Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Recent Advances in the Development of Fatty Acid Synthase Inhibitors as Anticancer Agents

Author(s): Shailendra Singh, Chandrabose Karthikeyan and N.S. Hari Narayana Moorthy*

Volume 20, Issue 18, 2020

Page: [1820 - 1837] Pages: 18

DOI: 10.2174/1389557520666200811100845

Price: $65

Abstract

Fatty acid synthase (FASN) is a multifunctional enzyme involved in the production of fatty acids for lipid biosynthesis. FASN is overexpressed in multiple diseases like cancer, viral, nonalcoholic fatty liver disease, and metabolic disorders, making it an attractive target for new drug discovery for these diseases. In cancer, FASN affects the structure and function of the cellular membrane by channelizing with signaling pathways along with the post-translational palmitoylation of proteins. There are several natural and synthetic FASN inhibitors reported in the literature, a few examples are GSK 2194069 (7.7 nM), imidazopyridine (16 nM), epigallocatechin-3-gallate (42.0 μg/ml) and platensimycin (300 nM) but except for TVB-2640, none of the aforementioned inhibitors have made into clinical trials. The present review summarizes the recent advancements made in anticancer drug discovery targeting FASN. Furthermore, the review also provides insights into the medicinal chemistry of small molecule inhibitors targeting different FASN enzyme domains, and also critically analyzes the structural requirements for FASN inhibition with an objective to support rational design and development of new generation FASN inhibitors with clinical potential in diseases like cancer.

Keywords: Cancer, fatty acid synthase, anticancer activity, drug discovery, docking, lipidbiosynthesis.

Graphical Abstract

[1]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Stratton, M.R.; Campbell, P.J.; Futreal, P.A. The cancer genome. Nature, 2009, 458(7239), 719-724.
[http://dx.doi.org/10.1038/nature07943] [PMID: 19360079]
[4]
Florea, A-M.; Büsselberg, D. Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel), 2011, 3(1), 1351-1371.
[http://dx.doi.org/10.3390/cancers3011351] [PMID: 24212665]
[5]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[6]
Liu, Q.; Luo, Q.; Halim, A.; Song, G. Targeting lipid metabolism of cancer cells: A promising therapeutic strategy for cancer. Cancer Lett., 2017, 401, 39-45.
[http://dx.doi.org/10.1016/j.canlet.2017.05.002] [PMID: 28527945]
[7]
Luengo, A.; Gui, D.Y.; Vander Heiden, M.G. Review targeting metabolism for cancer therapy. Cell Chem. Biol., 2017, 24(9), 1161-1180.
[http://dx.doi.org/10.1016/j.chembiol.2017.08.028] [PMID: 28938091]
[8]
Abramson, H.N. The lipogenesis pathway as a cancer target. J. Med. Chem., 2011, 54(16), 5615-5638.
[http://dx.doi.org/10.1021/jm2005805] [PMID: 21726077]
[9]
Martinez-Outschoorn, U.E.; Peiris-Pagés, M.; Pestell, R.G.; Sotgia, F.; Lisanti, M.P. Cancer metabolism: A therapeutic perspective. Nat. Rev. Clin. Oncol., 2017, 14(1), 11-31.
[http://dx.doi.org/10.1038/nrclinonc.2016.60] [PMID: 27141887]
[10]
Rysman, E.; Brusselmans, K.; Scheys, K.; Timmermans, L.; Derua, R.; Munck, S.; Van Veldhoven, P.P.; Waltregny, D.; Daniëls, V.W.; Machiels, J.; Vanderhoydonc, F.; Smans, K.; Waelkens, E.; Verhoeven, G.; Swinnen, J.V. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res., 2010, 70(20), 8117-8126.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3871] [PMID: 20876798]
[11]
Buckley, D.; Duke, G.; Heuer, T.S.; O’Farrell, M.; Wagman, A.S.; McCulloch, W.; Kemble, G. Fatty acid synthase - Modern tumor cell biology insights into a classical oncology target. Pharmacol. Ther., 2017, 177(2), 23-31.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.021] [PMID: 28202364]
[12]
Mullen, G.E.; Yet, L. Progress in the development of fatty acid synthase inhibitors as anticancer targets. Bioorg. Med. Chem. Lett., 2015, 25(20), 4363-4369.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.087] [PMID: 26364942]
[13]
Milgraum, L.Z.; Witters, L.A.; Pasternack, G.R.; Kuhajda, F.P. Enzymes of the fatty acid synthesis pathway are highly expressed in in situ breast carcinoma. Clin. Cancer Res., 1997, 3(11), 2115-2120.
[PMID: 9815604]
[14]
Rashid, A.; Pizer, E.S.; Moga, M.; Milgraum, L.Z.; Zahurak, M.; Pasternack, G.R.; Kuhajda, F.P.; Hamilton, S.R. Elevated expression of fatty acid synthase and fatty acid synthetic activity in colorectal neoplasia. Am. J. Pathol., 1997, 150(1), 201-208.
[PMID: 9006336]
[15]
Orita, H.; Coulter, J.; Tully, E.; Abe, M.; Montgomery, E.; Alvarez, H.; Sato, K.; Hino, O.; Kajiyama, Y.; Tsurumaru, M.; Gabrielson, E. High levels of fatty acid synthase expression in esophageal cancers represent a potential target for therapy. Cancer Biol. Ther., 2010, 10(6), 549-554.
[http://dx.doi.org/10.4161/cbt.10.6.12727] [PMID: 20657182]
[16]
Visca, P.; Sebastiani, V.; Botti, C.; Diodoro, M.G.; Lasagni, R.P.; Romagnoli, F.; Brenna, A.; De Joannon, B.C.; Donnorso, R.P.; Lombardi, G.; Alo, P.L. Fatty acid synthase (FAS) is a marker of increased risk of recurrence in lung carcinoma. Anticancer Res., 2004, 24(6), 4169-4173.
[PMID: 15736468]
[17]
Innocenzi, D.; Alò, P.L.; Balzani, A.; Sebastiani, V.; Silipo, V.; La Torre, G.; Ricciardi, G.; Bosman, C.; Calvieri, S. Fatty acid synthase expression in melanoma. J. Cutan. Pathol., 2003, 30(1), 23-28.
[http://dx.doi.org/10.1034/j.1600-0560.2003.300104.x] [PMID: 12534800]
[18]
Veigel, D.; Wagner, R.; Stübiger, G.; Wuczkowski, M.; Filipits, M.; Horvat, R.; Benhamú, B.; López-Rodríguez, M.L.; Leisser, A.; Valent, P.; Grusch, M.; Hegardt, F.G.; García, J.; Serra, D.; Auersperg, N.; Colomer, R.; Grunt, T.W. Fatty acid synthase is a metabolic marker of cell proliferation rather than malignancy in ovarian cancer and its precursor cells. Int. J. Cancer, 2015, 136(9), 2078-2090.
[http://dx.doi.org/10.1002/ijc.29261] [PMID: 25302649]
[19]
Alo, P.L.; Amini, M.; Piro, F.; Pizzuti, L.; Sebastiani, V.; Botti, C.; Murari, R.; Zotti, G.; Di Tondo, U. Immunohistochemical expression and prognostic significance of fatty acid synthase in pancreatic carcinoma. Anticancer Res., 2007, 27(4B), 2523-2527.
[PMID: 17695548]
[20]
Madigan, A.A.; Rycyna, K.J.; Parwani, A.V.; Datiri, Y.J.; Basudan, A.M.; Sobek, K.M.; Cummings, J.L.; Basse, P.H.; Bacich, D.J.; O’Keefe, D.S. Novel nuclear localization of fatty acid synthase correlates with prostate cancer aggressiveness. Am. J. Pathol., 2014, 184(8), 2156-2162.
[http://dx.doi.org/10.1016/j.ajpath.2014.04.012] [PMID: 24907642]
[21]
Walz, J.Z.; Saha, J.; Arora, A.; Khammanivong, A.; O’Sullivan, M.G.; Dickerson, E.B. Fatty acid synthase as a potential therapeutic target in feline oral squamous cell carcinoma. Vet. Comp. Oncol., 2018, 16(1), E99-E108.
[http://dx.doi.org/10.1111/vco.12341] [PMID: 28871635]
[22]
Rossi, S.; Ou, W.; Tang, D.; Bhattacharya, N.; Dei Tos, A.P.; Fletcher, J.A.; Loda, M. Gastrointestinal stromal tumours overexpress fatty acid synthase. J. Pathol., 2006, 209(3), 369-375.
[http://dx.doi.org/10.1002/path.1983] [PMID: 16583360]
[23]
Menendez, J.A.; Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer, 2007, 7(10), 763-777.
[http://dx.doi.org/10.1038/nrc2222] [PMID: 17882277]
[24]
Ishii, S.; Iizuka, K.; Miller, B.C.; Uyeda, K. Carbohydrate response element binding protein directly promotes lipogenic enzyme gene transcription. Proc. Natl. Acad. Sci. USA, 2004, 101(44), 15597-15602.
[http://dx.doi.org/10.1073/pnas.0405238101] [PMID: 15496471]
[25]
Hansmannel, F.; Mordier, S.; Iynedjian, P.B. Insulin induction of glucokinase and fatty acid synthase in hepatocytes: Analysis of the roles of sterol-regulatory-element-binding protein-1c and liver X receptor. Biochem. J., 2006, 399(2), 275-283.
[http://dx.doi.org/10.1042/BJ20060811] [PMID: 16834571]
[26]
Stoiber, K.; Nagło, O.; Pernpeintner, C.; Zhang, S.; Koeberle, A.; Ulrich, M.; Werz, O.; Müller, R.; Zahler, S.; Lohmüller, T.; Feldmann, J.; Braig, S. Targeting de novo lipogenesis as a novel approach in anti-cancer therapy. Br. J. Cancer, 2018, 118(1), 43-51.
[http://dx.doi.org/10.1038/bjc.2017.374] [PMID: 29112683]
[27]
Stone, T.W.; McPherson, M.; Gail Darlington, L. Obesity and cancer : Existing and new hypotheses for a causal connection. EBioMedicine, 2018, 30, 14-28.
[http://dx.doi.org/10.1016/j.ebiom.2018.02.022] [PMID: 29526577]
[28]
Menendez, J.A.; Vazquez-Martin, A.; Ortega, F.J.; Fernandez-Real, J.M. Fatty acid synthase: Association with insulin resistance, type 2 diabetes, and cancer. Clin. Chem., 2009, 55(3), 425-438.
[http://dx.doi.org/10.1373/clinchem.2008.115352] [PMID: 19181734]
[29]
Cobbina, E.; Akhlaghi, F. Non-alcoholic fatty liver disease (NAFLD) - pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab. Rev., 2017, 49(2), 197-211.
[http://dx.doi.org/10.1080/03602532.2017.1293683] [PMID: 28303724]
[30]
Yang, W.; Hood, B.L.; Chadwick, S.L.; Liu, S.; Watkins, S.C.; Luo, G.; Conrads, T.P.; Wang, T. Fatty acid synthase is up-regulated during hepatitis C virus infection and regulates hepatitis C virus entry and production. Hepatology, 2008, 48(5), 1396-1403.
[http://dx.doi.org/10.1002/hep.22508] [PMID: 18830996]
[31]
Maier, T.; Jenni, S.; Ban, N. Architecture of mammalian fatty acid synthase at 4.5 A˚ resolution. Science (80-.), 2006, 311, 1258-1262.
[32]
Maier, T.; Leibundgut, M.; Ban, N. The crystal structure of a mammalian fatty acid synthase. Science (80), 2008, 321(5894), 1315-1322.
[http://dx.doi.org/10.1126/science.1161269]
[33]
Maier, T.; Leibundgut, M.; Boehringer, D.; Ban, N. Structure and function of eukaryotic fatty acid synthases. Q. Rev. Biophys., 2010, 43(3), 373-422.
[http://dx.doi.org/10.1017/S0033583510000156] [PMID: 20731893]
[34]
Angeles, T.S.; Hudkins, R.L. Recent advances in targeting the fatty acid biosynthetic pathway using fatty acid synthase inhibitors. Expert Opin. Drug Discov., 2016, 11(12), 1187-1199.
[http://dx.doi.org/10.1080/17460441.2016.1245286] [PMID: 27701891]
[35]
Pappenberger, G.; Benz, J.; Gsell, B.; Hennig, M.; Ruf, A.; Stihle, M.; Thoma, R.; Rudolph, M.G. Structure of the human fatty acid synthase KS-MAT didomain as a framework for inhibitor design. J. Mol. Biol., 2010, 397(2), 508-519.
[http://dx.doi.org/10.1016/j.jmb.2010.01.066] [PMID: 20132826]
[36]
Bunkoczi, G.; Misquitta, S.; Wu, X.; Lee, W.H.; Rojkova, A.; Kochan, G.; Kavanagh, K.L.; Oppermann, U.; Smith, S. Structural basis for different specificities of acyltransferases associated with the human cytosolic and mitochondrial fatty acid synthases. Chem. Biol., 2009, 16(6), 667-675.
[http://dx.doi.org/10.1016/j.chembiol.2009.04.011] [PMID: 19549604]
[37]
Sippel, K.H.; Vyas, N.K.; Zhang, W.; Sankaran, B.; Quiocho, F.A. Crystal structure of the human fatty acid synthase enoyl-acyl carrier protein-reductase domain complexed with triclosan reveals allosteric protein-protein interface inhibition. J. Biol. Chem., 2014, 289(48), 33287-33295.
[http://dx.doi.org/10.1074/jbc.M114.608547] [PMID: 25301948]
[38]
Hardwicke, M.A.; Rendina, A.R.; Williams, S.P.; Moore, M.L.; Wang, L.; Krueger, J.A.; Plant, R.N.; Totoritis, R.D.; Zhang, G.; Briand, J.; Burkhart, W.A.; Brown, K.K.; Parrish, C.A. A human fatty acid synthase inhibitor binds β-ketoacyl reductase in the keto-substrate site. Nat. Chem. Biol., 2014, 10(9), 774-779.
[http://dx.doi.org/10.1038/nchembio.1603] [PMID: 25086508]
[39]
Chakravarty, B.; Gu, Z.; Chirala, S.S.; Wakil, S.J.; Quiocho, F.A. Human fatty acid synthase: structure and substrate selectivity of the thioesterase domain. Proc. Natl. Acad. Sci. USA, 2004, 101(44), 15567-15572.
[http://dx.doi.org/10.1073/pnas.0406901101] [PMID: 15507492]
[40]
Viegas, M.F.; Neves, R.P.P.; Ramos, M.J.; Fernandes, P.A. Modeling of human fatty acid synthase and in silico docking of acyl carrier protein domain and its partner catalytic domains. J. Phys. Chem. B, 2018, 122(1), 77-85.
[http://dx.doi.org/10.1021/acs.jpcb.7b09645] [PMID: 29210581]
[41]
John, A.; Umashankar, V.; Krishnakumar, S.; Deepa, P.R. Comparative modeling and molecular dynamics simulation of substrate binding in human fatty acid synthase: Enoyl reductase and β-fetoacyl reductase catalytic domains. Genomics Inform., 2015, 13(1), 15-24.
[http://dx.doi.org/10.5808/GI.2015.13.1.15] [PMID: 25873848]
[42]
Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta, 2013, 1830(6), 3670-3695.
[http://dx.doi.org/10.1016/j.bbagen.2013.02.008] [PMID: 23428572]
[43]
Cheng, C.S.; Wang, Z.; Chen, J. Targeting FASN in breast cancer and the discovery of promising inhibitors from natural products derived from traditional Chinese medicine. Evid. Based Complement. Alternat. Med., 2014.2014232946
[http://dx.doi.org/10.1155/2014/232946] [PMID: 24778702]
[44]
Chen, J.; Zhuang, D.; Cai, W.; Xu, L.; Li, E.; Wu, Y.; Sugiyama, K. Inhibitory effects of four plants flavonoids extracts on fatty acid synthase. J. Environ. Sci. (China), 2009, 21(1)(Suppl. 1), S131-S134.
[http://dx.doi.org/10.1016/S1001-0742(09)60056-5] [PMID: 25084411]
[45]
Wang, X.; Tian, W. Green tea epigallocatechin gallate: A natural inhibitor of fatty-acid synthase. Biochem. Biophys. Res. Commun., 2001, 288(5), 1200-1206.
[http://dx.doi.org/10.1006/bbrc.2001.5923] [PMID: 11700039]
[46]
Nakagawa, K.; Miyazawa, T. Chemiluminescence-high-performance liquid chromatographic determination of tea catechin, (-)-epigallocatechin 3-gallate, at picomole levels in rat and human plasma. Anal. Biochem., 1997, 248(1), 41-49.
[http://dx.doi.org/10.1006/abio.1997.2098] [PMID: 9177723]
[47]
Pandey, P.R.; Liu, W.; Xing, F.; Fukuda, K.; Watabe, K. Anti-cancer drugs targeting fatty acid synthase (FAS). Rec. Pat. Anticancer Drug Discov., 2012, 7(2), 185-197.
[http://dx.doi.org/10.2174/157489212799972891] [PMID: 22338595]
[48]
Bitencourt, T.A.; Komoto, T.T.; Massaroto, B.G.; Miranda, C.E.S.; Beleboni, R.O.; Marins, M.; Fachin, A.L. Trans-chalcone and quercetin down-regulate fatty acid synthase gene expression and reduce ergosterol content in the human pathogenic dermatophyte Trichophyton rubrum. BMC Complement. Altern. Med., 2013, 13(229), 229.
[http://dx.doi.org/10.1186/1472-6882-13-229] [PMID: 24044691]
[49]
Aras, A.; Khokhar, A.R.; Qureshi, M.Z.; Silva, M.F.; Sobczak-Kupiec, A.; Pineda, E.A.G.; Hechenleitner, A.A.W.; Farooqi, A.A. Targeting cancer with nano-bullets: curcumin, EGCG, resveratrol and quercetin on flying carpets. Asian Pac. J. Cancer Prev., 2014, 15(9), 3865-3871.
[http://dx.doi.org/10.7314/APJCP.2014.15.9.3865] [PMID: 24935565]
[50]
Tian, W-X.; Ma, X-F.; Zhang, S-Y.; Sun, Y-H.; Li, B-H. Fatty acid synthase inhibitors from plants and their potential application in the prevention of metabolic syndrome. Clin. Oncol. Cancer Res., 2011, 8, 1-9.
[http://dx.doi.org/10.1007/s11805-011-0550-3]
[51]
Wu, J.; Du, J.; Fu, X.; Liu, B.; Cao, H.; Li, T.; Su, T.; Xu, J.; Tse, A.K.; Yu, Z.L. Iciartin, a novel FASN inhibitor, exerts anti-melanoma activities through IGF-1R/STAT3 signaling. Oncotarget, 2016, 7(32), 51251-51269.
[http://dx.doi.org/10.18632/oncotarget.9984] [PMID: 27323414]
[52]
Lee, J.S.; Sul, J.Y.; Park, J.B.; Lee, M.S.; Cha, E.Y.; Song, I.S.; Kim, J.R.; Chang, E.S. Fatty acid synthase inhibition by amentoflavone suppresses HER2/neu (erbB2) oncogene in SKBR3 human breast cancer cells. Phytother. Res., 2013, 27(5), 713-720.
[http://dx.doi.org/10.1002/ptr.4778] [PMID: 22767439]
[53]
Fan, H.; Tian, W.; Ma, X. Curcumin induces apoptosis of HepG2 cells via inhibiting fatty acid synthase. Target. Oncol., 2014, 9(3), 279-286.
[http://dx.doi.org/10.1007/s11523-013-0286-5] [PMID: 23821378]
[54]
Jiang, H.Z.; Quan, X.F.; Tian, W.X.; Hu, J.M.; Wang, P.C.; Huang, S.Z.; Cheng, Z.Q.; Liang, W.J.; Zhou, J.; Ma, X.F.; Zhao, Y.X. Fatty acid synthase inhibitors of phenolic constituents isolated from Garcinia mangostana. Bioorg. Med. Chem. Lett., 2010, 20(20), 6045-6047.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.061] [PMID: 20817450]
[55]
Quan, X.; Wang, Y.; Ma, X.; Liang, Y.; Tian, W.; Ma, Q.; Jiang, H.; Zhao, Y. α-Mangostin induces apoptosis and suppresses differentiation of 3T3-L1 cells via inhibiting fatty acid synthase. PLoS One, 2012, 7(3)e33376
[http://dx.doi.org/10.1371/journal.pone.0033376] [PMID: 22428036]
[56]
Li, P.; Tian, W.; Ma, X. Alpha-mangostin inhibits intracellular fatty acid synthase and induces apoptosis in breast cancer cells. Mol. Cancer, 2014, 13(138), 138.
[http://dx.doi.org/10.1186/1476-4598-13-138] [PMID: 24894151]
[57]
Liang, Y.; Luo, D.; Gao, X.; Wu, H. Inhibitory effects of garcinone E on fatty acid synthase. RSC Advances, 2018, 8, 8112-8117.
[http://dx.doi.org/10.1039/C7RA13246H]
[58]
Liu, W.; Furuta, E.; Shindo, K.; Watabe, M.; Xing, F.; Pandey, P.R.; Okuda, H.; Pai, S.K.; Murphy, L.L.; Cao, D.; Mo, Y.Y.; Kobayashi, A.; Iiizumi, M.; Fukuda, K.; Xia, B.; Watabe, K. Cacalol, a natural sesquiterpene, induces apoptosis in breast cancer cells by modulating Akt-SREBP-FAS signaling pathway. Breast Cancer Res. Treat., 2011, 128(1), 57-68.
[http://dx.doi.org/10.1007/s10549-010-1076-8] [PMID: 20665104]
[59]
Zhang, J.S.; Lei, J.P.; Wei, G.Q.; Chen, H.; Ma, C.Y.; Jiang, H.Z. Natural fatty acid synthase inhibitors as potent therapeutic agents for cancers: A review. Pharm. Biol., 2016, 54(9), 1919-1925.
[http://dx.doi.org/10.3109/13880209.2015.1113995] [PMID: 26864638]
[60]
Chiang, C.T.; Way, T.D.; Tsai, S.J.; Lin, J.K. Diosgenin, a naturally occurring steroid, suppresses fatty acid synthase expression in HER2-overexpressing breast cancer cells through modulating Akt, mTOR and JNK phosphorylation. FEBS Lett., 2007, 581(30), 5735-5742.
[http://dx.doi.org/10.1016/j.febslet.2007.11.021] [PMID: 18022396]
[61]
Fan, H.; Wu, D.; Tian, W.; Ma, X. Inhibitory effects of tannic acid on fatty acid synthase and 3T3-L1 preadipocyte. Biochim. Biophys. Acta, 2013, 1831(7), 1260-1266.
[http://dx.doi.org/10.1016/j.bbalip.2013.04.003] [PMID: 24046866]
[62]
Wang, J.; Soisson, S.M.; Young, K.; Shoop, W.; Kodali, S.; Galgoci, A.; Painter, R.; Parthasarathy, G.; Tang, Y.S.; Cummings, R.; Ha, S.; Dorso, K.; Motyl, M.; Jayasuriya, H.; Ondeyka, J.; Herath, K.; Zhang, C.; Hernandez, L.; Allocco, J.; Basilio, A.; Tormo, J.R.; Genilloud, O.; Vicente, F.; Pelaez, F.; Colwell, L.; Lee, S.H.; Michael, B.; Felcetto, T.; Gill, C.; Silver, L.L.; Hermes, J.D.; Bartizal, K.; Barrett, J.; Schmatz, D.; Becker, J.W.; Cully, D.; Singh, S.B. Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature, 2006, 441(7091), 358-361.
[http://dx.doi.org/10.1038/nature04784] [PMID: 16710421]
[63]
Wu, M.; Singh, S.B.; Wang, J.; Chung, C.C.; Salituro, G.; Karanam, B.V.; Lee, S.H.; Powles, M.; Ellsworth, K.P.; Lassman, M.E.; Miller, C.; Myers, R.W.; Tota, M.R.; Zhang, B.B.; Li, C. Antidiabetic and antisteatotic effects of the selective fatty acid synthase (FAS) inhibitor platensimycin in mouse models of diabetes. Proc. Natl. Acad. Sci. USA, 2011, 108(13), 5378-5383.
[http://dx.doi.org/10.1073/pnas.1002588108] [PMID: 21389266]
[64]
Funabashi, H.; Kawaguchi, A.; Tomoda, H.; Omura, S.; Okuda, S.; Iwasaki, S. Binding site of cerulenin in fatty acid synthetase. J. Biochem., 1989, 105(5), 751-755.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a122739] [PMID: 2666407]
[65]
Heiligtag, S.J.; Bredehorst, R.; David, K.A. Key role of mitochondria in cerulenin-mediated apoptosis. Cell Death Differ., 2002, 9(9), 1017-1025.
[http://dx.doi.org/10.1038/sj.cdd.4401055] [PMID: 12181752]
[66]
Pizer, E.S.; Wood, F.D.; Heine, H.S.; Romantsev, F.E.; Pasternack, G.R.; Kuhajda, F.P. Inhibition of fatty acid synthesis delays disease progression in a xenograft model of ovarian cancer. Cancer Res., 1996, 56(6), 1189-1193.
[PMID: 8640795]
[67]
Kuhajda, F.P.; Pizer, E.S.; Li, J.N.; Mani, N.S.; Frehywot, G.L.; Townsend, C.A. Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc. Natl. Acad. Sci. USA, 2000, 97(7), 3450-3454.
[http://dx.doi.org/10.1073/pnas.97.7.3450] [PMID: 10716717]
[68]
Chen, C.; Han, X.; Zou, X.; Li, Y.; Yang, L.; Cao, K.; Xu, J.; Long, J.; Liu, J.; Feng, Z. 4-methylene-2-octyl-5-oxotetrahydrofuran-3-carboxylic acid (C75), an inhibitor of fatty-acid synthase, suppresses the mitochondrial fatty acid synthesis pathway and impairs mitochondrial function. J. Biol. Chem., 2014, 289(24), 17184-17194.
[http://dx.doi.org/10.1074/jbc.M114.550806] [PMID: 24784139]
[69]
Wang, X.; Zhao, G.; Chen, Y.; Xu, X.; Zhong, W.; Wang, L.; Li, S. 1-Oxo-3-substitute-isothiochroman-4-carboxylic acid compounds: synthesis and biological activities of FAS inhibition. Bioorg. Med. Chem. Lett., 2009, 19(3), 770-772.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.010] [PMID: 19097781]
[70]
McFadden, J.M.; Medghalchi, S.M.; Thupari, J.N.; Pinn, M.L.; Vadlamudi, A.; Miller, K.I.; Kuhajda, F.P.; Townsend, C.A. Application of a flexible synthesis of (5R)-thiolactomycin to develop new inhibitors of type I fatty acid synthase. J. Med. Chem., 2005, 48(4), 946-961.
[http://dx.doi.org/10.1021/jm049389h] [PMID: 15715465]
[71]
Makowski, K.; Mir, J.F.; Mera, P.; Ariza, X.; Asins, G.; Hegardt, F.G.; Herrero, L.; García, J.; Serra, D. (-)-UB006: A new fatty acid synthase inhibitor and cytotoxic agent without anorexic side effects. Eur. J. Med. Chem., 2017, 131, 207-221.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.012] [PMID: 28324785]
[72]
Kridel, S.J.; Axelrod, F.; Rozenkrantz, N.; Smith, J.W. Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res., 2004, 64(6), 2070-2075.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3645] [PMID: 15026345]
[73]
Cheng, F.; Wang, Q.; Chen, M.; Quiocho, F.A.; Ma, J. Molecular docking study of the interactions between the thioesterase domain of human fatty acid synthase and its ligands. Proteins, 2008, 70(4), 1228-1234.
[http://dx.doi.org/10.1002/prot.21615] [PMID: 17847090]
[74]
Pemble, C.W., IV; Johnson, L.C.; Kridel, S.J.; Lowther, W.T. Crystal structure of the thioesterase domain of human fatty acid synthase inhibited by Orlistat. Nat. Struct. Mol. Biol., 2007, 14(8), 704-709.
[http://dx.doi.org/10.1038/nsmb1265] [PMID: 17618296]
[75]
Hill, T.K.; Davis, A.L.; Wheeler, F.B.; Kelkar, S.S.; Freund, E.C.; Lowther, W.T.; Kridel, S.J.; Mohs, A.M. Development of a self-assembled nanoparticle formulation of orlistat, nano-ORL, with increased cytotoxicity against human tumor cell lines. Mol. Pharm., 2016, 13(3), 720-728.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00447] [PMID: 26824142]
[76]
Bostrom, J.; Brickmann, K.; Johannesson, P.; Knerr, L.D.; Velker, P. Bisamide derivatives and use thereof as fatty acid synthase inhibitors WO 2008/059214 A1 2008.
[77]
Oslob, J.D.; Johnson, R.J.; Cai, H.; Feng, S.Q.; Hu, L.; Kosaka, Y.; Lai, J.; Sivaraja, M.; Tep, S.; Yang, H.; Zaharia, C.A.; Evanchik, M.J.; McDowell, R.S. Imidazopyridine-based fatty acid synthase inhibitors that show anti-HCV activity and in vivo target modulation. ACS Med. Chem. Lett., 2012, 4(1), 113-117.
[http://dx.doi.org/10.1021/ml300335r] [PMID: 24900571]
[78]
Ventura, R.; Mordec, K.; Waszczuk, J.; Wang, Z.; Lai, J.; Fridlib, M.; Buckley, D.; Kemble, G.; Heuer, T.S. Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression. EBioMedicine, 2015, 2(8), 808-824.
[http://dx.doi.org/10.1016/j.ebiom.2015.06.020] [PMID: 26425687]
[79]
Patel, M.; Infante, J.; Von Hoff, D.; Jones, S.; Burris, H.; Brenner, A.; McCulloch, W.; Zhukova-Harrill, V.; Kemble, G.; Parsey, M. Abstract CT203: Report of a first-in-human study of the first-in-class fatty acid synthase (FASN) inhibitor TVB-2640. Cancer Res., 2015, 75(15), CT203-CT203.
[80]
Vázquez, M.J.; Leavens, W.; Liu, R.; Rodríguez, B.; Read, M.; Richards, S.; Winegar, D.; Domínguez, J.M. Discovery of GSK837149A, an inhibitor of human fatty acid synthase targeting the β-ketoacyl reductase reaction. FEBS J., 2008, 275(7), 1556-1567.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06314.x] [PMID: 18312417]
[81]
Anderson, V.E.; Hammes, G.G. Stereochemistry of the reactions catalyzed by chicken liver fatty acid synthase. Biochemistry, 1984, 23(9), 2088-2094.
[http://dx.doi.org/10.1021/bi00304a033] [PMID: 6722137]
[82]
Lu, T.; Schubert, C.; Cummings, M.D.; Bignan, G.; Connolly, P.J.; Smans, K.; Ludovici, D.; Parker, M.H.; Meyer, C.; Rocaboy, C.; Alexander, R.; Grasberger, B.; De Breucker, S.; Esser, N.; Fraiponts, E.; Gilissen, R.; Janssens, B.; Peeters, D.; Van Nuffel, L.; Vermeulen, P.; Bischoff, J.; Meerpoel, L. Design and synthesis of a series of bioavailable fatty acid synthase (FASN) KR domain inhibitors for cancer therapy. Bioorg. Med. Chem. Lett., 2018, 28(12), 2159-2164.
[http://dx.doi.org/10.1016/j.bmcl.2018.05.014] [PMID: 29779975]
[83]
Martin, M.W.; Lancia, D.R., Jr; Li, H.; Schiller, S.E.R.; Toms, A.V.; Wang, Z.; Bair, K.W.; Castro, J.; Fessler, S.; Gotur, D.; Hubbs, S.E.; Kauffman, G.S.; Kershaw, M.; Luke, G.P.; McKinnon, C.; Yao, L.; Lu, W.; Millan, D.S. Discovery and optimization of novel piperazines as potent inhibitors of fatty acid synthase (FASN). Bioorg. Med. Chem. Lett., 2019, 29(8), 1001-1006.
[http://dx.doi.org/10.1016/j.bmcl.2019.02.012] [PMID: 30803804]
[84]
Kley, J.T.; Mack, J.; Hamilton, B.; Scheuerer, S.; Redemann, N. Discovery of BI 99179, a potent and selective inhibitor of type I fatty acid synthase with central exposure. Bioorg. Med. Chem. Lett., 2011, 21(19), 5924-5927.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.083] [PMID: 21873051]
[85]
Rivkin, A.; Kim, Y.R.; Goulet, M.T.; Bays, N.; Hill, A.D.; Kariv, I.; Krauss, S.; Ginanni, N.; Strack, P.R.; Kohl, N.E.; Chung, C.C.; Varnerin, J.P.; Goudreau, P.N.; Chang, A.; Tota, M.R.; Munoz, B. 3-Aryl-4-hydroxyquinolin-2(1H)-one derivatives as type I fatty acid synthase inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(17), 4620-4623.
[http://dx.doi.org/10.1016/j.bmcl.2006.06.014] [PMID: 16784844]
[86]
Chakravarty, B.; Gu, Z.; Chirala, S.S.; Wakil, S.J.; Quiocho, F.A. Human fatty acid synthase: Structure and substrate selectivity of the thioesterase domain. Proc. Natl. Acad. Sci. USA, 2004, 101(44), 15567-15572.
[87]
John, A.; Vetrivel, U.; Subramanian, K.; Deepa, P.R. Comparative docking of dual conformations in human fatty acid synthase thioesterase domain reveals potential binding cavity for virtual screening of ligands. J. Biomol. Struct. Dyn., 2017, 35(6), 1350-1366.
[http://dx.doi.org/10.1080/07391102.2016.1184183] [PMID: 27145135]
[88]
Nisthul, A. A.; Retnakumari, A.P.; A, S.; Anto, R.J.; Sadasivan, C. In silico screening for identification of fatty acid synthase inhibitors and evaluation of their antiproliferative activity using human cancer cell lines. J. Recept. Signal Transduct. Res., 2018, 38(4), 335-341.
[http://dx.doi.org/10.1080/10799893.2018.1511730] [PMID: 30256698]
[89]
John, A.; Umashankar, V.; Samdani, A.; Sangeetha, M.; Krishnakumar, S.; Deepa, P.R. In silico structure prediction of human fatty acid synthase-dehydratase: A plausible model for understanding active site interactions. Bioinform. Biol. Insights, 2016, 10, 143-154.
[http://dx.doi.org/10.4137/BBI.S38317] [PMID: 27559295]
[90]
Menendez, J.A.; Lupu, R. Fatty acid synthase (FASN) as a therapeutic target in breast cancer. Expert Opin. Ther. Targets, 2017, 21(11), 1001-1016.
[http://dx.doi.org/10.1080/14728222.2017.1381087] [PMID: 28922023]
[91]
Felder, E.R.; Badari, A.; Disingrini, T.; Mantegani, S.; Orrenius, C.; Avanzi, N.; Isacchi, A.; Salom, B. The generation of purinome-targeted libraries as a means to diversify ATP-mimetic chemical classes for lead finding. Mol. Divers., 2012, 16(1), 27-51.
[http://dx.doi.org/10.1007/s11030-012-9361-6] [PMID: 22350112]
[92]
Haystead, T.A.; Haystead, T. The purinome, a complex mix of drug and toxicity targets. Curr. Top. Med. Chem., 2006, 6(11), 1117-1127.
[http://dx.doi.org/10.2174/156802606777812059] [PMID: 16842150]
[93]
Alwarawrah, Y.; Hughes, P.; Loiselle, D.; Carlson, D.A.; Darr, D.B.; Jordan, J.L.; Xiong, J.; Hunter, L.M.; Dubois, L.G.; Thompson, J.W.; Kulkarni, M.M.; Ratcliff, A.N.; Kwiek, J.J.; Haystead, T.A. Fasnall, a selective FASN inhibitor, shows potent anti-tumor activity in the MMTV-neu model of HER2+breast cancer. Cell Chem. Biol., 2016, 23(6), 678-688.
[http://dx.doi.org/10.1016/j.chembiol.2016.04.011] [PMID: 27265747]
[94]
Shim, J.S.; Liu, J.O. Recent advances in drug repositioning for the discovery of new anticancer drugs. Int. J. Biol. Sci., 2014, 10(7), 654-663.
[http://dx.doi.org/10.7150/ijbs.9224] [PMID: 25013375]
[95]
Sadowski, M.C.; Pouwer, R.H.; Gunter, J.H.; Lubik, A.A.; Quinn, R.J.; Nelson, C.C. The fatty acid synthase inhibitor triclosan: repurposing an anti-microbial agent for targeting prostate cancer. Oncotarget, 2014, 5(19), 9362-9381.
[http://dx.doi.org/10.18632/oncotarget.2433] [PMID: 25313139]
[96]
Rodricks, J.V.; Swenberg, J.A.; Borzelleca, J.F.; Maronpot, R.R.; Shipp, A.M. Triclosan: A critical review of the experimental data and development of margins of safety for consumer products. Crit. Rev. Toxicol., 2010, 40(5), 422-484.
[http://dx.doi.org/10.3109/10408441003667514] [PMID: 20377306]
[97]
Lu, S.; Archer, M.C. Fatty acid synthase is a potential molecular target for the chemoprevention of breast cancer. Carcinogenesis, 2005, 26(1), 153-157.
[http://dx.doi.org/10.1093/carcin/bgh278] [PMID: 15358634]
[98]
Liu, B.; Wang, Y.; Fillgrove, K.L.; Anderson, V.E. Triclosan inhibits enoyl-reductase of type I fatty acid synthase in vitro and is cytotoxic to MCF-7 and SKBr-3 breast cancer cells. Cancer Chemother. Pharmacol., 2002, 49(3), 187-193.
[http://dx.doi.org/10.1007/s00280-001-0399-x] [PMID: 11935210]
[99]
Gandini, S.; Puntoni, M.; Heckman-Stoddard, B.M.; Dunn, B.K.; Ford, L.; DeCensi, A.; Szabo, E. Metformin and cancer risk and mortality: A systematic review and meta-analysis taking into account biases and confounders. Cancer Prev. Res. (Phila.), 2014, 7(9), 867-885.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0424] [PMID: 24985407]
[100]
Romero, I.L.; McCormick, A.; McEwen, K.A.; Park, S.; Karrison, T.; Yamada, S.D.; Pannain, S.; Lengyel, E. Relationship of type II diabetes and metformin use to ovarian cancer progression, survival, and chemosensitivity. Obstet. Gynecol., 2012, 119(1), 61-67.
[http://dx.doi.org/10.1097/AOG.0b013e3182393ab3] [PMID: 22183212]
[101]
Wahdan-Alaswad, R.S.; Cochrane, D.R.; Spoelstra, N.S.; Howe, E.N.; Edgerton, S.M.; Anderson, S.M.; Thor, A.D.; Richer, J.K. Metformin-induced killing of triple-negative breast cancer cells is mediated by reduction in fatty acid synthase via miRNA-193b. Horm. Cancer, 2014, 5(6), 374-389.
[http://dx.doi.org/10.1007/s12672-014-0188-8] [PMID: 25213330]
[102]
Bhalla, K.; Hwang, B.J.; Dewi, R.E.; Twaddel, W.; Goloubeva, O.G.; Wong, K.K.; Saxena, N.K.; Biswal, S.; Girnun, G.D. Metformin prevents liver tumorigenesis by inhibiting pathways driving hepatic lipogenesis. Cancer Prev. Res. (Phila.), 2012, 5(4), 544-552.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0228] [PMID: 22467080]
[103]
Loubière, C.; Goiran, T.; Laurent, K.; Djabari, Z.; Tanti, J-F.; Bost, F. Metformin-induced energy deficiency leads to the inhibition of lipogenesis in prostate cancer cells. Oncotarget, 2015, 6(17), 15652-15661.
[http://dx.doi.org/10.18632/oncotarget.3404] [PMID: 26002551]
[104]
Fako, V.E.; Wu, X.; Pflug, B.; Liu, J-Y.; Zhang, J-T. Repositioning proton pump inhibitors as anticancer drugs by targeting the thioesterase domain of human fatty acid synthase. J. Med. Chem., 2015, 58(2), 778-784.
[http://dx.doi.org/10.1021/jm501543u] [PMID: 25513712]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy