitro experiments, animal models, and even human studies have demonstrated not only fresh edible mushroom but also mushroom extract that has great therapeutic applications in human health as they possess many properties such as antiobesity, cardioprotective and anti-diabetic effect. They are considered as the unmatched source of healthy foods and drugs. The focus of this report was to provide a concise and complete review of the novel medicinal properties of fresh or dry mushroom and extracts, fruiting body or mycelium and its extracts, fiber, polysaccharides, beta-glucan, triterpenes, fucoidan, ergothioneine from edible mushrooms that may help to prevent or treat metabolic syndrome and associated diseases.

Keywords: Anti-diabetic activity, anti-obesity activity, cardioprotective activities, edible mushroom, metabolic disorders, polysaccharide, novel medicinal properties.

[1]
Chang ST. Overview of mushroom cultivation and utilization as functional foods 2008. In: Wiley Online Library.
[http://dx.doi.org/10.1002/9780470367285.ch1]
[2]
Vetter J. Biological Values of Cultivated Mushrooms - a Review. Acta Aliment 2019; 48: 229-40.
[http://dx.doi.org/10.1556/066.2019.48.2.11]
[3]
Bernas E, Jaworska G, Lisiewska Z. Edible mushrooms as a source of valuable. Acta Sci Pol Technol Aliment 2006; 5: 5-20.
[4]
de Pinho PG, Ribeiro B, Gonçalves RF, et al. Correlation between the pattern volatiles and the overall aroma of wild edible mushrooms. J Agric Food Chem 2008; 56(5): 1704-12.
[http://dx.doi.org/10.1021/jf073181y] [PMID: 18266318]
[5]
Zawirska-Wojtasiak R, Siwulski M, Mildner-Szkudlarz S, Wąsowicz E. Studies on the aroma of different species and strains of Pleurotus measured by GC/MS, sensory analysis and electronic nose. Acta Sci Pol Technol Aliment 2009; 8: 47-61.
[6]
Smith AH, Weber NS. The Mushroom Hunter’s Field Guide (Mushroom Field Guides). University of Michigan Press 1980.
[http://dx.doi.org/10.3998/mpub.20246]
[7]
Guillamón E, García-Lafuente A, Lozano M, et al. Edible mushrooms: role in the prevention of cardiovascular diseases. Fitoterapia 2010; 81(7): 715-23.
[http://dx.doi.org/10.1016/j.fitote.2010.06.005] [PMID: 20550954]
[8]
Miles P, Chang S. Mushroom biology: concise basics and current developments. World Scientific 1997.
[http://dx.doi.org/10.1142/3296]
[9]
Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 2002; 60(3): 258-74.
[http://dx.doi.org/10.1007/s00253-002-1076-7] [PMID: 12436306]
[10]
Kalač P. Chemical composition and nutritional value of European species of wildgrowing mushrooms: A review. Food Chem 2009; 113: 9-16.
[http://dx.doi.org/10.1016/j.foodchem.2008.07.077]
[11]
Action E. Scientific concepts of functional foods in Europe. Consensus document. Br J Nutr 1999; 81(Suppl. 1): S1-S27.
[http://dx.doi.org/10.1017/S0007114599000471] [PMID: 10999022]
[12]
Mattila P, Suonpää K, Piironen V. Functional properties of edible mushrooms. Nutrition 2000; 16(7-8): 694-6.
[http://dx.doi.org/10.1016/S0899-9007(00)00341-5] [PMID: 10906601]
[13]
Cheung PCK. Nutritional value and health benefits of mushrooms 2008.
[http://dx.doi.org/10.1002/9780470367285.ch3]
[14]
Chang ST, Buswell JA. Mushroom nutriceuticals. World J Microbiol Biotechnol 1996; 12(5): 473-6.
[http://dx.doi.org/10.1007/BF00419460] [PMID: 24415377]
[15]
Wasser S, Sokolov D, Reshetnikov S, Timor-Tismenetsky M. Dietary supplements from medicinal mushrooms: diversity of types and variety of regulations. Int J Med Mushrooms 2000; 2(1): 1-19.
[http://dx.doi.org/10.1615/IntJMedMushr.v2.i1.10]
[16]
Valverde ME, Hernández-Pérez T, Paredes-López O. Edible mushrooms: improving human health and promoting quality life. Int J Microbiol 2015.2015376387
[http://dx.doi.org/10.1155/2015/376387] [PMID: 25685150]
[17]
Mattila P, Könkö K, Eurola M, et al. Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J Agric Food Chem 2001; 49(5): 2343-8.
[http://dx.doi.org/10.1021/jf001525d] [PMID: 11368601]
[18]
Barros L, Cruz T, Baptista P, Estevinho LM, Ferreira IC. Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food Chem Toxicol 2008; 46(8): 2742-7.
[http://dx.doi.org/10.1016/j.fct.2008.04.030] [PMID: 18538460]
[19]
Barros L, Ferreira M, Queiros B, Ferreira I, Baptista P. Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem 2007; 103: 413-9.
[http://dx.doi.org/10.1016/j.foodchem.2006.07.038]
[20]
Barros L, Baptista P, Estevinho LM, Ferreira IC. Effect of fruiting body maturity stage on chemical composition and antimicrobial activity of Lactarius sp. mushrooms. J Agric Food Chem 2007; 55(21): 8766-71.
[http://dx.doi.org/10.1021/jf071435+] [PMID: 17927152]
[21]
Mau JL, Lin HC, Chen CC. Antioxidant properties of several medicinal mushrooms. J Agric Food Chem 2002; 50(21): 6072-7.
[http://dx.doi.org/10.1021/jf0201273] [PMID: 12358482]
[22]
Lo KM, Cheung PCK. Antioxidant activity of extracts from the fruiting bodies of Agrocybe aegerita var. alba. Food Chem 2005; 89: 533-9.
[http://dx.doi.org/10.1016/j.foodchem.2004.03.006]
[23]
Kaneda T, Tokuda S. Effect of various mushroom preparations on cholesterol levels in rats. J Nutr 1966; 90(4): 371-6.
[http://dx.doi.org/10.1093/jn/90.4.371] [PMID: 6005929]
[24]
Bobek P, Galbavý Š. Hypocholesterolemic and antiatherogenic effect of oyster mushroom (Pleurotus ostreatus) in rabbits.Food/Nahrung 1999; 43: 339-42.
[25]
Yamada T, Oinuma T, Niihashi M, et al. Effects of Lentinus edodes mycelia on dietary-induced atherosclerotic involvement in rabbit aorta. J Atheroscler Thromb 2002; 9(3): 149-56.
[http://dx.doi.org/10.5551/jat.9.149] [PMID: 12226557]
[26]
Mori K, Kobayashi C, Tomita T, Inatomi S, Ikeda M. Antiatherosclerotic effect of the edible mushrooms Pleurotus eryngii (Eringi), Grifola frondosa (Maitake), and Hypsizygus marmoreus (Bunashimeji) in apolipoprotein E-deficient mice. Nutr Res 2008; 28(5): 335-42.
[http://dx.doi.org/10.1016/j.nutres.2008.03.010] [PMID: 19083429]
[27]
Wasser SP, Weis AL. Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Crit Rev Immunol 1999; 19(1): 65-96.
[PMID: 9987601]
[28]
Chew GT, Gan SK, Watts GF. Revisiting the metabolic syndrome. Med J Aust 2006; 185(8): 445-9.
[http://dx.doi.org/10.5694/j.1326-5377.2006.tb00644.x] [PMID: 17137436]
[29]
Moller DE, Kaufman KD. Metabolic syndrome: a clinical and molecular perspective. Annu Rev Med 2005; 56: 45-62.
[http://dx.doi.org/10.1146/annurev.med.56.082103.104751] [PMID: 15660501]
[30]
Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 2005; 365(9468): 1415-28.
[http://dx.doi.org/10.1016/S0140-6736(05)66378-7] [PMID: 15836891]
[31]
Lakka HM, Laaksonen DE, Lakka TA, et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 2002; 288(21): 2709-16.
[http://dx.doi.org/10.1001/jama.288.21.2709] [PMID: 12460094]
[32]
Malik S, Wong ND, Franklin SS, et al. Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation 2004; 110(10): 1245-50.
[http://dx.doi.org/10.1161/01.CIR.0000140677.20606.0E] [PMID: 15326067]
[33]
Park YW, Zhu S, Palaniappan L, Heshka S, Carnethon MR, Heymsfield SB. The metabolic syndrome: prevalence and associated risk factor findings in the US population from the Third National Health and Nutrition Examination Survey, 1988-1994. Arch Intern Med 2003; 163(4): 427-36.
[http://dx.doi.org/10.1001/archinte.163.4.427] [PMID: 12588201]
[34]
Isomaa B, Almgren P, Tuomi T, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 2001; 24(4): 683-9.
[http://dx.doi.org/10.2337/diacare.24.4.683] [PMID: 11315831]
[35]
Flegal KM, Carroll MD, Kuczmarski RJ, Johnson CL. Overweight and obesity in the United States: prevalence and trends, 1960-1994. Int J Obes Relat Metab Disord 1998; 22(1): 39-47.
[http://dx.doi.org/10.1038/sj.ijo.0800541] [PMID: 9481598]
[36]
Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature 2006; 444(7121): 875-80.
[http://dx.doi.org/10.1038/nature05487] [PMID: 17167476]
[37]
McFarlane SI, Banerji M, Sowers JR. Insulin resistance and cardiovascular disease. J Clin Endocrinol Metab 2001; 86(2): 713-8.
[PMID: 11158035]
[38]
Bomback AS, Klemmer PJ. Interaction of aldosterone and extracellular volume in the pathogenesis of obesity-associated kidney disease: a narrative review. Am J Nephrol 2009; 30(2): 140-6.
[http://dx.doi.org/10.1159/000209744] [PMID: 19299892]
[39]
Isomaa B. A major health hazard: the metabolic syndrome. Life Sci 2003; 73(19): 2395-411.
[http://dx.doi.org/10.1016/S0024-3205(03)00646-5] [PMID: 12954449]
[40]
Sowers JR. Obesity as a cardiovascular risk factor. Am J Med 2003; 115(Suppl. 8A): 37S-41S.
[http://dx.doi.org/10.1016/j.amjmed.2003.08.012] [PMID: 14678864]
[41]
Reaven GM, Chen YD. Insulin resistance, its consequences, and coronary heart disease. Must we choose one culprit? Circulation 1996; 93(10): 1780-3.
[http://dx.doi.org/10.1161/01.CIR.93.10.1780] [PMID: 8635254]
[42]
Reaven GM. Insulin resistance, cardiovascular disease, and the metabolic syndrome: how well do the emperor’s clothes fit? Diabetes Care 2004; 27(4): 1011-2.
[http://dx.doi.org/10.2337/diacare.27.4.1011] [PMID: 15047666]
[43]
Mahjoub S, Masrour-Roudsari J. Role of oxidative stress in pathogenesis of metabolic syndrome. Caspian J Intern Med 2012; 3(1): 386-96.
[PMID: 26557292]
[44]
Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009; 120(16): 1640-5.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.192644] [PMID: 19805654]
[45]
Hajer GR, van Haeften TW, Visseren FL. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 2008; 29(24): 2959-71.
[http://dx.doi.org/10.1093/eurheartj/ehn387] [PMID: 18775919]
[46]
Dandona P, Chaudhuri A, Ghanim H, Mohanty P. Anti-inflammatory effects of insulin and the pro-inflammatory effects of glucose 2006.
[http://dx.doi.org/10.1053/j.semtcvs.2006.06.003]
[47]
Haddad JJ. Redox regulation of pro-inflammatory cytokines and IkappaB-alpha/NF-kappaB nuclear translocation and activation. Biochem Biophys Res Commun 2002; 296(4): 847-56.
[http://dx.doi.org/10.1016/S0006-291X(02)00947-6] [PMID: 12200125]
[48]
Sukkar SG, Rossi E. Oxidative stress and nutritional prevention in autoimmune rheumatic diseases. Autoimmun Rev 2004; 3(3): 199-206.
[http://dx.doi.org/10.1016/j.autrev.2003.09.002] [PMID: 15110232]
[49]
Aggarwal B, Shishodia S. Suppression of the nuclear factor-kB activation pathway by spice-derived phytochemicals. Ann N Y Acad Sci 2004; 1030: 434-41.
[http://dx.doi.org/10.1196/annals.1329.054] [PMID: 15659827]
[50]
Hung H-Y, Qian K, Morris-Natschke SL, Hsu C-S, Lee K-H. Recent discovery of plant-derived anti-diabetic natural products. Nat Prod Rep 2012; 29(5): 580-606.
[http://dx.doi.org/10.1039/c2np00074a] [PMID: 22491825]
[51]
Gautam R, Jachak SM. Recent developments in anti-inflammatory natural products. Med Res Rev 2009; 29(5): 767-820.
[http://dx.doi.org/10.1002/med.20156] [PMID: 19378317]
[52]
Hermansen K, Dinesen B, Hoie LH, Morgenstern E, Gruenwald J. Effects of soy and other natural products on LDL:HDL ratio and other lipid parameters: a literature review. Adv Ther 2003; 20(1): 50-78.
[http://dx.doi.org/10.1007/BF02850119] [PMID: 12772818]
[53]
Vasanthi HR. ShriShriMal N, Das DK. Phytochemicals from plants to combat cardiovascular disease. Curr Med Chem 2012; 19(14): 2242-51.
[http://dx.doi.org/10.2174/092986712800229078] [PMID: 22414106]
[54]
Waltenberger B, Mocan A, Šmejkal K, Heiss EH, Atanasov AG. Natural products to counteract the epidemic of cardiovascular and metabolic disorders. Molecules 2016; 21(6): 807.
[http://dx.doi.org/10.3390/molecules21060807] [PMID: 27338339]
[55]
Serdula MK, Ivery D, Coates RJ, Freedman DS, Williamson DF, Byers T. Do obese children become obese adults? A review of the literature. Prev Med 1993; 22(2): 167-77.
[http://dx.doi.org/10.1006/pmed.1993.1014] [PMID: 8483856]
[56]
Dembitsky VM, Terent’ev AO, Levitsky DO. Amino and Fatty Acids of Wild Edible Mushrooms of the Genus Boletus. Rec Nat Prod 2010; 4: 218-23.
[57]
Chaturvedi VK, Agarwal S, Gupta KK, Ramteke PW, Singh MP. Medicinal mushroom: boon for therapeutic applications. 3 Biotech 2018; 8: 334.
[58]
Kalač P. Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000-2009. Food Chem 2010; 122: 2-15.
[http://dx.doi.org/10.1016/j.foodchem.2010.02.045]
[59]
Sheng Y, Zhao C, Zheng S, et al. Anti-obesity and hypolipidemic effect of water extract from Pleurotus citrinopileatus in C57BL/6J mice. Food Sci Nutr 2019; 7(4): 1295-301.
[http://dx.doi.org/10.1002/fsn3.962] [PMID: 31024702]
[60]
Khatun MA, Sato S, Konishi T. Obesity preventive function of novel edible mushroom, Basidiomycetes-X (Echigoshirayukidake): Manipulations of insulin resistance and lipid metabolism. J Tradit Complement Med 2020; 10(3): 245-51.
[http://dx.doi.org/10.1016/j.jtcme.2020.03.004] [PMID: 32670819]
[61]
Fombang EN, Lobe EE, Mbofung CMF. Pleurotus florida Aqueous Extracts and Powder Influence Lipid Profile and Suppress Weight Gain in Rats Fed High Cholesterol Diet. J Nutr Food Sci 2016; 6(2)
[62]
Kanagasabapathy G, Malek SN, Mahmood AA, Chua KH, Vikineswary S, Kuppusamy UR. Beta-Glucan-Rich Extract from Pleurotus sajor-caju (Fr.) Singer Prevents Obesity and Oxidative Stress in C57BL/6J Mice Fed on a High-Fat Diet. Evid Based Complement Alternat Med 2013.2013185259
[http://dx.doi.org/10.1155/2013/185259] [PMID: 23737819]
[63]
Mizutani T, Inatomi S, Inazu A, Kawahara E. Hypolipidemic effect of Pleurotus eryngii extract in fat-loaded mice. J Nutr Sci Vitaminol (Tokyo) 2010; 56(1): 48-53.
[http://dx.doi.org/10.3177/jnsv.56.48] [PMID: 20354346]
[64]
Thyagarajan-Sahu A, Lane B, Sliva D. ReishiMax, mushroom based dietary supplement, inhibits adipocyte differentiation, stimulates glucose uptake and activates AMPK. BMC Complement Altern Med 2011; 11: 74.
[http://dx.doi.org/10.1186/1472-6882-11-74] [PMID: 21929808]
[65]
Poddar KH, Ames M, Hsin-Jen C, Feeney MJ, Wang Y, Cheskin LJ. Positive effect of mushrooms substituted for meat on body weight, body composition, and health parameters. A 1-year randomized clinical trial. Appetite 2013; 71: 379-87.
[http://dx.doi.org/10.1016/j.appet.2013.09.008] [PMID: 24056209]
[66]
Huang HY, Korivi M, Yang HT, Huang CC, Chaing YY, Tsai YC. Effect of Pleurotus tuber-regium polysaccharides supplementation on the progression of diabetes complications in obese-diabetic rats. Chin J Physiol 2014; 57(4): 198-208.
[http://dx.doi.org/10.4077/CJP.2014.BAC245] [PMID: 25246061]
[67]
Jeong HJ, Yoon SJ, Pyun YR. Polysaccharides from edible mushroom hinmogi (Tremella fuciformis) inhibit differentiation of 3T3-L1 adipocytes by reducing mRNA expression of PPARγ, C/EBPα, and leptin. Food Sci Biotechnol 2008; 17: 267-73.
[68]
Delzenne NM, Bindels LB. Gut microbiota: Ganoderma lucidum, a new prebiotic agent to treat obesity? Nat Rev Gastroenterol Hepatol 2015; 12(10): 553-4.
[http://dx.doi.org/10.1038/nrgastro.2015.137] [PMID: 26284561]
[69]
Chang CJ, Lin CS, Lu CC, et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat Commun 2015; 6: 7489.
[http://dx.doi.org/10.1038/ncomms8489] [PMID: 26102296]
[70]
Murphy EA, Velazquez KT, Herbert KM. Influence of high-fat diet on gut microbiota: a driving force for chronic disease risk. Curr Opin Clin Nutr Metab Care 2015; 18(5): 515-20.
[http://dx.doi.org/10.1097/MCO.0000000000000209] [PMID: 26154278]
[71]
Ganesan K, Xu B. Anti-Obesity Effects of Medicinal and Edible Mushrooms. Molecules 2018; 23(11): 2880.
[http://dx.doi.org/10.3390/molecules23112880] [PMID: 30400600]
[72]
Nakahara D, Nan C, Mori K, et al. Effect of mushroom polysaccharides from Pleurotus eryngii on obesity and gut microbiota in mice fed a high-fat diet. Eur J Nutr 2020; 59(7): 3231-44.
[http://dx.doi.org/10.1007/s00394-019-02162-7] [PMID: 31865422]
[73]
Wu AH, Jaffe AS, Apple FS, et al. National Academy of Clinical Biochemistry laboratory medicine practice guidelines: use of cardiac troponin and B-type natriuretic peptide or N-terminal proB-type natriuretic peptide for etiologies other than acute coronary syndromes and heart failure. Clin Chem 2007; 53(12): 2086-96.
[http://dx.doi.org/10.1373/clinchem.2007.095679] [PMID: 17954494]
[74]
Bobek P, Ginter E, Kuniak L, et al. Effect of mushroom Pleurotus ostreatus and isolated fungal polysaccharide on serum and liver lipids in Syrian hamsters with hyperlipoproteinemia. Nutrition 1991; 7(2): 105-8.
[PMID: 1802191]
[75]
Bobek P, Ginter E, Jurcovicová M, Ozdín L, Mekinová D. Effect of oyster fungus (Pleurotus ostreatus) on serum and liver lipids of Syrian hamsters with a chronic alcohol intake. Physiol Res 1991; 40(3): 327-32.
[PMID: 1751479]
[76]
Bobek P, Kuniak L, Ozdín L. The mushroom Pleurotus ostreatus reduces secretion and accelerates the fractional turnover rate of very-low-density lipoproteins in the rat. Ann Nutr Metab 1993; 37(3): 142-5.
[http://dx.doi.org/10.1159/000177762] [PMID: 8373138]
[77]
Bobek P, Ginter E, Jurcovicová M, Kuniak L. Cholesterol-lowering effect of the mushroom Pleurotus ostreatus in hereditary hypercholesterolemic rats. Ann Nutr Metab 1991; 35(4): 191-5.
[http://dx.doi.org/10.1159/000177644] [PMID: 1897899]
[78]
Bobek P, Ozdin L. Oyster mushroom (Pleurotus ostreatus) reduces the production and secretion of very low density lipoproteins in hypercholesterolemic rats. Z Ernahrungswiss 1996; 35(3): 249-52.
[http://dx.doi.org/10.1007/BF01625688] [PMID: 8896287]
[79]
Bobek P, Ozdín L, Galbavý S. Dose- and time-dependent hypocholesterolemic effect of oyster mushroom (Pleurotus ostreatus) in rats. Nutrition 1998; 14(3): 282-6.
[http://dx.doi.org/10.1016/S0899-9007(97)00471-1] [PMID: 9583372]
[80]
Bobek P, Hromadová M, Ozdín L. Oyster mushroom (Pleurotus ostreatus) reduces the activity of 3-hydroxy-3-methylglutaryl CoA reductase in rat liver microsomes. Experientia 1995; 51(6): 589-91.
[http://dx.doi.org/10.1007/BF02128749] [PMID: 7607302]
[81]
Bobek P, Ondreička R, Klvanova J, Ozdín Ĺ. Oyster mushroom (Pleurotus ostreatus) decreases serum and liver cholesterol and increases cholesterol 7α-hydroxylase activity and fecal excretion of neutral sterols and bile acids in hypercholesterolemic rats. Nutr Res 1994; 14: 1683-8.
[http://dx.doi.org/10.1016/S0271-5317(05)80323-9]
[82]
Bobek P, Ozdin L, Kuniak L. Mechanism of hypocholesterolemic effect of oyster mushroom (Pleurotus ostreatus) in rats: reduction of cholesterol absorption and increase of plasma cholesterol removal. Z Ernahrungswiss 1994; 33(1): 44-50.
[http://dx.doi.org/10.1007/BF01610577] [PMID: 8197787]
[83]
Cheng HH, Hou WC, Lu ML. Interactions of lipid metabolism and intestinal physiology with Tremella fuciformis Berk edible mushroom in rats fed a high-cholesterol diet with or without Nebacitin. J Agric Food Chem 2002; 50(25): 7438-43.
[http://dx.doi.org/10.1021/jf020648q] [PMID: 12452672]
[84]
Bajaj M, Vadhera S, Brar AP, Soni GL. Role of oyster mushroom (Pleurotus florida) as hypocholesterolemic/antiatherogenic agent. Indian J Exp Biol 1997; 35(10): 1070-5.
[PMID: 9475042]
[85]
Kim SH, Thomas MJ, Wu D, Carman CV, Ordovás JM, Meydani M. Edible Mushrooms Reduce Atherosclerosis in Ldlr-/- Mice Fed a High-Fat Diet. J Nutr 2019; 149(8): 1377-84.
[http://dx.doi.org/10.1093/jn/nxz075] [PMID: 31162580]
[86]
Jose N, Ajith TA, Janardhanan KK. Methanol extract of the oyster mushroom, Pleurotus florida, inhibits inflammation and platelet aggregation. Phytother Res 2004; 18(1): 43-6.
[http://dx.doi.org/10.1002/ptr.1355] [PMID: 14750200]
[87]
Khatun K, Mahtab H, Khanam PA, Sayeed MA, Khan KA. Oyster mushroom reduced blood glucose and cholesterol in diabetic subjects. Mymensingh Med J 2007; 16(1): 94-9.
[http://dx.doi.org/10.3329/mmj.v16i1.261] [PMID: 17344789]
[88]
Kajaba I, Simoncic R, Frecerova K, Belay G. Clinical studies on the hypolipidemic and antioxidant effects of selected natural substances. Bratisl Lek Listy 2008; 109(6): 267-72.
[PMID: 18700439]
[89]
Kabir Y, Yamaguchi M, Kimura S. Effect of shiitake (Lentinus edodes) and maitake (Grifola frondosa) mushrooms on blood pressure and plasma lipids of spontaneously hypertensive rats. J Nutr Sci Vitaminol (Tokyo) 1987; 33(5): 341-6.
[http://dx.doi.org/10.3177/jnsv.33.341] [PMID: 3443885]
[90]
Kabir Y, Kimura S, Tamura T. Dietary effect of Ganoderma lucidum mushroom on blood pressure and lipid levels in spontaneously hypertensive rats (SHR). J Nutr Sci Vitaminol (Tokyo) 1988; 34(4): 433-8.
[http://dx.doi.org/10.3177/jnsv.34.433] [PMID: 3236086]
[91]
Kabir Y, Kimura S. Dietary mushrooms reduce blood pressure in spontaneously hypertensive rats (SHR). J Nutr Sci Vitaminol (Tokyo) 1989; 35(1): 91-4.
[http://dx.doi.org/10.3177/jnsv.35.91] [PMID: 2738717]
[92]
Miyazawa N, Okazaki M, Ohga S. Antihypertensive effect of Pleurotus nebrodensis in spontaneously hypertensive rats. J Oleo Sci 2008; 57(12): 675-81.
[http://dx.doi.org/10.5650/jos.57.675] [PMID: 19001780]
[93]
Mizuno T, Zhuang C. Maitake, Grifola frondosa: pharmacological effects. Food Re Int 1995; 11: 135-49.
[http://dx.doi.org/10.1080/87559129509541024]
[94]
Talpur NA, Echard BW, Fan AY, Jaffari O, Bagchi D, Preuss HG. Antihypertensive and metabolic effects of whole Maitake mushroom powder and its fractions in two rat strains. Mol Cell Biochem 2002; 237(1-2): 129-36.
[http://dx.doi.org/10.1023/A:1016503804742] [PMID: 12236580]
[95]
Barros L, Baptista P, Correia DM, Casal S, Oliveira B, Ferreira ICFR. Fatty acid and sugar compositions, and nutritional value of five wild edible mushrooms from Northeast Portugal. Food Chem 2007; 105: 140-5.
[http://dx.doi.org/10.1016/j.foodchem.2007.03.052]
[96]
Li C, Li Z, Fan M, et al. The composition of Hirsutella sinensis, anamorph of Cordyceps sinensis. J Food Compos Anal 2006; 19: 800-5.
[http://dx.doi.org/10.1016/j.jfca.2006.04.007]
[97]
Barros L, Baptista P, Correia DM, Morais JS, Ferreira IC. Effects of conservation treatment and cooking on the chemical composition and antioxidant activity of Portuguese wild edible mushrooms. J Agric Food Chem 2007; 55(12): 4781-8.
[http://dx.doi.org/10.1021/jf070407o] [PMID: 17497883]
[98]
Sun Q, Ma J, Campos H, et al. A prospective study of trans fatty acids in erythrocytes and risk of coronary heart disease. Circulation 2007; 115(14): 1858-65.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.679985] [PMID: 17389261]
[99]
Mauger JF, Lichtenstein AH, Ausman LM, et al. Effect of different forms of dietary hydrogenated fats on LDL particle size. Am J Clin Nutr 2003; 78(3): 370-5.
[http://dx.doi.org/10.1093/ajcn/78.3.370] [PMID: 12936917]
[100]
Mensink RP, Zock PL, Kester AD, Katan MB. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr 2003; 77(5): 1146-55.
[http://dx.doi.org/10.1093/ajcn/77.5.1146] [PMID: 12716665]
[101]
Grundy SM, Denke MA. Dietary influences on serum lipids and lipoproteins. J Lipid Res 1990; 31(7): 1149-72.
[PMID: 2205699]
[102]
Cheung PCK. The hypocholesterolemic effect of two edible mushrooms: Auricularia auricula (tree-ear) and Tremella fuciformis (white jelly-leaf) in hypercholesterolemic rats. Nutr Res 1996; 16: 1721-5.
[http://dx.doi.org/10.1016/0271-5317(96)00191-1]
[103]
Brown L, Rosner B, Willett WW, Sacks FM. Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am J Clin Nutr 1999; 69(1): 30-42.
[http://dx.doi.org/10.1093/ajcn/69.1.30] [PMID: 9925120]
[104]
Fukushima M, Nakano M, Morii Y, Ohashi T, Fujiwara Y, Sonoyama K. Hepatic LDL receptor mRNA in rats is increased by dietary mushroom (Agaricus bisporus) fiber and sugar beet fiber. J Nutr 2000; 130(9): 2151-6.
[http://dx.doi.org/10.1093/jn/130.9.2151] [PMID: 10958806]
[105]
Alban S, Franz G. Partial synthetic glucan sulfates as potential new antithrombotics: a review. Biomacromolecules 2001; 2(2): 354-61.
[http://dx.doi.org/10.1021/bm010032u] [PMID: 11749192]
[106]
Zeković DB, Kwiatkowski S, Vrvić MM, Jakovljević D, Moran CA. Natural and modified (1->3)-β-D-glucans in health promotion and disease alleviation. Crit Rev Biotechnol 2005; 25(4): 205-30.
[http://dx.doi.org/10.1080/07388550500376166] [PMID: 16419618]
[107]
Xu C. HaiYan Z, JianHong Z, Jing G. The pharmacological effect of polysaccharides from Lentinus edodes on the oxidative status and expression of VCAM-1mRNA of thoracic aorta endothelial cell in high-fat-diet rats. Carbohydr Polym 2008; 74: 445-50.
[http://dx.doi.org/10.1016/j.carbpol.2008.03.018]
[108]
Neyrinck AM, Bindels LB, De Backer F, Pachikian BD, Cani PD, Delzenne NM. Dietary supplementation with chitosan derived from mushrooms changes adipocytokine profile in diet-induced obese mice, a phenomenon linked to its lipid-lowering action. Int Immunopharmacol 2009; 9(6): 767-73.
[http://dx.doi.org/10.1016/j.intimp.2009.02.015] [PMID: 19286482]
[109]
Martin KR. The bioactive agent ergothioneine, a key component of dietary mushrooms, inhibits monocyte binding to endothelial cells characteristic of early cardiovascular disease. J Med Food 2010; 13(6): 1340-6.
[http://dx.doi.org/10.1089/jmf.2009.0194] [PMID: 21091247]
[110]
Li RW, Yang C, Sit AS, et al. Uptake and protective effects of ergothioneine in human endothelial cells. J Pharmacol Exp Ther 2014; 350(3): 691-700.
[http://dx.doi.org/10.1124/jpet.114.214049] [PMID: 25022513]
[111]
Sakrak O, Kerem M, Bedirli A, et al. Ergothioneine modulates proinflammatory cytokines and heat shock protein 70 in mesenteric ischemia and reperfusion injury. J Surg Res 2008; 144(1): 36-42.
[http://dx.doi.org/10.1016/j.jss.2007.04.020] [PMID: 17603080]
[112]
Kalaras MD, Richie JP, Calcagnotto A, Beelman RB. Mushrooms: A rich source of the antioxidants ergothioneine and glutathione. Food Chem 2017; 233: 429-33.
[http://dx.doi.org/10.1016/j.foodchem.2017.04.109] [PMID: 28530594]
[113]
Smith E, Ottosson F, Hellstrand S, et al. Ergothioneine is associated with reduced mortality and decreased risk of cardiovascular disease. Heart 2020; 106(9): 691-7.
[http://dx.doi.org/10.1136/heartjnl-2019-315485] [PMID: 31672783]
[114]
Jayachandran M, Zhang T, Ganesan K, Xu B, Chung SSM. Isoquercetin ameliorates hyperglycemia and regulates key enzymes of glucose metabolism via insulin signaling pathway in streptozotocin-induced diabetic rats. Eur J Pharmacol 2018; 829: 112-20.
[http://dx.doi.org/10.1016/j.ejphar.2018.04.015] [PMID: 29665363]
[115]
Sirisidthi K, Kosai P, Jiraungkoorskul W. Antihyperglycemic activity of Ophiocordyceps sinensis: a review. Indian J Agric Res 2015; 49: 400-6.
[http://dx.doi.org/10.18805/ijare.v49i5.5801]
[116]
Rushita S, Vijayakumar M, Noorlidah A, Abdulla MA, Vikineswary S. Effect of Pleurotus citrinopileatus on blood glucose, insulin and catalase of streptozotocin-Induced type 2 diabetes mellitus rats. J Anim Plant Sci 2013; 23: 1566-71.
[117]
Badole S, Bodhankar S. Interaction of aqueous extract of Pleurotus pulmonarius (Fr.) Quel-champ. with acarbose in alloxan induced diabetic mice. Evid Based Complement Alternat Med 2007; 5: 157-66.
[118]
Kurushima H, Kodama N, Nanba H. Activities of polysaccharides obtained from Grifola frondosa on insulin-dependent diabetes mellitus induced by streptozotocin in mice. Mycoscience 2000; 41: 473-80.
[http://dx.doi.org/10.1007/BF02461667]
[119]
Im KH, Nguyen TK, Choi J, Lee TS. In Vitro Antioxidant, Anti-Diabetes, Anti-Dementia, and Inflammation Inhibitory Effect of Trametes pubescens Fruiting Body Extracts. Molecules 2016; 21(5): 639.
[http://dx.doi.org/10.3390/molecules21050639] [PMID: 27196881]
[120]
Sayeed MA, Banu A, Khatun K, et al. Effect of edible mushroom (Pleurotus ostreatus) on type-2 diabetics. Ibrahim Med Coll J 2014; 8: 6-11.
[http://dx.doi.org/10.3329/imcj.v8i1.22982]
[121]
Hsu CH, Liao YL, Lin SC, Hwang KC, Chou P. The mushroom Agaricus Blazei Murill in combination with metformin and gliclazide improves insulin resistance in type 2 diabetes: a randomized, double-blinded, and placebo-controlled clinical trial. J Altern Complement Med 2007; 13(1): 97-102.
[http://dx.doi.org/10.1089/acm.2006.6054] [PMID: 17309383]
[122]
Wei Q, Zhan Y, Chen B, et al. Assessment of antioxidant and antidiabetic properties of Agaricus blazei Murill extracts. Food Sci Nutr 2019; 8(1): 332-9.
[http://dx.doi.org/10.1002/fsn3.1310] [PMID: 31993159]
[123]
Balaji P, Madhanraj R, Rameshkumar K, et al. Evaluation of antidiabetic activity of Pleurotus pulmonarius against streptozotocin-nicotinamide induced diabetic wistar albino rats. Saudi J Biol Sci 2020; 27(3): 913-24.
[http://dx.doi.org/10.1016/j.sjbs.2020.01.027] [PMID: 32127771]
[124]
Wei Q, Huang L, Li J, et al. The beneficial effects of Agaricus blazei Murrill on hepatic antioxidant enzymes and the pancreatic tissue recovery in streptozotocin-induced diabetic rats. J Food Biochem 2020; 44(5)e13170
[http://dx.doi.org/10.1111/jfbc.13170] [PMID: 32160646]
[125]
Kubo K, Aoki H, Nanba H. Anti-diabetic activity present in the fruit body of Grifola frondosa (Maitake). I. Biol Pharm Bull 1994; 17(8): 1106-10.
[http://dx.doi.org/10.1248/bpb.17.1106] [PMID: 7820117]
[126]
Ganesan K, Jayachandran M, Xu B. A critical review on hepatoprotective effects of bioactive food components. Crit Rev Food Sci Nutr 2018; 58(7): 1165-229.
[http://dx.doi.org/10.1080/10408398.2016.1244154] [PMID: 28574284]
[127]
Ganesan K, Xu B. Molecular targets of vitexin and isovitexin in cancer therapy: a critical review. Ann N Y Acad Sci 2017; 1401(1): 102-13.
[http://dx.doi.org/10.1111/nyas.13446] [PMID: 28891090]
[128]
Ganesan K, Xu B. Polyphenol-Rich Dry Common Beans (Phaseolus vulgaris L.) and Their Health Benefits. Int J Mol Sci 2017; 18(11): 2331.
[http://dx.doi.org/10.3390/ijms18112331] [PMID: 29113066]
[129]
Ganesan K, Xu B. Polyphenol-Rich Lentils and Their Health Promoting Effects. Int J Mol Sci 2017; 18(11): 2390.
[http://dx.doi.org/10.3390/ijms18112390] [PMID: 29125587]
[130]
Liu C, Song J, Teng M, et al. Antidiabetic and Antinephritic Activities of Aqueous Extract of Cordyceps militaris Fruit Body in Diet-Streptozotocin-Induced Diabetic Sprague Dawley Rats. Oxid Med Cell Longev 2016.20169685257
[http://dx.doi.org/10.1155/2016/9685257] [PMID: 27274781]
[131]
Kaur A, Patankar JV, de Haan W, et al. Loss of Cyp8b1 improves glucose homeostasis by increasing GLP-1. Diabetes 2015; 64(4): 1168-79.
[http://dx.doi.org/10.2337/db14-0716] [PMID: 25338812]
[132]
Pan A, Lucas M, Sun Q, et al. Bidirectional association between depression and type 2 diabetes mellitus in women. Arch Intern Med 2010; 170(21): 1884-91.
[http://dx.doi.org/10.1001/archinternmed.2010.356] [PMID: 21098346]
[133]
Hwang HJ, Kim SW, Lim JM, et al. Hypoglycemic effect of crude exopolysaccharides produced by a medicinal mushroom Phellinus baumii in streptozotocin-induced diabetic rats. Life Sci 2005; 76(26): 3069-80.
[http://dx.doi.org/10.1016/j.lfs.2004.12.019] [PMID: 15850599]
[134]
Kim HM, Kang JS, Kim JY, et al. Evaluation of antidiabetic activity of polysaccharide isolated from Phellinus linteus in non-obese diabetic mouse. Int Immunopharmacol 2010; 10(1): 72-8.
[http://dx.doi.org/10.1016/j.intimp.2009.09.024] [PMID: 19811769]
[135]
Tang HL, Chen C, Wang SK, Sun GJ. Biochemical analysis and hypoglycemic activity of a polysaccharide isolated from the fruit of Lycium barbarum L. Int J Biol Macromol 2015; 77: 235-42.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.03.026] [PMID: 25819220]
[136]
Kim K, Rioux L, Turgeon S. Molecular weight and sulfate content modulate the inhibition of α-amylase by fucoidan relevant for type 2 diabetes management. PharmaNutrition 2015; 3: 108-14.
[http://dx.doi.org/10.1016/j.phanu.2015.02.001]
[137]
Ye M, Qiu T, Peng W, Chen WX, Ye YW, Lin YR. Purification, characterization and hypoglycemic activity of extracellular polysaccharides from Lachnum calyculiforme. Carbohydr Polym 2011; 86: 285-90.
[http://dx.doi.org/10.1016/j.carbpol.2011.04.051]
[138]
Wang J, Jin W, Zhang W, Hou Y, Zhang H, Zhang Q. Hypoglycemic property of acidic polysaccharide extracted from Saccharina japonica and its potential mechanism. Carbohydr Polym 2013; 95(1): 143-7.
[http://dx.doi.org/10.1016/j.carbpol.2013.02.076] [PMID: 23618250]
[139]
Ma Y, Mao D, Geng L, Wang Z, Xu C. Production, fractionation, characterization of extracellular polysaccharide from a newly isolated Trametes gibbosa and its hypoglycemic activity. Carbohydr Polym 2013; 96(2): 460-5.
[http://dx.doi.org/10.1016/j.carbpol.2013.04.019] [PMID: 23768587]
[140]
Xu W, Zhou Q, Yin JJ, Yao Y, Zhang JL. Anti-diabetic effects of polysaccharides from Talinum triangulare in streptozotocin (STZ)-induced type 2 diabetic male mice. Int J Biol Macromol 2015; 72: 575-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.09.011] [PMID: 25236607]
[141]
Zhao T, Mao GH, Zhang M, et al. Anti-diabetic Effects of Polysaccharides from Ethanol-insoluble Residue of Schisandra chinensis (Turcz.) Baill on Alloxan-induced Diabetic Mice. Chem Res Chin Univ 2013; 29: 99-102.
[http://dx.doi.org/10.1007/s40242-012-2218-9]
[142]
Hong T, Zhao J, Dong M, Meng Y, Mu J, Yang Z. Composition and bioactivity of polysaccharides from Inula britannica flower. Int J Biol Macromol 2012; 51(4): 550-4.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.06.021] [PMID: 22728640]
[143]
Cho EJ, Hwang HJ, Kim SW, et al. Hypoglycemic effects of exopolysaccharides produced by mycelial cultures of two different mushrooms Tremella fuciformis and Phellinus baumii in ob/ob mice. Appl Microbiol Biotechnol 2007; 75(6): 1257-65.
[http://dx.doi.org/10.1007/s00253-007-0972-2] [PMID: 17457544]
[144]
Yang JP, Hsu T, Lin F, Hsu W, Chen Y. Potential antidiabetic activity of extracellular polysaccharides in submerged fermentation culture of Coriolus versicolor LH1. Carbohydr Polym 2012; 90(1): 174-80.
[http://dx.doi.org/10.1016/j.carbpol.2012.05.011] [PMID: 24751027]
[145]
Jeong SC, Jeong YT, Yang BK, et al. White button mushroom (Agaricus bisporus) lowers blood glucose and cholesterol levels in diabetic and hypercholesterolemic rats. Nutr Res 2010; 30(1): 49-56.
[http://dx.doi.org/10.1016/j.nutres.2009.12.003] [PMID: 20116660]
[146]
D’Onofrio N, Servillo L, Giovane A, et al. Ergothioneine oxidation in the protection against high-glucose induced endothelial senescence: Involvement of SIRT1 and SIRT6. Free Radic Biol Med 2016; 96: 211-22.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.04.013] [PMID: 27101740]
[147]
Song TY, Yang NC, Chen CL, Thi TLV. Protective Effects and Possible Mechanisms of Ergothioneine and Hispidin against Methylglyoxal-Induced Injuries in Rat Pheochromocytoma Cells. Oxid Med Cell Longev 2017.20174824371
[http://dx.doi.org/10.1155/2017/4824371] [PMID: 29181125]
[148]
Guijarro MV, Indart A, Aruoma OI, Viana M, Bonet B. Effects of ergothioneine on diabetic embryopathy in pregnant rats. Food Chem Toxicol 2002; 40(12): 1751-5.
[http://dx.doi.org/10.1016/S0278-6915(02)00177-1] [PMID: 12419688]
[149]
Ulziijargal E, Mau JL. Nutrient compositions of culinary-medicinal mushroom fruiting bodies and mycelia. Int J Med Mushrooms 2011; 13(4): 343-9.
[http://dx.doi.org/10.1615/IntJMedMushr.v13.i4.40] [PMID: 22164764]
[150]
Hung PV, Nhi NNY. Nutritional composition and antioxidant capacity of several edible mushrooms grown in the Southern Vietnam. Int Food Res J 2012; 19: 611-5.
[151]
Chan PM, Kanagasabapathy G, Tan YS, Sabaratnam V, Kuppusamy UR. Amauroderma rugosum (Blume & T. Nees) Torrend: Nutritional Composition and Antioxidant and Potential Anti-Inflammatory Properties. Evid Based Complement Alternat Med 2013.2013304713
[http://dx.doi.org/10.1155/2013/304713] [PMID: 24371454]
[152]
Xiao JH, Xiao DM, Sun ZH, Xiong Q, Liang ZQ, Zhong JJ. Chemical compositions and antimicrobial property of three edible and medicinal Cordyceps species. J Food Agric Environ 2009; 7: 91-100.
[153]
Zhou S, Tang QJ, Zhang Z, et al. Nutritional Composition of Three Domesticated Culinary-Medicinal Mushrooms: Oudemansiella sudmusida, Lentinus squarrosulus, and Tremella aurantialba. Int J Med Mushrooms 2015; 17(1): 43-9.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v17.i1.50] [PMID: 25746405]
[154]
Hu Z, Qi Z, Wu Y. Research and development of instant food products of Tremella fuciformis. Shipin Kexue 1996; 17: 35-40.
[155]
Cheskin LJ, Davis LM, Lipsky LM, et al. Lack of energy compensation over 4 days when white button mushrooms are substituted for beef. Appetite 2008; 51(1): 50-7.
[http://dx.doi.org/10.1016/j.appet.2007.11.007] [PMID: 18221822]
[156]
Huang HY, Korivi M, Chaing YY, Chien TY, Tsai YC. Pleurotus tuber-regium Polysaccharides Attenuate Hyperglycemia and Oxidative Stress in Experimental Diabetic Rats. Evid Based Complement Alternat Med 2012.2012856381
[http://dx.doi.org/10.1155/2012/856381] [PMID: 22973406]
[157]
Calvo MS, Mehrotra A, Beelman RB, et al. A Retrospective Study in Adults with Metabolic Syndrome: Diabetic Risk Factor Response to Daily Consumption of Agaricus bisporus (White Button Mushrooms). Plant Foods Hum Nutr 2016; 71(3): 245-51.
[http://dx.doi.org/10.1007/s11130-016-0552-7] [PMID: 27193019]
[158]
Kiho T, Yamane A, Hui J, Usui S, Ukai S. Polysaccharides in fungi. XXXVI. Hypoglycemic activity of a polysaccharide (CS-F30) from the cultural mycelium of Cordyceps sinensis and its effect on glucose metabolism in mouse liver. Biol Pharm Bull 1996; 19(2): 294-6.
[http://dx.doi.org/10.1248/bpb.19.294] [PMID: 8850325]
[159]
El Zahraa Z, El Ashry F, Mahmoud MF, El Maraghy NN, Ahmed AF. Effect of Cordyceps sinensis and taurine either alone or in combination on streptozotocin induced diabetes. Food Chem Toxicol 2012; 50(3-4): 1159-65.
[http://dx.doi.org/10.1016/j.fct.2011.12.020] [PMID: 22226943]
[160]
Li SP, Zhang GH, Zeng Q, et al. Hypoglycemic activity of polysaccharide, with antioxidation, isolated from cultured Cordyceps mycelia. Phytomedicine 2006; 13(6): 428-33.
[http://dx.doi.org/10.1016/j.phymed.2005.02.002] [PMID: 16716913]
[161]
Huang CW, Hong TW, Wang YJ, et al. Ophiocordyceps formosana improves hyperglycemia and depression-like behavior in an STZ-induced diabetic mouse model. BMC Complement Altern Med 2016; 16(1): 310.
[http://dx.doi.org/10.1186/s12906-016-1278-7] [PMID: 27553852]
[162]
Badole SL, Patel NM, Thakurdesai PA, Bodhankar SL. Interaction of Aqueous Extract of Pleurotus pulmonarius (Fr.) Quel-Champ. with Glyburide in Alloxan Induced Diabetic Mice. Evid Based Complement Alternat Med 2008; 5(2): 159-64.
[http://dx.doi.org/10.1093/ecam/nem010] [PMID: 18604261]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy