Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

General Research Article

Molecular Docking Studies of Bioactive Nicotiflorin against 6W63 Novel Coronavirus 2019 (COVID-19)

Author(s): Raghvendra Dubey* and Kushagra Dubey

Volume 24, Issue 6, 2021

Published on: 20 August, 2020

Page: [874 - 878] Pages: 5

DOI: 10.2174/1386207323999200820162551

Price: $65

Abstract

Background: COVID-19 which is known as the novel coronavirus was reported in December 2019 in Wuhan city, China and many people have been contaminated by environmental contamination and transmission from one human to another until now.

Objective: The objective of the present work is to establish the inhibitory potential of nicotiflorin, a Kaempferol 3-O-rutinoside flavonoid, against the deadly coronavirus (COVID-19) 6W63 (main protease 3Clpro protein), using molecular docking approach.

Methods: The Molegro Virtual Docker software (MVD) with a 30 Å grid resolution was used. The structure was drawn by Chem 3D software and energy minimization was done by the MM2 force field. The protein 6W63 was downloaded from the protein data bank. Molegro modeller was used for score calculations.

Result: The molecular docking studies were carried out on nicotiflorin and standard inhibitor X77, where standard inhibitor was observed in a co-crystallized state with main protease 3Clpro protein 6W63. The MolDock score, Rerank Sore, and H Bond score of nicotiflorin and standard inhibitor X77 were observed as -173.058, -127.302, -21.9398 and -156.913,-121.296,-5.7369, respectively.

Conclusion: Molecular docking studies have confirmed that the affinity of flavonoid nicotiflorin with the amino acids of the viral protein 6W63 was relatively more than the standard X77. For the effective treatment of novel coronavirus COVID-19, the effectiveness of the identified flavonoid nicotiflorin can further be evaluated for safety and efficacy parameters at both preclinical and clinical stages.

Keywords: Coronavirus, COVID-19, flavonoid, molecular docking studies, molegro virtual docker, nicotiflorin.

[1]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[2]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. novel coronavirus investigating and research team. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[3]
Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; Xing, X.; Xiang, N.; Wu, Y.; Li, C.; Chen, Q.; Li, D.; Liu, T.; Zhao, J.; Liu, M.; Tu, W.; Chen, C.; Jin, L.; Yang, R.; Wang, Q.; Zhou, S.; Wang, R.; Liu, H.; Luo, Y.; Liu, Y.; Shao, G.; Li, H.; Tao, Z.; Yang, Y.; Deng, Z.; Liu, B.; Ma, Z.; Zhang, Y.; Shi, G.; Lam, T.T.Y.; Wu, J.T.; Gao, G.F.; Cowling, B.J.; Yang, B.; Leung, G.M.; Feng, Z. Early Transmission dynamics in wuhan, china, of novel coronavirus-infected pneumonia. N. Engl. J. Med., 2020, 382(13), 1199-1207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[4]
Phan, L.T.; Nguyen, T.V.; Luong, Q.C.; Nguyen, T.V.; Nguyen, H.T.; Le, H.Q.; Nguyen, T.T.; Cao, T.M.; Pham, Q.D. Importation and human-to-human transmission of a novel coronavirus in vietnam. N. Engl. J. Med., 2020, 382(9), 872-874.
[http://dx.doi.org/10.1056/NEJMc2001272] [PMID: 31991079]
[5]
Holshue, M.L.; DeBolt, C.; Lindquist, S.; Lofy, K.H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.; Wilkerson, S.; Tural, A.; Diaz, G.; Cohn, A.; Fox, L.; Patel, A.; Gerber, S.I.; Kim, L.; Tong, S.; Lu, X.; Lindstrom, S.; Pallansch, M.A.; Weldon, W.C.; Biggs, H.M.; Uyeki, T.M.; Pillai, S.K. Washington State 2019-nCoV Case Investigation Team. First Case of 2019 Novel Coronavirus in the United States. N. Engl. J. Med., 2020, 382(10), 929-936.
[http://dx.doi.org/10.1056/NEJMoa2001191] [PMID: 32004427]
[6]
Giovanetti, M.; Benvenuto, D.; Angeletti, S.; Ciccozzi, M. The first two cases of 2019-nCoV in Italy: Where they come from? J. Med. Virol., 2020, 92(5), 518-521.
[http://dx.doi.org/10.1002/jmv.25699] [PMID: 32022275]
[7]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; Yuan, M.L.; Zhang, Y.L.; Dai, F.H.; Liu, Y.; Wang, Q.M.; Zheng, J.J.; Xu, L.; Holmes, E.C.; Zhang, Y.Z. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798), 265-269.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[8]
Rates, S.M.K. Plants as source of drugs. Toxicon, 2001, 39(5), 603-613.
[http://dx.doi.org/10.1016/S0041-0101(00)00154-9] [PMID: 11072038]
[9]
Cordell, G.A.; Colvard, M.D. Some thoughts on the future of ethnopharmacology. J. Ethnopharmacol., 2005, 100(1-2), 5-14.
[http://dx.doi.org/10.1016/j.jep.2005.05.027] [PMID: 16009517]
[10]
Santer, R.; Schneppenheim, R.; Dombrowski, A.; Gotze, H.; Steinmann, B.; Schaub, J. Mutations in RPE65 cause Leber’s congenital amaurosis. Nat. Genet., 1997, 57-61.
[11]
Projan, S.J. Infectious Diseases in the 21st Century: Increasing Threats, Fewer New Treatments and a Premium on Prevention. Curr. Opin. Pharmacol., 2003, 3, 457-458.
[http://dx.doi.org/10.1016/j.coph.2003.07.001]
[12]
Dahanukar, S.A.; Kulkarni, R.A.; Rege, N.N. Pharmacology of medicinal plants and natural products. Indian J. Pharmacol., 2000, 32(4), 81-118.
[13]
Astuya, A. Pharmacological activities of flavonoids: A review. Aquacult. Res., 2017, 48, 9006-9014.
[14]
Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines (Basel), 2018, 5(3), 93.
[http://dx.doi.org/10.3390/medicines5030093] [PMID: 30149600]
[15]
Dehaghani, Zahra Ahmadian; Asghari, Gholamreza; Dinani, Masoud Sadeghi Isolation and identification of nicotiflorin and narcissin from the aerial parts of Peucedanum aucheri Boiss. J. Agric. Sci. Technol., 2017, 7(1)
[16]
Lal Shyaula, S.; Abbas, G.; Siddiqui, H.; Sattar, A. Synthesis and Antiglycation Activity of Kaempferol-3-O-Rutinoside (Nicotiflorin) Med. Chem. (Los. Angeles), 2012.
[17]
Youssef Moustafa, A.M.; Khodair, A.I.; Saleh, M.A. Isolation, structural elucidation of flavonoid constituents from leptadenia pyrotechnica and evaluation of their toxicity and antitumor activity. Pharm. Biol., 2009, 47, 539-552.
[http://dx.doi.org/10.1080/13880200902875065]
[18]
Keïta, J.N.; Traore, N.; Diarra, N.; Koné, D.; Mariko, B.; Pelcouliba, D.; Poisson, J.F. Isolation and identification of nicotiflorin from the leaves of costus spectabilis (fenzl) k. Schum. Der Chem. Sin., 2019, 10, 782-787.
[19]
Takemura, T.; Iwashina, T. Flavonol glycosides and their distribution in the perianths of gladiolus grandiflora cultivars. Bull. Natl. Mus. Nat. Sci., Ser. B., 2019, 45, 29-40.
[20]
Erosa Rejón, G. Pe?a Rodríguez, L.; Sterner, O. Isolation of Kaempferol-3-Rutinoside from the Leaf Extract of Sideroxylon Foetidissimum Subsp. Gaumeri. Rev. Latinoam. Quím., 2010.
[21]
do Nascimento, J.E.T.; de Morais, S.M.; de Lisboa, D.S.; de Oliveira Sousa, M.; Santos, S.A.A.R.; Magalhães, F.E.A.; Campos, A.R. The orofacial antinociceptive effect of Kaempferol-3-O-rutinoside, isolated from the plant Ouratea fieldingiana, on adult zebrafish (Danio rerio). Biomed. Pharmacother., 2018, 107, 1030-1036.
[http://dx.doi.org/10.1016/j.biopha.2018.08.089] [PMID: 30257314]
[22]
Ahmad, M. Effects of Kaempferol-3-O-Rutinoside 1993, 7, 314-316.
[23]
Wan, C.; Yu, Y.; Zhou, S.; Tian, S.; Cao, S. Isolation and identification of phenolic compounds from Gynura divaricata leaves. Pharmacogn. Mag., 2011, 7(26), 101-108.
[http://dx.doi.org/10.4103/0973-1296.80666] [PMID: 21716618]
[24]
Estrada, E. Topological Analysis of SARS CoV-2 Main Protease bioRxiv, 2020.
[25]
Kushagra, D.; Raghvendra, D.; Revathi, G. G.A. In-silico reverse docking studies for the identification of potential of betanin on some enzymes involved in diabetes and its complications. J. Drug Deliv. Ther., 2019, 9, 72-74.
[26]
Madhuri, M.; Prasad, C.; Rao Avupati, V. In silico protein-ligand docking studies on thiazolidinediones as potential anticancer agents. Int. J. Comput. Appl., 2014, 95, 13-16.
[27]
Heble, N.K.; Mavillapalli, R.C.; Selvaraj, R.; Jeyabalan, S. Molecular docking studies of phytoconstituents identified in Crocus Sativus, Curcuma Longa, Cassia Occidentalis and Moringa Oleifera on thymidylate synthase - an enzyme target for anti-cancer activity. J. Appl. Pharm. Sci., 2016, 6, 131-135.
[http://dx.doi.org/10.7324/JAPS.2016.601218]
[28]
Rishitha Chowdary Mavillapalli, S.J. Molecular docking studies of phytoconstituents identified in Cinnamomum verum and Coriandrum sativum on HMG CoA Reducatse – an enzyme target for antihyperlipidemic activity. Int. J. Pharm. Sci. Res., 2017, 8, 4172-4179.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy