Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Repositioning of Drugs to Counter COVID-19 Pandemic - An Insight

Author(s): Sai M. Akilesh, Rajesh J., Dhanabal Palanisamy and Ashish Wadhwani*

Volume 22, Issue 2, 2021

Published on: 20 August, 2020

Page: [192 - 199] Pages: 8

DOI: 10.2174/1389201021999200820155927

Price: $65

Abstract

COVID-19 is a pandemic, caused by the novel coronavirus 2 (SARS-CoV-2) which is a severe acute respiratory syndrome. The devastating impact of this novel coronavirus outbreak has necessitated the need for rapid and effective antiviral therapies against SARS-CoV-2 to control the spread of the disease and importantly, alleviate the severe life-threatening symptoms and disorders. Drug repurposing strategy offers an attractive, immediate and realistic approach to tackle this growing pandemic of COVID-19. Due to the similarities with the SARS-CoV-1 virus and phylogenetic relation to the MERS-CoV virus, accelerated screening of approved drugs and the development of repositioning strategies have proved to be critical for the survival of many COVID-19 patients. Numerous scientific investigations from the initial years of the coronavirus outbreak along with upcoming advances of immunotherapy and vaccines, may prove to be beneficial. Currently, several repurposing strategies are under different phases of clinical trials and provide a definitive framework for the development of future therapies for the effective treatment of COVID-19. This review article summarizes the latest developments and trends in drug repurposing strategy for COVID-19 treatment.

Keywords: Coronavirus, COVID-19, drug repurposing, infectious diseases, SARS-CoV-2, viruses.

Graphical Abstract

[1]
McIntosh, K. Coronaviruses: A Comparative Review. Current Topics in Microbiology and Immunology Berlin; Springer: Heidelberg, 1974, pp. 85-129.
[2]
Kahn, J.S.; McIntosh, K. History and recent advances in coronavirus discovery. Pediatr. Infect. Dis. J., 2005, 24(11)(Suppl.), S223-S227.
[http://dx.doi.org/10.1097/01.inf.0000188166.17324.60] [PMID: 16378050]
[3]
Su, S.; Wong, G.; Shi, W.; Liu, J.; Lai, A.C.K.; Zhou, J.; Liu, W.; Bi, Y.; Gao, G.F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol., 2016, 24(6), 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003] [PMID: 27012512]
[4]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. China novel coronavirus investigating and research team. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[5]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[6]
[7]
Mani, D.; Wadhwani, A.; Krishnamurthy, P. Drug repurposing in antiviral research: A current scenario. J. Young Pharmacists., 2019, 11(2), 117-121.
[http://dx.doi.org/10.5530/jyp.2019.11.26]
[8]
Mercorelli, B.; Palù, G.; Loregian, A. drug repurposing for viral infectious diseases: How far are we? Trends Microbiol., 2018, 26(10), 865-876.
[http://dx.doi.org/10.1016/j.tim.2018.04.004] [PMID: 29759926]
[9]
Marco, C.; Michael, R.; Arturo, C.; Scott, C.; Dulebohn, R.D. Napoli. Features, Evaluation, and Treatment of Coronavirus. In: StatPearls [Internet]; Treasure Island (FL): StatPearls Publishing, 2020. Jan. 2020 Oct 4;http://www.ncbi.nlm.nih.gov/books/NBK554776
[10]
Lee, F.E-H.; Treanor, J.J. 32 - Viral infections. Murray and Nadel’s Textbook of Respiratory Medicine, 6th ed; Broaddus, V.C.; Mason, R.J.; Ernst, J.D.; King, T.E.; Lazarus, S.C.; Murray, J.F. Eds.; W.B. Saunders: Philadelphia, 2016; pp. 527-556., e15.http://www.sciencedirect.com/science/article/pii/B9781455733835000324 [Internet]
[http://dx.doi.org/10.1016/B978-1-4557-3383-5.00032-4]
[11]
Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 2020, 367(6485), 1444-1448.
[http://dx.doi.org/10.1126/science.abb2762] [PMID: 32132184]
[12]
Tai, W.; He, L.; Zhang, X.; Pu, J.; Voronin, D.; Jiang, S.; Zhou, Y.; Du, L. Characterization of the Receptor-Binding Domain (RBD) of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell. Mol. Immunol., 2020, 17(6), 613-620.
[http://dx.doi.org/10.1038/s41423-020-0400-4] [PMID: 32203189]
[13]
Zhang, H.; Penninger, J.M.; Li, Y.; Zhong, N.; Slutsky, A.S. Angiotensin-Converting Enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med., 2020, 46(4), 586-590.
[http://dx.doi.org/10.1007/s00134-020-05985-9] [PMID: 32125455]
[14]
Bonow, R.; Fonarow, G.; O’Gara, P.; Yancy, C. association of coronavirus disease 2019 (covid-19) with myocardial injury and mortality. JAMA Cardiol., 2020, 5(7), 751-753.
[15]
Gu, J.; Han, B.; Wang, J. COVID-19: Gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology, 2020, 158(6), 1518-1519.
[http://dx.doi.org/10.1053/j.gastro.2020.02.054] [PMID: 32142785]
[16]
Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C-L.; Abiona, O.; Cryo, E.M. structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483), 1260-1263.
[17]
Liu, C.; Zhou, Q.; Li, Y.; Garner, L.V.; Watkins, S.P.; Carter, L.J. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent. Sci., 2020, 6(3), 315-331.
[18]
Perlman, S.; Netland, J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat. Rev. Microbiol., 2009, 7(6), 439-450.
[http://dx.doi.org/10.1038/nrmicro2147] [PMID: 19430490]
[19]
Sanders, J.M.; Monogue, M.L.; Jodlowski, T.Z.; Cutrell, J.B. Pharmacologic treatments for coronavirus disease 2019 (19COVID-19): A review. JAMA, 2020, 323(18), 1824-1836.
[http://dx.doi.org/10.1001/jama.2020.60]
[20]
Novel Coronavirus Information Center Elsevier Connect. 2020. Available at https://www.elsevier.com/connect/coronavirus-information-center
[21]
[22]
Coronavirus Disease. Centers for Disease Control and Prevention, 2019. https://www.cdc.gov/coronavirus/2019-ncov/index.html accessed on: Feb 10, 2021
[24]
Marina, M.; Burk-Rafel, J. COVID-19 Clinical Trials Explorer, 2020. Available at: https://public.tableau.com/profile/marinamarin#!/vizhome/covidTrials/COVID-19ClinicalTrialsExplorer [Accessed on: Sep 29, 2020].
[25]
National Institute of Health. Available at https://clinicaltrials.gov/
[26]
Devaux, C.A.; Rolain, J.M.; Colson, P.; Raoult, D. New insights on the antiviral effects of chloroquine against coronavirus: What to expect for COVID-19?. Int. J. Antimicrob. Agents, 2020, 55(5), 105938.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938] [PMID: 32171740]
[27]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[28]
Russia grants temporary approval for Avifavir to treat Covid-19 Pharmaceutical Technoloy, 2020. Available at https://www. pharmaceutical-technology.com/news/russia-approves-avifavir/
[29]
Antiviral Inhibitor (Avifavir) of RNA-Dependent RNA Polymerase Approved for Use in Russia Hospitals for Treatment of COVID-19 Caused by RNA Virus SARS-CoV-2 Modified Drug Based on Japan’s Anti-Influenza Drug Favipiravir Is Administered in Tablet Form., Available at http://www.bioquicknews.com/node/5428
[30]
Kruse, R. Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan; China, Version 2. F1000 Res., 2020, 9, 72.
[31]
Phadke, M.; Saunik, S. COVID-19 treatment by repurposing drugs until the vaccine is in sight. Drug Dev. Res., 2020, 81(5), 541-543.
[http://dx.doi.org/10.1002/ddr.21666] [PMID: 32227357]
[32]
Ahn, D.G.; Shin, H.J.; Kim, M.H.; Lee, S.; Kim, H.S.; Myoung, J.; Kim, B.T.; Kim, S.J. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19). J. Microbiol. Biotechnol., 2020, 30(3), 313-324.
[http://dx.doi.org/10.4014/jmb.2003.03011] [PMID: 32238757]
[33]
AminJafari. A.; Ghasemi, S. The possible of immunotherapy for COVID-19: A systematic review. Int. Immunopharmacol., 2020, 83, 106455.
[http://dx.doi.org/10.1016/j.intimp.2020.106455] [PMID: 32272396]
[34]
Rosa, S.G.V.; Santos, W.C. Clinical trials on drug repositioning for COVID-19 treatment. Rev. Panam. Salud Publica, 2020, 44, e40.
[http://dx.doi.org/10.26633/RPSP.2020.40] [PMID: 32256547]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy