Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Application of Nanocellulose Derivatives as Drug Carriers; A Novel Approach in Drug Delivery

Author(s): Ali Khojastehfar and Soleiman Mahjoub*

Volume 21, Issue 6, 2021

Published on: 11 August, 2020

Page: [692 - 702] Pages: 11

DOI: 10.2174/1871520620666200811111547

Price: $65

Abstract

Background: The production of nanocellulose for drug delivery systems has achieved increased attention in the past decade. High capacity for swelling and absorption of the liquid phase, high flexibility in creating different derivatives, economical cost, and ease of access to the primary source, all of these properties have encouraged researchers to use nanocellulose and its derivatives as a high-performance drug carrier.

Objective: The recent progress summary of cellulose-based nanocarriers designing and practical approaches in drug delivery.

Methods: We conducted a literature review on the development of the nanocellulose and its derivatives as a high-performance drug carrier.

Results: In this review, we have attempted to present the latest advances in cellulose modifications for the design of pharmaceutical nanocarriers. At first, cellulose properties and structural classification of nanocellulose were introduced. Then, focusing on medical applications, some efforts and laboratory trials in cellulose-based nano designing were also discussed. The findings demonstrate the benefits of nanocellulose in drug delivery and its potential for modifying by adding functional groups to enhance drug delivery efficiency. Due to the physical and chemical properties of cellulose and its high flexibility to interact with other compounds, a broad perspective can be imagined in the diverse research and novel forms of nanocarriers.

Conclusion: The cellulose nanocarriers can be considered as an attractive platform for researchers to design new structures of pharmaceutical carriers and increase the efficiency of these nanocarriers in drug delivery for the treatment of diseases such as cancer.

Keywords: Nanocellulose, cellulose nanofibril, cellulose nanocrystal, bacterial cellulose, drug delivery, drug carriers.

Graphical Abstract

[1]
Gao, A.; Hu, X.L.; Saeed, M.; Chen, B.F.; Li, Y.P.; Yu, H.J. Overview of recent advances in liposomal nanoparticle-based cancer immunotherapy. Acta Pharmacol. Sin., 2019, 40(9), 1129-1137.
[http://dx.doi.org/10.1038/s41401-019-0281-1] [PMID: 31371782]
[2]
Satalkar, P.; Elger, B.S.; Shaw, D.M. Defining nano, nanotechnology and nanomedicine: Why should it matter? Sci. Eng. Ethics, 2016, 22(5), 1255-1276.
[http://dx.doi.org/10.1007/s11948-015-9705-6] [PMID: 26373718]
[3]
Banks, W.A. From blood-brain barrier to blood-brain interface: New opportunities for CNS drug delivery. Nat. Rev. Drug Discov., 2016, 15(4), 275-292.
[http://dx.doi.org/10.1038/nrd.2015.21] [PMID: 26794270]
[4]
ud Din, F.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine, 2017, 12, 7291-7309.
[http://dx.doi.org/10.2147/IJN.S146315]
[5]
Rao, L.; Xu, J-H.; Cai, B.; Liu, H.; Li, M.; Jia, Y.; Xiao, L.; Guo, S-S.; Liu, W.; Zhao, X-Z. Synthetic nanoparticles camouflaged with biomimetic erythrocyte membranes for reduced reticuloendothelial system uptake. Nanotechnology, 2016, 27(8)085106
[http://dx.doi.org/10.1088/0957-4484/27/8/085106] [PMID: 26820630]
[6]
Triarico, S.; Maurizi, P.; Mastrangelo, S.; Attinà, G.; Capozza, M.A.; Ruggiero, A. Improving the brain delivery of chemotherapeutic drugs in childhood brain tumors. Cancers (Basel), 2019, 11(6), 824.
[http://dx.doi.org/10.3390/cancers11060824] [PMID: 31200562]
[7]
Levey, A.S.; Inker, L.A. Assessment of glomerular filtration rate in health and disease: A state of the art review. Clin. Pharmacol. Ther., 2017, 102(3), 405-419.
[http://dx.doi.org/10.1002/cpt.729] [PMID: 28474735]
[8]
Ahmadi, Z.; Mohammadinejad, R.; Ashrafizadeh, M. Drug delivery systems for resveratrol, a non-flavonoid polyphenol: Emerging evidence in last decades. J. Drug Deliv. Sci. Technol., 2019, 51, 591-604.
[http://dx.doi.org/10.1016/j.jddst.2019.03.017]
[9]
Sun, W.; Hu, Q.; Ji, W.; Wright, G.; Gu, Z. Leveraging physiology for precision drug delivery. Physiol. Rev., 2016, 97(1), 189-225.
[http://dx.doi.org/10.1152/physrev.00015.2016]
[10]
Arias, J.L. Nanotechnology and Drug Delivery, Volume Two: Nano-Engineering Strategies and Nanomedicines against Severe Diseases; CRC Press: USA, 2016.
[http://dx.doi.org/10.1201/b19976]
[11]
De Villiers, M.M.; Aramwit, P.; Kwon, G.S. Nanotechnology in Drug Delivery; Springer Science & Business Media: Germany, 2008.
[12]
Beneke, C.E.; Viljoen, A.M.; Hamman, J.H. Polymeric plant-derived excipients in drug delivery. Molecules, 2009, 14(7), 2602-2620.
[http://dx.doi.org/10.3390/molecules14072602] [PMID: 19633627]
[13]
Akbarian, M.; Mahjoub, S.; Elahi, M.; Zabihi, E.; Tashakkorian, H. Appraisal of biological aspect of zinc oxide nanoparticles prepared using extract of Camellia sinensis L. Mater. Res. Express, 2019, 6(9)
[http://dx.doi.org/10.1088/2053-1591/ab2c49]
[14]
Ma, J.; Li, X.; Bao, Y. Advances in cellulose-based superabsorbent hydrogels. RSC Advances, 2015, 5(73), 59745-59757.
[http://dx.doi.org/10.1039/C5RA08522E]
[15]
Onofrei, M.; Filimon, A. Cellulose-based hydrogels: Designing concepts, properties, and perspectives for biomedical and environmental applications. J. Polym. Sci., 2016, 108-120.
[16]
Jia, X.; Chen, Y.; Shi, C.; Ye, Y.; Abid, M.; Jabbar, S.; Wang, P.; Zeng, X.; Wu, T. Rheological properties of an amorphous cellulose suspension. Food Hydrocoll., 2014, 39, 27-33.
[http://dx.doi.org/10.1016/j.foodhyd.2013.12.026]
[17]
Ulery, B.D.; Nair, L.S.; Laurencin, C.T. Biomedical applications of biodegradable polymers. J. Polym. Sci., B, Polym. Phys., 2011, 49(12), 832-864.
[http://dx.doi.org/10.1002/polb.22259] [PMID: 21769165]
[18]
Karpe, A.V. Biodegradation of winery biomass wastes by developing a symbiotic multi-fungal consortium.. PhD Thesis, Swinburne University of Technology: Melbourne, 2015.
[19]
Sjöström, E.; Alén, R. Analytical Methods in Wood Chemistry, Pulping, and Papermaking; Springer: Germany, 2013.
[http://dx.doi.org/10.1007/978-3-662-03898-7]
[20]
Ghadi, A.; Tabandeh, F.; Mahjoub, S.; Mohsenifar, A.; Roshan, F.T.; Alavije, R.S. Fabrication and characterization of core-shell magnetic chitosan nanoparticles as a novel carrier for immobilization of Burkholderia cepacia lipase. J. Oleo Sci., 2015, 64(4), 423-430.
[http://dx.doi.org/10.5650/jos.ess14236] [PMID: 25833452]
[21]
Chirayil, C.J.; Mathew, L.; Thomas, S. Review of recent research in nano cellulose preparation from different lignocellulosic fibers. Rev. Adv. Mater. Sci., 2014, 37, 20-28.
[22]
Ullah, H.; Santos, H.A.; Khan, T. Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose, 2016, 23(4), 2291-2314.
[http://dx.doi.org/10.1007/s10570-016-0986-y]
[23]
Sun, B.; Zhang, M.; Shen, J.; He, Z.; Fatehi, P.; Ni, Y. Applications of cellulose-based materials in sustained drug delivery systems. Curr. Med. Chem., 2019, 26(14), 2485-2501.
[http://dx.doi.org/10.2174/0929867324666170705143308] [PMID: 28685683]
[24]
Chen, D.; Gao, A.; Cen, K.; Zhang, J.; Cao, X.; Ma, Z. Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin. Energy Convers. Manage., 2018, 169, 228-237.
[http://dx.doi.org/10.1016/j.enconman.2018.05.063]
[25]
Kangas, H.; Lahtinen, P.; Sneck, A.; Saariaho, A-M.; Laitinen, O.; Hellen, E. Characterization of fibrillated celluloses. A short review and evaluation of characteristics with a combination of methods. Nord. Pulp Paper Res. J., 2014, 29(1), 129-143.
[http://dx.doi.org/10.3183/npprj-2014-29-01-p129-143]
[26]
Lotfi, S.; Ghaderi, F.; Bahari, A.; Mahjoub, S. Preparation and characterization of magnetite–chitosan nanoparticles and evaluation of their cytotoxicity effects on MCF7 and fibroblast cells. J. Supercond. Nov. Magn., 2017, 30(12), 3431-3438.
[http://dx.doi.org/10.1007/s10948-017-4094-5]
[27]
Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A new family of nature-based materials. Angew. Chem. Int. Ed. Engl., 2011, 50(24), 5438-5466.
[http://dx.doi.org/10.1002/anie.201001273] [PMID: 21598362]
[28]
Huang, L.; Chen, X.; Nguyen, T.X.; Tang, H.; Zhang, L.; Yang, G. Nano-cellulose 3D-networks as controlled-release drug carriers. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(23), 2976-2984.
[http://dx.doi.org/10.1039/c3tb20149j] [PMID: 32260865]
[29]
Peng, B.L.; Dhar, N.; Liu, H.; Tam, K. Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective. Can. J. Chem. Eng., 2011, 89(5), 1191-1206.
[http://dx.doi.org/10.1002/cjce.20554]
[30]
Gao, Y.; Gao, Z.; Sun, W.; Hu, Y. Selective flotation of scheelite from calcite: A novel reagent scheme. Int. J. Miner. Process., 2016, 154, 10-15.
[http://dx.doi.org/10.1016/j.minpro.2016.06.010]
[31]
Qing, Y.; Sabo, R.; Zhu, J.Y.; Agarwal, U.; Cai, Z.; Wu, Y. A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr. Polym., 2013, 97(1), 226-234.
[http://dx.doi.org/10.1016/j.carbpol.2013.04.086] [PMID: 23769541]
[32]
Rol, F.; Belgacem, M.N.; Gandini, A.; Bras, J. Recent advances in surface-modified cellulose nanofibrils. Prog. Polym. Sci., 2018, 27, 2053-2068.
[33]
George, J.; Sabapathi, S.N. Cellulose nanocrystals: Synthesis, functional properties, and applications. Nanotechnol. Sci. Appl., 2015, 8, 45-54.
[http://dx.doi.org/10.2147/NSA.S64386] [PMID: 26604715]
[34]
Börjesson, M.; Westman, G. Crystalline nanocellulose-preparation, modification, and properties. In:Cellulose-Fundamental Aspects and Current Trends; Poletto, M., Ed.; InTech Open: UK, 2015, pp. 159-191.
[35]
Gopi, S.; Balakrishnan, P.; Geethamma, V.G.; Pius, A.; Thomas, S. Applications of cellulose nanofibrils in drug delivery. In:Applications of Nanocomposite Materials in Drug Delivery; Elsevier: Netherlands, 2018, pp. 75-95.
[http://dx.doi.org/10.1016/B978-0-12-813741-3.00004-2]
[36]
Abdel-Halim, E.S.; Alanazi, H.H.; Al-Deyab, S.S. Utilization of olive tree branch cellulose in synthesis of hydroxypropyl carboxymethyl cellulose. Carbohydr. Polym., 2015, 127, 124-134.
[http://dx.doi.org/10.1016/j.carbpol.2015.03.037] [PMID: 25965465]
[37]
Varshosaz, J.; Tavakoli, N.; Eram, S.A. Use of natural gums and cellulose derivatives in production of sustained release metoprolol tablets. Drug Deliv., 2006, 13(2), 113-119.
[http://dx.doi.org/10.1080/10717540500313356] [PMID: 16423799]
[38]
Li, Z.; Wang, L.; Hua, J.; Jia, S.; Zhang, J.; Liu, H. Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydr. Polym., 2015, 120, 115-119.
[http://dx.doi.org/10.1016/j.carbpol.2014.11.061] [PMID: 25662694]
[39]
Varshosaz, J.; Tavakoli, N.; Roozbahani, F. Formulation and in vitro characterization of ciprofloxacin floating and bioadhesive extended-release tablets. Drug Deliv., 2006, 13(4), 277-285.
[http://dx.doi.org/10.1080/10717540500395106] [PMID: 16766469]
[40]
Stevanic, J.S.; Joly, C.; Mikkonen, K.S.; Pirkkalainen, K.; Serimaa, R.; Rémond, C.; Toriz, G.; Gatenholm, P.; Tenkanen, M.; Salmén, L. Bacterial nanocellulose‐reinforced arabinoxylan films. J. Appl. Polym. Sci., 2011, 122(2), 1030-1039.
[http://dx.doi.org/10.1002/app.34217]
[41]
de Oliveira Barud, H.G.; da Silva, R.R.; da Silva Barud, H.; Tercjak, A.; Gutierrez, J.; Lustri, W.R.; de Oliveira, O.B., Jr; Ribeiro, S.J.L. A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose. Carbohydr. Polym., 2016, 153, 406-420.
[http://dx.doi.org/10.1016/j.carbpol.2016.07.059] [PMID: 27561512]
[42]
Jorfi, M.; Foster, E.J. Recent advances in nanocellulose for biomedical applications. J. Appl. Polym. Sci., 2015, 132(14)
[http://dx.doi.org/10.1002/app.41719]
[43]
Hua, K. Nanocellulose for biomedical applications: Modification, characterisation and biocompatibility studies. Acta Univ. Ups., 2015, 80
[http://dx.doi.org/10.1002/pro.2823]
[44]
Arias, J.L.; López-Viota, M.; Delgado, Á.V.; Ruiz, M.A. Iron/ethylcellulose (core/shell) nanoplatform loaded with 5-fluorouracil for cancer targeting. Colloids Surf. B Biointerfaces, 2010, 77(1), 111-116.
[http://dx.doi.org/10.1016/j.colsurfb.2010.01.030] [PMID: 20153955]
[45]
Trovatti, E.; Silva, N.H.; Duarte, I.F.; Rosado, C.F.; Almeida, I.F.; Costa, P.; Freire, C.S.; Silvestre, A.J.; Neto, C.P. Biocellulose membranes as supports for dermal release of lidocaine. Biomacromolecules, 2011, 12(11), 4162-4168.
[http://dx.doi.org/10.1021/bm201303r] [PMID: 21999108]
[46]
Bekaroğlu, M.G.; İşçi, Y.; İşçi, S. Colloidal properties and in vitro evaluation of Hydroxy ethyl cellulose coated iron oxide particles for targeted drug delivery. Mater. Sci. Eng. C, 2017, 78, 847-853.
[http://dx.doi.org/10.1016/j.msec.2017.04.030] [PMID: 28576058]
[47]
Gunduz, O.; Ahmad, Z.; Stride, E.; Edirisinghe, M. Continuous generation of ethyl cellulose drug delivery nanocarriers from microbubbles. Pharm. Res., 2013, 30(1), 225-237.
[http://dx.doi.org/10.1007/s11095-012-0865-7] [PMID: 22956171]
[48]
Dewan, M.; Bhowmick, B.; Sarkar, G.; Rana, D.; Bain, M.K.; Bhowmik, M.; Chattopadhyay, D. Effect of methyl cellulose on gelation behavior and drug release from poloxamer based ophthalmic formulations. Int. J. Biol. Macromol., 2015, 72, 706-710.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.09.021] [PMID: 25256549]
[49]
Kocer, Z.; Aru, B.; Sezer, U.A.; Demirel, G.Y.; Beker, U.; Sezer, S. Process optimisation, biocompatibility and anti-cancer efficacy of curcumin loaded gelatine microparticles cross-linked with dialdeyhde carboxymethyl cellulose. J. Microencapsul., 2019, 36(5), 485-499.
[http://dx.doi.org/10.1080/02652048.2019.1646337] [PMID: 31318306]
[50]
Shi, Y.; Xue, J.; Sang, Y.; Xu, X.; Shang, Q. Insulin-loaded hydroxypropyl methyl cellulose-co-polyacrylamide-co-methacrylic acid hydrogels used as rectal suppositories to regulate the blood glucose of diabetic rats. Int. J. Biol. Macromol., 2019, 121, 1346-1353.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.044] [PMID: 30208299]
[51]
Stoyneva, V.; Momekova, D.; Kostova, B.; Petrov, P. Stimuli sensitive super-macroporous cryogels based on photo-crosslinked 2-hydroxyethylcellulose and chitosan. Carbohydr. Polym., 2014, 99, 825-830.
[http://dx.doi.org/10.1016/j.carbpol.2013.08.095] [PMID: 24274575]
[52]
Yang, X.; Bakaic, E.; Hoare, T.; Cranston, E.D. Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: Morphology, rheology, degradation, and cytotoxicity. Biomacromolecules, 2013, 14(12), 4447-4455.
[http://dx.doi.org/10.1021/bm401364z] [PMID: 24206059]
[53]
Lin, N.; Dufresne, A. Supramolecular hydrogels from in situ host-guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin. Biomacromolecules, 2013, 14(3), 871-880.
[http://dx.doi.org/10.1021/bm301955k] [PMID: 23347071]
[54]
Joshi, S.C. Sol-gel behavior of Hydroxypropyl Methylcellulose (HPMC) in ionic media including drug release. Materials (Basel), 2011, 4(10), 1861-1905.
[http://dx.doi.org/10.3390/ma4101861] [PMID: 28824113]
[55]
Jackson, J.K.; Letchford, K.; Wasserman, B.Z.; Ye, L.; Hamad, W.Y.; Burt, H.M. The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int. J. Nanomedicine, 2011, 6, 321-330.
[PMID: 21383857]
[56]
Ernsting, M.J.; Tang, W-L.; MacCallum, N.W.; Li, S-D. Preclinical pharmacokinetic, biodistribution, and anti-cancer efficacy studies of a docetaxel-carboxymethylcellulose nanoparticle in mouse models. Biomaterials, 2012, 33(5), 1445-1454.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.061] [PMID: 22079003]
[57]
Das, R.; Pal, S. Modified hydroxypropyl methyl cellulose: Efficient matrix for controlled release of 5-amino salicylic acid. Int. J. Biol. Macromol., 2015, 77, 207-213.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.03.015] [PMID: 25796452]
[58]
Kolakovic, R.; Peltonen, L.; Laukkanen, A.; Hirvonen, J.; Laaksonen, T. Nanofibrillar cellulose films for controlled drug delivery. Eur. J. Pharm. Biopharm., 2012, 82(2), 308-315.
[http://dx.doi.org/10.1016/j.ejpb.2012.06.011] [PMID: 22750440]
[59]
Murakami, M.; Ernsting, M.J.; Undzys, E.; Holwell, N.; Foltz, W.D.; Li, S-D. Docetaxel conjugate nanoparticles that target α-smooth muscle actin-expressing stromal cells suppress breast cancer metastasis. Cancer Res., 2013, 73(15), 4862-4871.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0062] [PMID: 23907638]
[60]
Abbasian, M.; Mahmoodzadeh, F.; Khalili, A.; Salehi, R. Chemotherapy of breast cancer cells using novel pH-responsive cellulose-based nanocomposites. Adv. Pharm. Bull., 2019, 9(1), 122-131.
[http://dx.doi.org/10.15171/apb.2019.015] [PMID: 31011566]
[61]
Shafiei-Irannejad, V.; Rahimi, M.; Zarei, M.; Dinparast-Isaleh, R.; Bahrambeigi, S.; Alihemmati, A.; Shojaei, S.; Ghasemi, Z.; Yousefi, B. Polyelectrolyte carboxymethyl cellulose for enhanced delivery of doxorubicin in MCF7 breast cancer cells: Toxicological evaluations in mice model. Pharm. Res., 2019, 36(5), 68.
[http://dx.doi.org/10.1007/s11095-019-2598-3] [PMID: 30887127]
[62]
Low, L.E.; Tan, L.T-H.; Goh, B-H.; Tey, B.T.; Ong, B.H.; Tang, S.Y. Magnetic cellulose nanocrystal stabilized Pickering emulsions for enhanced bioactive release and human colon cancer therapy. Int. J. Biol. Macromol., 2019, 127, 76-84.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.037] [PMID: 30639596]
[63]
Zhang, F.; Wu, W.; Zhang, X.; Meng, X.; Tong, G.; Deng, Y. Temperature-sensitive poly-NIPAm modified cellulose nanofibril cryogel microspheres for controlled drug release. Cellulose, 2016, 23(1), 415-425.
[http://dx.doi.org/10.1007/s10570-015-0799-4]
[64]
Pooresmaeil, M.; Behzadi Nia, S.; Namazi, H. Green encapsulation of LDH(Zn/Al)-5-Fu with carboxymethyl cellulose biopolymer; new nanovehicle for oral colorectal cancer treatment. Int. J. Biol. Macromol., 2019, 139, 994-1001.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.060] [PMID: 31401278]
[65]
Capanema, N.S.V.; Mansur, A.A.P.; Carvalho, S.M.; Carvalho, I.C.; Chagas, P.; de Oliveira, L.C.A.; Mansur, H.S. Bioengineered carboxymethyl cellulose-doxorubicin prodrug hydrogels for topical chemotherapy of melanoma skin cancer. Carbohydr. Polym., 2018, 195, 401-412.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.105] [PMID: 29804993]
[66]
Guo, Y.; Wang, X.; Shu, X.; Shen, Z.; Sun, R-C. Self-assembly and paclitaxel loading capacity of cellulose-graft-poly(lactide) nanomicelles. J. Agric. Food Chem., 2012, 60(15), 3900-3908.
[http://dx.doi.org/10.1021/jf3001873] [PMID: 22439596]
[67]
Bittleman, K.R.; Dong, S.; Roman, M.; Lee, Y.W. Folic acid-conjugated cellulose nanocrystals show high folate-receptor binding affinity and uptake by KB and breast cancer cells. ACS Omega, 2018, 3(10), 13952-13959.
[http://dx.doi.org/10.1021/acsomega.8b01619] [PMID: 30411055]
[68]
Kovacs, T.; Naish, V.; O’Connor, B.; Blaise, C.; Gagné, F.; Hall, L.; Trudeau, V.; Martel, P. An ecotoxicological characterization of Nanocrystalline Cellulose (NCC). Nanotoxicology, 2010, 4(3), 255-270.
[http://dx.doi.org/10.3109/17435391003628713] [PMID: 20795908]
[69]
Roman, M.; Dong, S.; Hirani, A.; Lee, Y.W. Cellulose nanocrystals for drug delivery; ACS Publications: USA, 2009.
[70]
Li, J.; Li, Y.; Dong, H. Controlled release of herbicide acetochlor from clay/carboxylmethylcellulose gel formulations. J. Agric. Food Chem., 2008, 56(4), 1336-1342.
[http://dx.doi.org/10.1021/jf072530l] [PMID: 18232635]
[71]
Dong, S.; Roman, M. Fluorescently labeled cellulose nanocrystals for bioimaging applications. J. Am. Chem. Soc., 2007, 129(45), 13810-13811.
[http://dx.doi.org/10.1021/ja076196l] [PMID: 17949004]
[72]
Larsson, E.; Sanchez, C.C.; Porsch, C.; Karabulut, E.; Wågberg, L.; Carlmark, A. Thermo-responsive nanofibrillated cellulose by polyelectrolyte adsorption. Eur. Polym. J., 2013, 49(9), 2689-2696.
[http://dx.doi.org/10.1016/j.eurpolymj.2013.05.023]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy