Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

The Role of Bacterial Superantigens in the Immune Response: From Biology to Cancer Treatment

Author(s): Mohammad S. Hashemzadeh*, Behnam E.G. Tapeh and Seyed A. Mirhosseini

Volume 17, Issue 1, 2021

Published on: 12 August, 2020

Page: [21 - 34] Pages: 14

DOI: 10.2174/1573394716666200812150402

Price: $65

Abstract

Aims: Encouraging results have been indicated preclinically and in patients using the bacterial superantigen. This review article intends to summarize the role of the superantigens that have been recently used in the treatment of cancer. In addition, the vector systems, including lentiviral vectors, adeno-associated vector systems and retroviral vectors that are increasingly being used in basic and applied research, were discussed. Most importantly, the new CRISPR technique has also been discussed in this literature review.

Discussion: More successful therapies can be achieved by manipulating bacterial vector systems through incorporating genes related to the superantigens and cytokines. The products of SAg and cytokine genes contribute to the strong stimulation of the immune system against tumor cells. They bind to MHC II molecules as well as the V beta regions of TCR and lead to the production of IL2 and other cytokines, the activation of antigen-presenting cells and T lymphocytes. Additionally, superantigens can be used to eradicate tumor cells. Better results in cancer treatment can be achieved by transferring superantigen genes and subsequent strong immune stimulation along with other cancer immunotherapy agents.

Conclusion: Superantigens induce the proliferation of T lymphocytes and antigen-presenting cells by binding to MHCII molecules and V beta regions in T cell receptors. Therefore, the presentation of tumor cell antigens is increased. Additionally, the production of important cytokines by T cells and APCs contributes to the stimulation of immune response against tumor cells. The manipulation of bacterial vector systems through incorporating genesrelated to SAgs and other immune response factors is a good strategy for the immune system stimulating and eradicating tumor cells along with other immunotherapy agents.

Keywords: Superantigen, immunotherapy, cancer, T lymphocyte, immune response, lymphocyte.

Graphical Abstract

[1]
Alouf JE, Müller-Alouf H. Staphylococcal and streptococcal superantigens: Molecular, biological and clinical aspects. Int J Med Microbiol 2003; 292(7-8): 429-40.
[http://dx.doi.org/10.1078/1438-4221-00232 ] [PMID: 12635926]
[2]
DeVries AS, Lesher L, Schlievert PM, et al. Staphylococcal toxic shock syndrome 2000-2006: Epidemiology, clinical features, and molecular characteristics. PLoS One 2011; 6(8): e22997.
[http://dx.doi.org/10.1371/journal.pone.0022997 ] [PMID: 21860665]
[3]
White J, Herman A, Pullen AM, Kubo R, Kappler JW, Marrack P. The V β-specific superantigen staphylococcal enterotoxin B: Stimulation of mature T cells and clonal deletion in neonatal mice. Cell 1989; 56(1): 27-35.
[http://dx.doi.org/10.1016/0092-8674(89)90980-X ] [PMID: 2521300]
[4]
Janeway CA Jr, Yagi J, Conrad PJ, et al. T-cell responses to Mls and to bacterial proteins that mimic its behavior. Immunol Rev 1989; 107(1): 61-88.
[http://dx.doi.org/10.1111/j.1600-065X.1989.tb00003.x ] [PMID: 2522086]
[5]
Fleischer B. A conserved mechanism of T lymphocyte stimulation by microbial exotoxins. Microb Pathog 1989; 7(2): 79-83.
[http://dx.doi.org/10.1016/0882-4010(89)90027-2 ] [PMID: 2512465]
[6]
Callahan JE, Herman A, Kappler JW, Marrack P. Stimulation of B10.BR T cells with superantigenic staphylococcal toxins. J Immunol 1990; 144(7): 2473-9.
[PMID: 2138648]
[7]
Watson AR, Lee WT. Defective T cell receptor-mediated signal transduction in memory CD4 T lymphocytes exposed to superantigen or anti-T cell receptor antibodies. Cell Immunol 2006; 242(2): 80-90.
[http://dx.doi.org/10.1016/j.cellimm.2006.09.008 ] [PMID: 17083922]
[8]
Misfeldt ML. Microbial “superantigens”. Infect Immun 1990; 58(8): 2409-13.
[http://dx.doi.org/10.1128/IAI.58.8.2409-2413.1990 ] [PMID: 2196226]
[9]
Fleischer B, Schrezenmeier H, Conradt P. T lymphocyte activation by staphylococcal enterotoxins: Role of class II molecules and T cell surface structures. Cell Immunol 1989; 120(1): 92-101.
[http://dx.doi.org/10.1016/0008-8749(89)90177-9 ] [PMID: 2522832]
[10]
Mollick JA, Cook RG, Rich RR. Class II MHC molecules are specific receptors for staphylococcus enterotoxin A. Science 1989; 244(4906): 817-20.
[http://dx.doi.org/10.1126/science.2658055 ] [PMID: 2658055]
[11]
Baker MD, Acharya KR. Superantigens: Structure, function, and diversity Am Soc Microbiol . 2007; 2007: pp. 121-35.
[12]
Papageorgiou AC, Acharya KR. Microbial superantigens: From structure to function. Trends Microbiol 2000; 8(8): 369-75.
[http://dx.doi.org/10.1016/S0966-842X(00)01793-5 ] [PMID: 10920396]
[13]
Tripp TJ, McCormick JK, Webb JM, Schlievert PM. The zinc-dependent major histocompatibility complex class II binding site of streptococcal pyrogenic exotoxin C is critical for maximal superantigen function and toxic activity. Infect Immun 2003; 71(3): 1548-50.
[http://dx.doi.org/10.1128/IAI.71.3.1548-1550.2003 ] [PMID: 12595474]
[14]
Hâkansson M, Petersson K, Nilsson H, et al. The crystal structure of staphylococcal enterotoxin H: Implications for binding properties to MHC class II and TcR molecules. J Mol Biol 2000; 302(3): 527-37.
[http://dx.doi.org/10.1006/jmbi.2000.4093 ] [PMID: 10986116]
[15]
Abrahmsén L, Dohlsten M, Segrén S, Björk P, Jonsson E, Kalland T. Characterization of two distinct MHC class II binding sites in the superantigen staphylococcal enterotoxin A. EMBO J 1995; 14(13): 2978-86.
[http://dx.doi.org/10.1002/j.1460-2075.1995.tb07300.x ] [PMID: 7542584]
[16]
Fraser JD, Urban RG, Strominger JL, Robinson H. Zinc regulates the function of two superantigens. Proc Natl Acad Sci USA 1992; 89(12): 5507-11.
[http://dx.doi.org/10.1073/pnas.89.12.5507 ] [PMID: 1608962]
[17]
Sundström M, Hallén D, Svensson A, Schad E, Dohlsten M, Abrahmsén L. The Co-crystal structure of staphylococcal enterotoxin type A with Zn2+ at 2.7 A resolution. Implications for major histocompatibility complex class II binding. J Biol Chem 1996; 271(50): 32212-6.
[http://dx.doi.org/10.1074/jbc.271.50.32212 ] [PMID: 8943278]
[18]
Tiedemann RE, Urban RJ, Strominger JL, Fraser JD. Isolation of HLA-DR1 (staphylococcal enterotoxin A)2 trimers in solution. Proc Natl Acad Sci USA 1995; 92(26): 12156-9.
[http://dx.doi.org/10.1073/pnas.92.26.12156 ] [PMID: 8618863]
[19]
Baker M, Gutman DM, Papageorgiou AC, Collins CM, Acharya KR. Structural features of a zinc binding site in the superantigen strepococcal pyrogenic exotoxin A (SpeA1): Implications for MHC class II recognition. Protein Sci 2001; 10(6): 1268-73.
[http://dx.doi.org/10.1110/ps.330101 ] [PMID: 11369867]
[20]
Papageorgiou AC, Collins CM, Gutman DM, et al. Structural basis for the recognition of superantigen streptococcal pyrogenic exotoxin A (SpeA1) by MHC class II molecules and T-cell receptors. EMBO J 1999; 18(1): 9-21.
[http://dx.doi.org/10.1093/emboj/18.1.9 ] [PMID: 9878045]
[21]
Sundström M, Abrahmsén L, Antonsson P, Mehindate K, Mourad W, Dohlsten M. The crystal structure of staphylococcal enterotoxin type D reveals Zn2+-mediated homodimerization. EMBO J 1996; 15(24): 6832-40.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb01074.x ] [PMID: 9003758]
[22]
Proft T, Moffatt SL, Berkahn CJ, Fraser JD. Identification and characterization of novel superantigens from Streptococcus pyogenes . J Exp Med 1999; 189(1): 89-102.
[http://dx.doi.org/10.1084/jem.189.1.89 ] [PMID: 9874566]
[23]
Baker MD, Acharya KR. Superantigens: Structure-function relationships. Int J Med Microbiol 2004; 293(7-8): 529-37.
[http://dx.doi.org/10.1078/1438-4221-00298 ] [PMID: 15149028]
[24]
Krakauer T. Differential inhibitory effects of interleukin-10, interleukin-4, and dexamethasone on staphylococcal enterotoxin-induced cytokine production and T cell activation. J Leukoc Biol 1995; 57(3): 450-4.
[http://dx.doi.org/10.1002/jlb.57.3.450 ] [PMID: 7884317]
[25]
Li H, Llera A, Mariuzza RA. Structure-function studies of T-cell receptor-superantigen interactions. Immunol Rev 1998; 163(1): 177-86.
[http://dx.doi.org/10.1111/j.1600-065X.1998.tb01196.x ] [PMID: 9700510]
[26]
Deringer JR, Ely RJ, Stauffacher CV, Bohach GA. Subtype-specific interactions of type C staphylococcal enterotoxins with the T- cell receptor. Mol Microbiol 1996; 22(3): 523-34.
[http://dx.doi.org/10.1046/j.1365-2958.1996.1381506.x ] [PMID: 8939435]
[27]
Swaminathan S, Furey W, Pletcher J, Sax M. Crystal structure of staphylococcal enterotoxin B, a superantigen. Nature 1992; 359(6398): 801-6.
[http://dx.doi.org/10.1038/359801a0 ] [PMID: 1436058]
[28]
Acharya KR, Passalacqua EF, Jones EY, et al. Structural basis of superantigen action inferred from crystal structure of toxic-shock syndrome toxin-1. Nature 1994; 367(6458): 94-7.
[http://dx.doi.org/10.1038/367094a0 ] [PMID: 8107781]
[29]
Ohlendorf DH. Structure of Toxic Shock Syndrome Toxin-1.In: Protein Toxin Structure Springer. 1996.
[http://dx.doi.org/10.1007/978-3-662-22352-9_11]
[30]
Petersson K, Pettersson H, Skartved NJ, Walse B, Forsberg G. Staphylococcal enterotoxin H induces V α-specific expansion of T cells. J Immunol 2003; 170(8): 4148-54.
[http://dx.doi.org/10.4049/jimmunol.170.8.4148 ] [PMID: 12682246]
[31]
Tian XL, Yan Z, Chen J, Zhao WH, Guo W. Clinical application of highly agglutinative staphylococcin in cancer treatment updates of the literature. Eur Rev Med Pharmacol Sci 2016; 20(12): 2718-25.
[PMID: 27383328]
[32]
Dohlsten M, Lando PA, Björk P, et al. Immunotherapy of human colon cancer by antibody-targeted superantigens. Cancer Immunol Immunother 1995; 41(3): 162-8.
[http://dx.doi.org/10.1007/BF01521342 ] [PMID: 7553685]
[33]
Kominsky SL, Torres BA, Hobeika AC, Lake FA, Johnson HM. Superantigen enhanced protection against a weak tumor-specific melanoma antigen: Implications for prophylactic vaccination against cancer. Int J Cancer 2001; 94(6): 834-41.
[http://dx.doi.org/10.1002/ijc.1551 ] [PMID: 11745486]
[34]
Perabo FG, Willert PL, Wirger A, Schmidt DH, Von Ruecker A, Mueller SC. Superantigen-activated mononuclear cells induce apoptosis in transitional cell carcinoma. Anticancer Res 2005; 25(5): 3565-73.
[PMID: 16101181]
[35]
Ma W, Yu H, Wang Q, Jin H, Solheim J, Labhasetwar V. A novel approach for cancer immunotherapy: Tumor cells with anchored superantigen SEA generate effective antitumor immunity. J Clin Immunol 2004; 24(3): 294-301.
[http://dx.doi.org/10.1023/B:JOCI.0000025451.41948.94 ] [PMID: 15114060]
[36]
Wahlsten JL, Mills CD, Ramakrishnan S. Antitumor response elicited by a superantigen-transmembrane sequence fusion protein anchored onto tumor cells. J Immunol 1998; 161(12): 6761-7.
[PMID: 9862706]
[37]
Yi P, Yu H, Ma W, Wang Q, Minev BR. Preparation of murine B7.1-glycosylphosphatidylinositol and transmembrane-anchored staphylococcal enterotoxin. A dual-anchored tumor cell vaccine and its antitumor effect. Cancer 2005; 103(7): 1519-28.
[http://dx.doi.org/10.1002/cncr.20943 ] [PMID: 15739200]
[38]
Ma W, Yu H, Wang Q, Bao J, Yan J, Jin H. In vitro biological activities of transmembrane superantigen staphylococcal enterotoxin A fusion protein. Cancer Immunol Immunother 2004; 53(2): 118-24.
[http://dx.doi.org/10.1007/s00262-003-0437-0 ] [PMID: 14574492]
[39]
Plautz GE, Barnett GH, Miller DW, et al. Systemic T cell adoptive immunotherapy of malignant gliomas. J Neurosurg 1998; 89(1): 42-51.
[http://dx.doi.org/10.3171/jns.1998.89.1.0042 ] [PMID: 9647171]
[40]
Hansson J, Ohlsson L, Persson R, et al. Genetically engineered superantigens as tolerable antitumor agents. Proc Natl Acad Sci USA 1997; 94(6): 2489-94.
[http://dx.doi.org/10.1073/pnas.94.6.2489 ] [PMID: 9122222]
[41]
Dohlsten M, Hedlund G, Akerblom E, Lando PA, Kalland T. Monoclonal antibody-targeted superantigens: A different class of anti- tumor agents. Proc Natl Acad Sci USA 1991; 88(20): 9287-91.
[http://dx.doi.org/10.1073/pnas.88.20.9287 ] [PMID: 1924393]
[42]
Dohlsten M, Abrahmsén L, Björk P, et al. Monoclonal antibody- superantigen fusion proteins: tumor-specific agents for T-cell-based tumor therapy. Proc Natl Acad Sci USA 1994; 91(19): 8945-9.
[http://dx.doi.org/10.1073/pnas.91.19.8945 ] [PMID: 8090750]
[43]
Takemura S, Kudo T, Asano R, et al. A mutated superantigen SEA D227A fusion diabody specific to MUC1 and CD3 in targeted cancer immunotherapy for bile duct carcinoma. Cancer Immunol Immunother 2002; 51(1): 33-44.
[http://dx.doi.org/10.1007/s00262-001-0245-3 ] [PMID: 11845258]
[44]
Erlandsson E, Andersson K, Cavallin A, et al. Identification of the antigenic epitopes in staphylococcal enterotoxins A and E and design of a superantigen for human cancer therapy. J Mol Biol 2003; 333(5): 893-905.
[http://dx.doi.org/10.1016/j.jmb.2003.09.009 ] [PMID: 14583188]
[45]
Yu QT, Meng ZB. Treatment of advanced breast cancer with a combination of highly agglutinative staphylococcin and vinorelbine-based chemotherapy. Eur Rev Med Pharmacol Sci 2016; 20(16): 3465-8.
[PMID: 27608908]
[46]
Cohen SG, Dzury DS, Michelini FJ. Immune responses to Staphylococcus aureus antigens. J Infect Dis 1958; 103(1): 61-6.
[http://dx.doi.org/10.1093/infdis/103.1.61 ] [PMID: 13575862]
[47]
Zonggui JXQQX. Effect of highly agglutinative staphylococcin on MDR gene expression and NK cell activity in patients with advanced hepatoma. Chin J Clin Oncol 1998; 1998: 7.
[48]
Kawaguchi-Nagata K, Okamura H, Shoji K, Kanagawa H, Semma M, Shinagawa K. Immunomodulating activities of staphylococcal enterotoxins. I. Effects on in vivo antibody responses and contact sensitivity reaction. Microbiol Immunol 1985; 29(3): 183-93.
[http://dx.doi.org/10.1111/j.1348-0421.1985.tb00818.x ] [PMID: 3874343]
[49]
Yuanjiao Q. The therapeutic effects of highly agglutinative Staphylococcin combined with Cisplatin in the treatment of patients with malignant pleural effusion. J Basic Clin Oncol 2010; 2010: 1.
[50]
Mu P. Clinical research on ultrasonically guided intrahepatic injections of HAS in interventional treatment of liver carcinomas. J Balkan Union Oncol In: 2016; 21(6): 1394-7.
[51]
Jiemin Z. The therapeutic effect of malignant ascites with improved central venous catheter combined with 5-Fluorouracil and highly agglutinative Staphylococcin. J Basic Clin Oncol 2011; 2011: 4.
[52]
Wang W, Sun X, Lu L, Zheng JB, Tian Y, Wang W. Cytotoxicity of lymphocytes activated by superantigen toxic-shock-syndrome toxin-1 against colorectal cancer LoVo cells. Mol Cell Biochem 2013; 376(1-2): 1-9.
[http://dx.doi.org/10.1007/s11010-013-1561-6 ] [PMID: 23340976]
[53]
Wang. Hypoxia microenvironment regulates immunotherapy effect of TSST-1 on CEA positive colon cancer LoVo cells. Zhongguo Zhongliu Shengwu Zhiliao Zazhi 2011; 2011: 6.
[54]
Wang W. Packaging and identification of recombinant retrovirus dual cancer-specific expressing superantigen of TSST-1 gene. J Xi'an Jiaotong Univ Med Sci 2011; 5: 3.
[55]
Marrack P, Kappler J. The staphylococcal enterotoxins and their relatives. Science 1990; 248(4956): 705-11.
[http://dx.doi.org/10.1126/science.2185544 ] [PMID: 2185544]
[56]
Dohlsten M, Sundstedt A, Björklund M, Hedlund G, Kalland T. Superantigen-induced cytokines suppress growth of human colon- carcinoma cells. Int J Cancer 1993; 54(3): 482-8.
[http://dx.doi.org/10.1002/ijc.2910540321 ] [PMID: 8509223]
[57]
Dohlsten M, Hansson J, Ohlsson L, Litton M, Kalland T. Antibody-targeted superantigens are potent inducers of tumor-infiltrating T lymphocytes in vivo. Proc Natl Acad Sci USA 1995; 92(21): 9791-5.
[http://dx.doi.org/10.1073/pnas.92.21.9791 ] [PMID: 7568219]
[58]
Jiang Y-Q, Wang HR, Li HP, Hao HJ, Zheng YL, Gu J. Targeting of hepatoma cell and suppression of tumor growth by a novel 12mer peptide fused to superantigen TSST-1. Mol Med 2006; 12(4-6): 81-7.
[http://dx.doi.org/10.2119/2006-00011.Jiang ] [PMID: 16953561]
[59]
Si S, Sun Y, Li Z, et al. Gene therapy by membrane-expressed superantigen for α-fetoprotein-producing hepatocellular carcinoma. Gene Ther 2006; 13(22): 1603-10.
[http://dx.doi.org/10.1038/sj.gt.3302823 ] [PMID: 16855617]
[60]
Bashraheel SS, AlQahtani AD, Rashidi FB, et al. Studies on vascular response to full superantigens and superantigen derived peptides: Possible production of novel superantigen variants with less vasodilation effect for tolerable cancer immunotherapy. Biomed Pharmacother 2019; 2019: 115108905.
[http://dx.doi.org/10.1016/j.biopha.2019.108905 ] [PMID: 31060004]
[61]
Commons RJ, Smeesters PR, Proft T, Fraser JD, Robins-Browne R, Curtis N. Streptococcal superantigens: Categorization and clinical associations. Trends Mol Med 2014; 20(1): 48-62.
[http://dx.doi.org/10.1016/j.molmed.2013.10.004 ] [PMID: 24210845]
[62]
Forsberg G, Skartved NJ, Wallén-Ohman M, et al. Naptumomab estafenatox, an engineered antibody-superantigen fusion protein with low toxicity and reduced antigenicity. J Immunother 2010; 33(5): 492-9.
[http://dx.doi.org/10.1097/CJI.0b013e3181d75820 ] [PMID: 20463598]
[63]
Nathan A, Shahar M. Methods and compositions for enhancing the potency of superantigen mediated cancer immunotherapy. Google Patents, 2019.
[64]
Sun J, Zhao L, Teng L, et al. Solid tumor-targeted infiltrating cytotoxic T lymphocytes retained by a superantigen fusion protein. PLoS One 2011; 6(2): e16642.
[http://dx.doi.org/10.1371/journal.pone.0016642 ] [PMID: 21311755]
[65]
Hedlund G, Dohlsten M, Lando PA, Kalland T. Staphylococcal enterotoxins direct and trigger CTL killing of autologous HLA-DR+ mononuclear leukocytes and freshly prepared leukemia cells. Cell Immunol 1990; 129(2): 426-34.
[http://dx.doi.org/10.1016/0008-8749(90)90218-G ] [PMID: 2383900]
[66]
Fuller CL, Braciale VL. Selective induction of CD8+ cytotoxic T lymphocyte effector function by staphylococcus enterotoxin B. J Immunol 1998; 161(10): 5179-86.
[PMID: 9820488]
[67]
Proft T, Fraser JD. Streptococcal superantigens.In: Superantigens and Superallergens Karger Publishers: Switzerland. 2007; pp. 1-23.
[http://dx.doi.org/10.1159/000100851]
[68]
Arad G, Levy R, Hillman D, Kaempfer R. Superantigen antagonist protects against lethal shock and defines a new domain for T- cell activation. Nat Med 2000; 6(4): 414-21.
[http://dx.doi.org/10.1038/74672 ] [PMID: 10742148]
[69]
Arad G, Levy R, Nasie I, et al. Binding of superantigen toxins into the CD28 homodimer interface is essential for induction of cytokine genes that mediate lethal shock. PLoS Biol 2011; 9(9): e1001149.
[http://dx.doi.org/10.1371/journal.pbio.1001149 ] [PMID: 21931534]
[70]
Fleischer B, Necker A, Leget C, Malissen B, Romagne F. Reactivity of mouse T-cell hybridomas expressing human Vbeta gene segments with staphylococcal and streptococcal superantigens. Infect Immun 1996; 64(3): 987-94.
[http://dx.doi.org/10.1128/IAI.64.3.987-994.1996 ] [PMID: 8641811]
[71]
Li P-L, Tiedemann RE, Moffat SL, Fraser JD. The superantigen streptococcal pyrogenic exotoxin C (SPE-C) exhibits a novel mode of action. J Exp Med 1997; 186(3): 375-83.
[http://dx.doi.org/10.1084/jem.186.3.375 ] [PMID: 9236189]
[72]
Li Y, Li H, Dimasi N, et al. Crystal structure of a superantigen bound to the high-affinity, zinc-dependent site on MHC class II. Immunity 2001; 14(1): 93-104.
[http://dx.doi.org/10.1016/S1074-7613(01)00092-9 ] [PMID: 11163233]
[73]
Kasper KJ, Xi W, Rahman AK, et al. Molecular requirements for MHC class II α-chain engagement and allelic discrimination by the bacterial superantigen streptococcal pyrogenic exotoxin C. J Immunol 2008; 181(5): 3384-92.
[http://dx.doi.org/10.4049/jimmunol.181.5.3384 ] [PMID: 18714010]
[74]
Hobohm U. Fever and cancer in perspective. Cancer Immunol Immunother 2001; 50(8): 391-6.
[http://dx.doi.org/10.1007/s002620100216 ] [PMID: 11726133]
[75]
Linnebacher M, Maletzki C, Klier U, Klar E. Bacterial immunotherapy of gastrointestinal tumors. Langenbecks Arch Surg 2012; 397(4): 557-68.
[http://dx.doi.org/10.1007/s00423-011-0892-6 ] [PMID: 22189906]
[76]
Zacharski LR, Sukhatme VP. Coley’s toxin revisited: Immunotherapy or plasminogen activator therapy of cancer? J Thromb Haemost 2005; 3(3): 424-7.
[http://dx.doi.org/10.1111/j.1538-7836.2005.01110.x ] [PMID: 15748226]
[77]
Linnebacher M, Maletzki C, Emmrich J, Kreikemeyer B. Lysates of S. pyogenes serotype M49 induce pancreatic tumor growth delay by specific and unspecific antitumor immune responses. J Immunother 2008; 31(8): 704-13.
[http://dx.doi.org/10.1097/CJI.0b013e3181829f62 ] [PMID: 18779749]
[78]
Brown EL, et al. Treatment of metastatic equine melanoma with a plasmid DNA vaccine encoding streptococcus pyogenes EMM55 protein. J Equine Vet Sci 2014; 34(5): 704-8.
[http://dx.doi.org/10.1016/j.jevs.2013.11.012]
[79]
Proft T, Fraser JD. Streptococcal superantigens: Biological properties and potential role in disease In: Streptococcus pyogenes: Basic biology to clinical manifestations University of Oklahoma Health Sciences Center,. 2016.
[80]
Mingozzi F, High KA. Immune responses to AAV vectors: Overcoming barriers to successful gene therapy. Blood 2013; 122(1): 23-36.
[http://dx.doi.org/10.1182/blood-2013-01-306647 ] [PMID: 23596044]
[81]
Escors D, Breckpot K. Lentiviral vectors in gene therapy: Their current status and future potential. Arch Immunol Ther Exp (Warsz) 2010; 58(2): 107-19.
[http://dx.doi.org/10.1007/s00005-010-0063-4 ] [PMID: 20143172]
[82]
Wold WS, Toth K. Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr Gene Ther 2013; 13(6): 421-33.
[http://dx.doi.org/10.2174/1566523213666131125095046 ] [PMID: 24279313]
[83]
Felberbaum RS. The baculovirus expression vector system: A commercial manufacturing platform for viral vaccines and gene therapy vectors. Biotechnol J 2015; 10(5): 702-14.
[http://dx.doi.org/10.1002/biot.201400438 ] [PMID: 25800821]
[84]
Hitchman RB, Locanto E, Possee RD, King LA. Optimizing the baculovirus expression vector system. Methods 2011; 55(1): 52-7.
[http://dx.doi.org/10.1016/j.ymeth.2011.06.011 ] [PMID: 21945427]
[85]
Vanrell L, Di Scala M, Blanco L, et al. Development of a liver-specific Tet-on inducible system for AAV vectors and its application in the treatment of liver cancer. Mol Ther 2011; 19(7): 1245-53.
[http://dx.doi.org/10.1038/mt.2011.37 ] [PMID: 21364542]
[86]
Sayroo R, Nolasco D, Yin Z, et al. Development of novel AAV serotype 6 based vectors with selective tropism for human cancer cells. Gene Ther 2016; 23(1): 18-25.
[http://dx.doi.org/10.1038/gt.2015.89 ] [PMID: 26270885]
[87]
Li L-H, He J, Hua D, Guo ZJ, Gao Q. Lentivirus-mediated inhibition of Med19 suppresses growth of breast cancer cells in vitro . Cancer Chemother Pharmacol 2011; 68(1): 207-15.
[http://dx.doi.org/10.1007/s00280-010-1468-9 ] [PMID: 20890603]
[88]
Jia XQ, Cheng HQ, Qian X, et al. Lentivirus-mediated overexpression of microRNA-199a inhibits cell proliferation of human hepatocellular carcinoma. Cell Biochem Biophys 2012; 62(1): 237-44.
[http://dx.doi.org/10.1007/s12013-011-9263-8 ] [PMID: 21847633]
[89]
Sicard F, Gayral M, Lulka H, Buscail L, Cordelier P. Targeting miR-21 for the therapy of pancreatic cancer. Mol Ther 2013; 21(5): 986-94.
[http://dx.doi.org/10.1038/mt.2013.35 ] [PMID: 23481326]
[90]
Negri DR, Bona R, Michelini Z, et al. Transduction of human antigen-presenting cells with integrase-defective lentiviral vector enables functional expansion of primed antigen-specific CD8(+) T cells. Hum Gene Ther 2010; 21(8): 1029-35.
[http://dx.doi.org/10.1089/hum.2009.200 ] [PMID: 20210625]
[91]
Shiau A-L, Teo ML, Chen SY, et al. Inhibition of experimental lung metastasis by systemic lentiviral delivery of kallistatin. BMC Cancer 2010; 10(1): 245.
[http://dx.doi.org/10.1186/1471-2407-10-245 ] [PMID: 20509975]
[92]
Ranjbar S, Hashemzadeh Ms, Nikkhoi SK, Farasat A. Selective suppression of tumor cells by a tumor-specific bicistronic lentiviral vector. Turk J Biol 2016; 40(6): 1289-94.
[http://dx.doi.org/10.3906/biy-1512-53]
[93]
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 2013; 8(11): 2281-308.
[http://dx.doi.org/10.1038/nprot.2013.143 ] [PMID: 24157548]
[94]
Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014; 343(6166): 84-7.
[http://dx.doi.org/10.1126/science.1247005 ] [PMID: 24336571]
[95]
Noori-Daloii MR, Ebadi N. Pharmacogenomics and cancer stem cells. Med Sci J Islamic Azad Univ 2015; 25(1): 1-15.
[96]
Young KM, Phelan JD, Webster DE, et al. Crispr-Cas9 genetic screens uncover Ab cell receptor-Myd88 superpathway in diffuse large B cell lymphoma. Hematol Oncol 2017; 35: 25-5.
[http://dx.doi.org/10.1002/hon.2437_4]
[97]
Xue W, Chen S, Yin H, et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 2014; 514(7522): 380-4.
[http://dx.doi.org/10.1038/nature13589 ] [PMID: 25119044]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy