Generic placeholder image

Current Applied Polymer Science

Editor-in-Chief

ISSN (Print): 2452-2716
ISSN (Online): 2452-2724

Research Article

Molecular Transformations in DNA under the Influence of UV-radiation

Author(s): Vigen G. Barkhudaryan*, Gayane V. Ananyan and Nelli H. Karapetyan

Volume 4, Issue 1, 2021

Published on: 14 August, 2020

Page: [40 - 46] Pages: 7

DOI: 10.2174/2452271604666200814123505

Price: $65

Abstract

Background: The processes of destruction and crosslinking of macromolecules occur simultaneously under the influence of ultraviolet (UV) radiation in synthetic polymers, dry DNA and their concentrated solutions.

Objective: The effect of UV radiation on calf thymus DNA in dilute solutions subjected to UV- irradiation was studied in this work.

Method: The calf thymus DNA was studied in dilute solutions using viscometry, absorption spectroscopy and electrophoresis.

Results: It was shown that at a low concentration of DNA in the buffer solution ([DNA] = 85 μg / ml) under the influence of UV radiation, the processes of destruction of macromolecules and an increase in their flexibility predominate, which are accompanied by a gradual decrease in the viscosity of their solution. In addition, due to the low concentration of the solution, intramolecular crosslinking of macromolecules predominates, which also reduces their size and, consequently, the viscosity of the solution.

Conclusion: It was concluded that in dilute DNA solutions, due to the predominance of the processes of intramolecular crosslinking of macromolecules over intermolecular, only constant processes of decreasing the sizes of DNA macromolecules occur. As a result, their solubility remains virtually unchanged during UV irradiation. The described explanations are also confirmed by the results of absorption spectroscopy and electrophoresis.

Keywords: CtDNA, destruction, crosslinking, viscometry, spectroscopy, electrophoresis.

Graphical Abstract

[1]
Barkhudaryan VG. Effect of ©-radiation on the molecular characteristics of low-density polyethylene. Polymer (Guildf) 2000; 41: 575-8.
[http://dx.doi.org/10.1016/S0032-3861(99)00209-8]
[2]
Barkhudaryan VG. Alterations of molecular characteristics of polyethylene under the influence of γ-radiation. Polymer (Guildf) 2000; 41: 2511-4.
[http://dx.doi.org/10.1016/S0032-3861(99)00411-5]
[3]
Barkhudarya VG. Alterations of molecular characteristics of polyethylene under the influence of UV-radiation. Polymer (Guildf) 2000; 41: 5787-91.
[http://dx.doi.org/10.1016/S0032-3861(99)00766-1]
[4]
Barkhudaryan VG, Sargsyan AG. Effect of external action on the molecular characteristics of polyamide and polyacrylonitrile. Plastic masses 2007; 29: 26-9.
[5]
Barkhudaryan VG. Alterations of molecular characteristics of polyethylene under the influence of heat treatment. Int J Plast Technol 2000; 20: 231-40.
[http://dx.doi.org/10.1007/s12588-016-9151-6]
[6]
Cole RS, Levitan D, Sinden RR. Removal of psoralen interstrand cross-links from DNA of Escherichia coli: mechanism and genetic control. J Mol Biol 1976; 103(1): 39-59.
[http://dx.doi.org/10.1016/0022-2836(76)90051-6] [PMID: 785009]
[7]
Felix F. The remarkable amylases. Biochem Mol Biol Educ 1985; 13(3): 105-7.
[8]
Bravo-Anaya LM, Rinaudo M, Martínez FAS. Conformation and rheological properties of calf-thymus dna in solution. Polymers (Basel) 2016; 8(2): 51-7.
[http://dx.doi.org/10.3390/polym8020051] [PMID: 30979142]
[9]
Noll DM, Mason TM, Miller PS. Formation and repair of interstrand cross-links in DNA. Chem Rev 2006; 106(2): 277-301.
[http://dx.doi.org/10.1021/cr040478b] [PMID: 16464006]
[10]
Sinha RP, Häder DP. UV-induced DNA damage and repair: A review. Photochem Photobiol Sci 2002; 1(4): 225-36.
[http://dx.doi.org/10.1039/b201230h] [PMID: 12661961]
[11]
Sinden RR, Cole RS. Repair of cross-linked DNA and survival of Escherichia coli treated with psoralen and light: effects of mutations influencing genetic recombination and DNA metabolism. J Bacteriol 1978; 136(2): 538-47.
[http://dx.doi.org/10.1128/JB.136.2.538-547.1978] [PMID: 361714]
[12]
Weidlich T, Lindsay SM, Rupprecht A. Counterion effects on the structure and dynamics of solid DNA. Phys Rev Lett 1988; 61(14): 1674-7.
[http://dx.doi.org/10.1103/PhysRevLett.61.1674] [PMID: 10038866]
[13]
Smith KC, Hanawalt PC. Molecular photobiology: Inactivation and recovery. New York: Academic Press 1969.
[14]
Rastogi RP, Richa , Kumar A, Tyagi MB, Sinha RP. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids 2010; 2010: 592980.
[http://dx.doi.org/10.4061/2010/592980] [PMID: 21209706]
[15]
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39(1): 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[16]
Wang TC, Smith KC. Postreplication repair in ultraviolet-irradiated human fibroblasts: Formation and repair of DNA double-strand breaks. Carcinogenesis 1986; 7(3): 389-92.
[http://dx.doi.org/10.1093/carcin/7.3.389] [PMID: 3948324]
[17]
Halliwell B, Gutteridge J. Free radicals in biology and medicine. 4th ed. Oxford, UK: Oxford University Press 2007.
[18]
Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006; 160(1): 1-40.
[http://dx.doi.org/10.1016/j.cbi.2005.12.009] [PMID: 16430879]
[19]
Baumstark-Khan C, Hentschel U, Nikandrova Y, Krug J, Horneck G. Fluorometric analysis of DNA unwinding (FADU) as a method for detecting repair-induced DNA strand breaks in UV-irradiated mammalian cells. Photochem Photobiol 2000; 72(4): 477-84.
[http://dx.doi.org/10.1562/0031-8655(2000)072<0477:FAODUF>2.0.CO;2] [PMID: 11045718]
[20]
Slieman TA, Nicholson WL. Artificial and solar UV radiation induces strand breaks and cyclobutane pyrimidine dimers in Bacillus subtilis spore DNA. Appl Environ Microbiol 2000; 66(1): 199-205.
[http://dx.doi.org/10.1128/AEM.66.1.199-205.2000] [PMID: 10618224]
[21]
Vedenov AA, Dykhne AM, Frank-Kamenetskii MD. The helix-coil transition in DNA. Sov Phys Usp 1972; 14(6): 715-36.
[http://dx.doi.org/10.1070/PU1972v014n06ABEH004752]
[22]
Furusawa K, Minamisawa Y, Dobashi T, Yamamoto T. Dynamics of liquid crystalline gelation of DNA. J Phys Chem B 2007; 111(51): 14423-30.
[http://dx.doi.org/10.1021/jp076135+] [PMID: 18047316]
[23]
Gomez-Mendoza M, Banyasz A, Douki T, Markovitsi D, Ravanat JL. Direct oxidative damage of naked DNA generated upon absorption of UV radiation by nucleobases. J Phys Chem Lett 2016; 7(19): 3945-8.
[http://dx.doi.org/10.1021/acs.jpclett.6b01781] [PMID: 27642654]
[24]
Rill RL, Strzelecka TE, Davidsonet MW, et al. Ordered phases in concentrated DNA solutions. Physica A 1991; 176(1): 87-116.
[http://dx.doi.org/10.1016/0378-4371(91)90435-F]
[25]
Wilson RW, Bloomfield VA, Bloomfield A. Counterion-induced condesation of deoxyribonucleic acid. A light-scattering study. Biochemistry 1979; 18(11): 2192-6.
[http://dx.doi.org/10.1021/bi00578a009] [PMID: 444448]
[26]
Rudd GN, Hartley JA, Souhami RL. Persistence of cisplatin-induced DNA interstrand crosslinking in peripheral blood mononuclear cells from elderly and young individuals. Cancer Chemother Pharmacol 1995; 35(4): 323-6.
[http://dx.doi.org/10.1007/BF00689452] [PMID: 7828275]
[27]
Saxena VK, Zandt VLL. Effect of counterions on the spectrum of dissolved DNA polymers. Phys Rev 1992; A 45: 7610.
[http://dx.doi.org/10.1103/PhysRevA.45.7610]
[28]
Strzelecka TE, Rill RL. Phase transitions of concentrated DNA solutions in low concentrations of 1:1 supporting electrolyte. Biopolymers 1990; 30(1-2): 57-71.
[http://dx.doi.org/10.1002/bip.360300108] [PMID: 2224051]
[29]
Härd T, Kearns DR. Association of short DNA fragments: Steady state fluorescence polarization study. Biopolymers 1986; 25(8): 1519-29.
[http://dx.doi.org/10.1002/bip.360250810] [PMID: 3742003]
[30]
Fried MG, Bloomfield VA. DNA gelation in concentrated solutions. Biopolymers 1984; 23(11 Pt 1): 2141-55.
[http://dx.doi.org/10.1002/bip.360231104] [PMID: 6498295]
[31]
Ravanat J-L, Douki T, Cadet J. Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B 2001; 63(1-3): 88-102.
[http://dx.doi.org/10.1016/S1011-1344(01)00206-8] [PMID: 11684456]
[32]
Moroson H, Alexander P. Changes produced by ultraviolet light in the presence and in the absence of oxygen on the physical chemical properties of deoxyribonucleic acid. Radiat Res 1961; 14(1): 29-49.
[http://dx.doi.org/10.2307/3571055] [PMID: 13772762]
[33]
Triebel H, Reinert KE, Bär H, Lang H. Structural changes of ultraviolet-irradiated DNA derived from hydrodynamic measurements. Biochim Biophys Acta 1979; 561(1): 59-68.
[http://dx.doi.org/10.1016/0005-2787(79)90490-8] [PMID: 570421]
[34]
Virgil LKoenig, Carrier WL, Ronald O Rahn. Viscosity studies on DNA and the observation of double-stranded and single-stranded breaks in a 40% DMSO-phosphate buffer system. Int J Biochem 1974; 5(7-8): 601-11.
[http://dx.doi.org/10.1016/0020-711X(74)90022-6]
[35]
Flory PJ, Fox TJ. Treatment of intrinsic viscosities. J Am Chem Soc 1951; 73: 1904-8.
[http://dx.doi.org/10.1021/ja01149a002]
[36]
Wartell RM, Benigh AS. Thermal denaturation of DNA molecules: A comparison of theory with experi- ment. Phys Rep 1985; 12: 67-107.
[http://dx.doi.org/10.1016/0370-1573(85)90060-2]
[37]
Karapetyan NH, Torosyan AL, Malakyan M, Bajinyan SA, Haroutiunian SG. Investigation of irradiated rats DNA in the presence of Cu(II) chelates of amino acids Schiff bases. J Biomol Struct Dyn 2016; 34(1): 177-83.
[http://dx.doi.org/10.1080/07391102.2015.1020876] [PMID: 26101796]
[38]
Iurgaĭtis AP, Lazurkin IuS, Bannikov IuA. Effect of single-stranded and double-stranded breaks on the melting temperature of phage T2 DNA. Mol Biol (Mosk) 1979; 13(3): 531-42.
[PMID: 379614]
[39]
Cai Z, Cloutier P, Sanche L, Hunting D. DNA interduplex crosslinks induced by Al(Kalpha) X rays under vacuum. Radiat Res 2005; 164(2): 173-9.
[http://dx.doi.org/10.1667/RR3408] [PMID: 16038588]
[40]
Lyubchenko YL, Frank-Kamenetskii MD, Vologodskii AV, Lazurkin YS, Gause GG Jr. Fine structure of DNA melting curves. Biopolymers 1976; 15(6): 1019-36.
[http://dx.doi.org/10.1002/bip.1976.360150602] [PMID: 1268312]
[41]
Myllyperkiö MH, Koski TR, Vilpo LM, Vilpo JA. Gamma-irradiation-induced DNA single- and double-strand breaks and their repair in chronic lymphocytic leukemia cells of variable radiosensitivity. Hematol Cell Ther 1999; 41(3): 95-103.
[http://dx.doi.org/10.1007/s00282-999-0095-6] [PMID: 10456439]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy